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Artificial intelligence (AI) refers to the field of computer science theory and tech-
nology [1] that is focused on creating intelligent machines capable of simulating human
intelligence [2]. AI systems [3] are designed to perform tasks that typically require human
intelligence [4], such as perception, learning, reasoning [5], problem-solving [6], decision-
making [7], etc.

Machine learning (ML) [8] is a subfield of AI that encompasses algorithms and statisti-
cal models, enabling computer systems to automatically learn from data, identify patterns,
and make predictions or decisions without being explicitly programmed [9]. It involves
the development of mathematical models and algorithms [10] that allow machines to
iteratively process and analyze large datasets, learn from examples or experiences, and
improve their performance over time. By leveraging ML theories and techniques [11], com-
puters can discover complex patterns, extract meaningful insights, and generate reliable
predictions, making ML a powerful tool for various applications in fields such as finance,
smart healthcare [12], the Internet of Things [13], natural language processing (NLP) [14],
recommendation systems, etc.

Deep learning (DL) is a specialized branch of ML that focuses on the development
and training of artificial neural networks with multiple layers of interconnected nodes [15],
which are known as deep neural networks. It enables computers to automatically learn
hierarchical representations of data, allowing for the extraction of intricate patterns and fea-
tures from complex datasets [16]. DL leverages the power of large-scale computing and vast
amounts of data [17] to enable neural networks to perform sophisticated tasks, such as im-
age and speech recognition, NLP, and even autonomous decision-making. By emulating the
structure and functionality of the human brain, DL has revolutionized AI by significantly
enhancing the accuracy and performance of various applications [18] including medical
image analysis (MIA) [19], while also demanding substantial computational resources.

Transformers are a revolutionary DL method that have greatly impacted the field of
NLP. They are an example of a neural network model designed to process sequential data,
such as sentences or paragraphs, by leveraging attention mechanisms. Unlike traditional
recurrent neural networks (RNNs) [20] that process input sequentially, transformers [21]
employ a parallelized approach, allowing for more efficient and scalable computation.
By focusing on the relationships and dependencies between different words or tokens
within a sequence, the transformer model excels at tasks like machine translation, text
generation, sentiment analysis, and language understanding [22]. Transformers’ self-
attention mechanisms enable them to capture contextual information effectively, resulting
in state-of-the-art performance on a wide range of NLP benchmarks and applications.
Transformers have become the foundation for many advanced language models, such as
BERT, ChatGPT [23], and T5, and have significantly advanced the capabilities of language
understanding and generation systems. Vision transformers (ViTs) [24] are an adaptation
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of the classical transformer architecture that apply self-attention mechanisms to process
image data [25], making them an exemplary powerful model for tasks in computer vision,
showcasing the extension of transformers’ effectiveness beyond NLP. Figure 1 shows the
relationship between AI, ML, DL, and Transformers.

J. Imaging 2023, 9, x FOR PEER REVIEW 2 of 4 
 

 

ChatGPT [23], and T5, and have significantly advanced the capabilities of language un-
derstanding and generation systems. Vision transformers (ViTs) [24] are an adaptation of 
the classical transformer architecture that apply self-attention mechanisms to process im-
age data [25], making them an exemplary powerful model for tasks in computer vision, 
showcasing the extension of transformers’ effectiveness beyond NLP. Figure 1 shows the 
relationship between AI, ML, DL, and Transformers. 

 
Figure 1. Relationship between AI, ML, DL, and Transformers. 

Medical image analysis (MIA) [26] is an important field of application for AI. MIA 
involves a series of common procedures [27], starting with image acquisition, wherein 
medical imaging modalities capture anatomical or functional information. The acquired 
images then undergo preprocessing techniques [28] to correct artifacts, enhance quality, 
and standardize the data. Next, segmentation methods [29] are employed to separate and 
identify specific structures or regions of interest within the images. Registration tech-
niques [30] are applied to align multiple images or different modalities for spatial corre-
spondence. 

Feature extraction algorithms [31] extract relevant quantitative or qualitative infor-
mation from the segmented regions for subsequent analysis. Classification methods [32] 
are then utilized to classify the extracted features, enabling the identification of diseases 
or conditions. Visualization techniques [33] help in the interpretation and display of the 
analysis results for clinicians and researchers. Localization methods [34] precisely deter-
mine the spatial location of abnormalities or structures within the images, aiding in diag-
nosis and treatment planning. These procedures, shown in Figure 2, collectively contrib-
ute to the comprehensive analysis and interpretation of medical images, ultimately facili-
tating improved patient care and medical research [35]. 

 
Figure 2. Eight common procedures in medical image analysis. 

DL for MIA faces several challenges. Acquiring a sufficient quantity of high-quality 
annotated medical images can be challenging due to privacy concerns, limited availability, 
and the time-consuming process of manual annotation [36]. DL and ViT models often re-
quire a large amount of labeled data to achieve optimal performance, and this data may 
be limited for rare diseases [37] or specific subpopulations. Further, DL and ViT models 
typically have a large number of parameters, making them demanding and in need of 
substantial computational resources [38] for training and inference. 

Artificial Intelligence

Machine Learning

Deep Learning

Transformer 
and VIT

Medical 
Image 

Analysis

Acquisition

Preprocessing

Segmentation

Registration

Feature Extraction

Classification

Visualization

Localization

Figure 1. Relationship between AI, ML, DL, and Transformers.

Medical image analysis (MIA) [26] is an important field of application for AI. MIA
involves a series of common procedures [27], starting with image acquisition, wherein
medical imaging modalities capture anatomical or functional information. The acquired
images then undergo preprocessing techniques [28] to correct artifacts, enhance quality, and
standardize the data. Next, segmentation methods [29] are employed to separate and iden-
tify specific structures or regions of interest within the images. Registration techniques [30]
are applied to align multiple images or different modalities for spatial correspondence.

Feature extraction algorithms [31] extract relevant quantitative or qualitative infor-
mation from the segmented regions for subsequent analysis. Classification methods [32]
are then utilized to classify the extracted features, enabling the identification of diseases or
conditions. Visualization techniques [33] help in the interpretation and display of the anal-
ysis results for clinicians and researchers. Localization methods [34] precisely determine
the spatial location of abnormalities or structures within the images, aiding in diagnosis
and treatment planning. These procedures, shown in Figure 2, collectively contribute to
the comprehensive analysis and interpretation of medical images, ultimately facilitating
improved patient care and medical research [35].
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Figure 2. Eight common procedures in medical image analysis.

DL for MIA faces several challenges. Acquiring a sufficient quantity of high-quality
annotated medical images can be challenging due to privacy concerns, limited availability,
and the time-consuming process of manual annotation [36]. DL and ViT models often
require a large amount of labeled data to achieve optimal performance, and this data may
be limited for rare diseases [37] or specific subpopulations. Further, DL and ViT models
typically have a large number of parameters, making them demanding and in need of
substantial computational resources [38] for training and inference.

Author Contributions: Conceptualization, Y.Z. and J.W.; methodology, J.M.G. and S.W.; validation,
Y.Z. and J.W.; formal analysis, J.M.G. and S.W.; investigation, Y.Z.; resources, J.W.; data curation, J.M.G.
and S.W.; writing—original draft preparation, Y.Z. and J.W.; writing—review and editing, J.M.G. and
S.W.; supervision, J.M.G. and S.W.; project administration, Y.Z. and J.W.; funding acquisition, Y.Z.,
J.M.G. and S.W. All authors have read and agreed to the published version of the manuscript.



J. Imaging 2023, 9, 147 3 of 4

Funding: This paper was partially supported by MRC, UK (MC_PC_17171); Royal Society, UK
(RP202G0230); Hope Foundation for Cancer Research, UK (RM60G0680); GCRF, UK (P202PF11); Sino-
UK Industrial Fund, UK (RP202G0289); LIAS, UK (P202ED10, P202RE969); Data Science Enhancement
Fund, UK (P202RE237); Fight for Sight, UK (24NN201); Sino-UK Education Fund, UK (OP202006);
BBSRC, UK (RM32G0178B8); MCIN/AEI (10.13039/501100011033); FEDER ‘Una manera de hacer
Europa’ (RTI2018-098913-B100) by the Consejeria de Economia, Innovacion, Ciencia y Empleo (Junta
de Andalucia); FEDER (CV20-45250, A-TIC-080-UGR18, B-TIC-586-UGR20, and P20-00525).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ghouri, A.M.; Khan, H.R.; Mani, V.; ul Haq, M.A.; Jabbour, A. An artificial-intelligence-based omnichannel blood supply chain:

A pathway for sustainable development. J. Bus. Res. 2023, 164, 113980. [CrossRef]
2. Cundall, P. Human intelligence seems capable of anything to me. New Sci. 2023, 246, 30.
3. Lee, M.C.M.; Scheepers, H.; Lui, A.K.H.; Ngai, E.W.T. The implementation of artificial intelligence in organizations: A systematic

literature review. Inf. Manag. 2023, 60, 103816. [CrossRef]
4. Raspanti, M.A.; Palazzani, L. Artificial intelligence and human intelligence:Contributions of christian theology and philosophy of

the person. Biolaw J.-Riv. Biodiritto 2022, 457–471. [CrossRef]
5. Saleem, K.; Saleem, M.; Ahmad, R.Z.; Javed, A.R.; Alazab, M.; Gadekallu, T.R.; Suleman, A. Situation-aware bdi reasoning to

detect early symptoms of covid 19 using smartwatch. IEEE Sens. J. 2023, 23, 898–905. [CrossRef]
6. Goudar, V.; Peysakhovich, B.; Freedman, D.J.; Buffalo, E.A.; Wang, X.J. Schema formation in a neural population subspace

underlies learning-to-learn in flexible sensorimotor problem-solving. Nat. Neurosci. 2023, 26, 879–890. [CrossRef]
7. Gomez, C.; Unberath, M.; Huang, C.M. Mitigating knowledge imbalance in ai-advised decision-making through collaborative

user involvement. Int. J. Hum.-Comput. Stud. 2023, 172, 102977. [CrossRef]
8. Shakibi, H.; Faal, M.Y.; Assareh, E.; Agarwal, N.; Yari, M.; Latifi, S.A.; Ghodrat, M.; Lee, M. Design and multi-objective

optimization of a multi-generation system based on pem electrolyzer, ro unit, absorption cooling system, and orc utilizing
machine learning approaches; a case study of australia. Energy 2023, 278, 127796. [CrossRef]

9. Bhowmik, R.T.; Jung, Y.S.; Aguilera, J.A.; Prunicki, M.; Nadeau, K. A multi-modal wildfire prediction and early-warning system
based on a novel machine learning framework. J. Environ. Manag. 2023, 341, 117908. [CrossRef]

10. Kozikowski, P. Machine learning for grouping nano-objects based on their morphological parameters obtained from sem analysis.
Micron 2023, 171, 103473. [CrossRef]

11. Vinod, D.N.; Prabaharan, S.R.S. Elucidation of infection asperity of ct scan images of COVID-19 positive cases: A machine
learning perspective. Sci. Afr. 2023, 20, e01681. [CrossRef]

12. Abd Rahman, N.H.; Zaki, M.H.M.; Hasikin, K.; Abd Razak, N.A.; Ibrahim, A.K.; Lai, K.W. Predicting medical device failure:
A promise to reduce healthcare facilities cost through smart healthcare management. PeerJ Comput. Sci. 2023, 9, e1279. [CrossRef]
[PubMed]

13. Yazdanpanah, S.; Chaeikar, S.S.; Jolfaei, A. Monitoring the security of audio biomedical signals communications in wearable iot
healthcare. Digit. Commun. Netw. 2023, 9, 393–399. [CrossRef]

14. Pyne, Y.; Wong, Y.M.; Fang, H.S.; Simpson, E. Analysis of ‘one in a million’ primary care consultation conversations using natural
language processing. BMJ Health Care Inform. 2023, 30, e100659. [CrossRef]

15. Ahmed, S.; Raza, B.; Hussain, L.; Aldweesh, A.; Omar, A.; Khan, M.S.; Eldin, E.T.; Nadim, M.A. The deep learning resnet101
and ensemble xgboost algorithm with hyperparameters optimization accurately predict the lung cancer. Appl. Artif. Intell. 2023,
37, 2166222. [CrossRef]

16. Tyson, R.; Gavalian, G.; Ireland, D.G.; McKinnon, B. Deep learning level-3 electron trigger for clas12. Comput. Phys. Commun.
2023, 290, 108783. [CrossRef]

17. Almutairy, F.; Scekic, L.; Matar, M.; Elmoudi, R.; Wshah, S. Detection and mitigation of gps spoofing attacks on phasor
measurement units using deep learning. Int. J. Electr. Power Energy Syst. 2023, 151, 109160. [CrossRef]

18. Alizadehsani, Z.; Ghaemi, H.; Shahraki, A.; Gonzalez-Briones, A.; Corchado, J.M. Dcservcg: A data-centric service code generation
using deep learning. Eng. Appl. Artif. Intell. 2023, 123, 106304. [CrossRef]

19. Zhang, Y.; Dong, Z. Medical imaging and image processing. Technologies 2023, 11, 54. [CrossRef]
20. Kessler, S.; Schroeder, D.; Korlakov, S.; Hettlich, V.; Kalkhoff, S.; Moazemi, S.; Lichtenberg, A.; Schmid, F.; Aubin, H. Predicting

readmission to the cardiovascular intensive care unit using recurrent neural networks. Digit. Health 2023, 9, 20552076221149529.
[CrossRef]

21. Alam, F.; Ananbeh, O.; Malik, K.M.; Odayani, A.A.; Hussain, I.B.; Kaabia, N.; Aidaroos, A.A.; Saudagar, A.K.J. Towards predicting
length of stay and identification of cohort risk factors using self-attention-based transformers and association mining: COVID-19
as a phenotype. Diagnostics 2023, 13, 1760. [CrossRef] [PubMed]

22. Fuad, K.A.A.; Chen, L.Z. A survey on sparsity exploration in transformer-based accelerators. Electronics 2023, 12, 2299. [CrossRef]
23. Gradonm, K.T. Electric sheep on the pastures of disinformation and targeted phishing campaigns: The security implications of

chatgpt. IEEE Secur. Priv. 2023, 21, 58–61. [CrossRef]

https://doi.org/10.1016/j.jbusres.2023.113980
https://doi.org/10.1016/j.im.2023.103816
https://doi.org/10.1177/09539468231169462
https://doi.org/10.1109/JSEN.2022.3156819
https://doi.org/10.1038/s41593-023-01293-9
https://doi.org/10.1016/j.ijhcs.2022.102977
https://doi.org/10.1016/j.energy.2023.127796
https://doi.org/10.1016/j.jenvman.2023.117908
https://doi.org/10.1016/j.micron.2023.103473
https://doi.org/10.1016/j.sciaf.2023.e01681
https://doi.org/10.7717/peerj-cs.1279
https://www.ncbi.nlm.nih.gov/pubmed/37346641
https://doi.org/10.1016/j.dcan.2022.11.002
https://doi.org/10.1136/bmjhci-2022-100659
https://doi.org/10.1080/08839514.2023.2166222
https://doi.org/10.1016/j.cpc.2023.108783
https://doi.org/10.1016/j.ijepes.2023.109160
https://doi.org/10.1016/j.engappai.2023.106304
https://doi.org/10.3390/technologies11020054
https://doi.org/10.1177/20552076221149529
https://doi.org/10.3390/diagnostics13101760
https://www.ncbi.nlm.nih.gov/pubmed/37238244
https://doi.org/10.3390/electronics12102299
https://doi.org/10.1109/MSEC.2023.3255039


J. Imaging 2023, 9, 147 4 of 4

24. Hoshi, T.; Shibayama, S.; Jiang, X.A. Employing a hybrid model based on texture-biased convolutional neural networks and
edge-biased vision transformers for anomaly detection of signal bonds. J. Electron. Imaging 2023, 32, 023039. [CrossRef]

25. Chen, S.; Lu, S.; Wang, S.; Ni, Y.; Zhang, Y. Shifted window vision transformer for blood cell classification. Electronics 2023,
12, 2442. [CrossRef]

26. Apostolidis, K.D.; Papakostas, G.A. Digital watermarking as an adversarial attack on medical image analysis with deep learning.
J. Imaging 2022, 8, 155. [CrossRef]

27. Kiryati, N.; Landau, Y. Dataset growth in medical image analysis research. J. Imaging 2021, 7, 155. [CrossRef]
28. Wang, S. Advances in data preprocessing for biomedical data fusion: An overview of the methods, challenges, and prospects. Inf.

Fusion 2021, 76, 376–421. [CrossRef]
29. Shan, C.X.; Li, Q.; Guan, X. Lightweight brain tumor segmentation algorithm based on multi-view convolution. Laser Optoelectron.

Prog. 2023, 60, 1010018. [CrossRef]
30. Baum, Z.M.C.; Hu, Y.P.; Barratt, D.C. Meta-learning initializations for interactive medical image registration. IEEE Trans. Med.

Imaging 2023, 42, 823–833. [CrossRef]
31. Shamna, N.V.; Musthafa, B.A. Feature extraction method using hog with ltp for content-based medical image retrieval. Int. J.

Electr. Comput. Eng. Syst. 2023, 14, 267–275. [CrossRef]
32. Hida, M.; Eto, S.; Wada, C.; Kitagawa, K.; Imaoka, M.; Nakamura, M.; Imai, R.; Kubo, T.; Inoue, T.; Sakai, K.; et al. Development

of hallux valgus classification using digital foot images with machine learning. Life 2023, 13, 1146. [CrossRef] [PubMed]
33. Niemitz, L.; van der Stel, S.D.; Sorensen, S.; Messina, W.; Sekar, S.K.V.; Sterenborg, H.; Andersson-Engels, S.; Ruers, T.J.M.;

Burke, R. Microcamera visualisation system to overcome specular reflections for tissue imaging. Micromachines 2023, 14, 1062.
[CrossRef] [PubMed]

34. Bodard, S.; Denis, L.; Hingot, V.; Chavignon, A.; Helenon, O.; Anglicheau, D.; Couture, O.; Correas, J.M. Ultrasound localization
microscopy of the human kidney allograft on a clinical ultrasound scanner. Kidney Int. 2023, 103, 930–935. [CrossRef]

35. Zhang, Y.; Gorriz, J.M. Deep learning in medical image analysis. J. Imaging 2021, 7, 74. [CrossRef]
36. Sylolypavan, A.; Sleeman, D.; Wu, H.H.; Sim, M. The impact of inconsistent human annotations on ai driven clinical decision

making. NPJ Digit. Med. 2023, 6, 26. [CrossRef]
37. Talesh, S.A.; Mahmoudi, S.; Mohebali, M.; Mamishi, S. A rare presentation of visceral leishmaniasis and epididymo-orchitis in a

patient with chronic granulomatous disease. Clin. Case Rep. 2023, 11, e7426. [CrossRef]
38. Court, L.E.; Fave, X.; Mackin, D.; Lee, J.; Yang, J.Z.; Zhang, L.F. Computational resources for radiomics. Transl. Cancer Res. 2016, 5,

340–348. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1117/1.JEI.32.2.023039
https://doi.org/10.3390/electronics12112442
https://doi.org/10.3390/jimaging8060155
https://doi.org/10.3390/jimaging7080155
https://doi.org/10.1016/j.inffus.2021.07.001
https://doi.org/10.3788/lop220774
https://doi.org/10.1109/TMI.2022.3218147
https://doi.org/10.32985/ijeces.14.3.4
https://doi.org/10.3390/life13051146
https://www.ncbi.nlm.nih.gov/pubmed/37240791
https://doi.org/10.3390/mi14051062
https://www.ncbi.nlm.nih.gov/pubmed/37241685
https://doi.org/10.1016/j.kint.2023.01.027
https://doi.org/10.3390/jimaging7040074
https://doi.org/10.1038/s41746-023-00773-3
https://doi.org/10.1002/ccr3.7426
https://doi.org/10.21037/tcr.2016.06.17

	References

