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Abstract: The paper refers to interdisciplinary research in the areas of hierarchical cluster analysis of
big data and ordering of primary data to detect objects in a color or in a grayscale image. To perform
this on a limited domain of multidimensional data, an NP-hard problem of calculation of close to
optimal piecewise constant data approximations with the smallest possible standard deviations or total
squared errors (approximation errors) is solved. The solution is achieved by revisiting, modernizing,
and combining classical Ward’s clustering, split/merge, and K-means methods. The concepts of
objects, images, and their elements (superpixels) are formalized as structures that are distinguishable
from each other. The results of structuring and ordering the image data are presented to the user in
two ways, as tabulated approximations of the image showing the available object hierarchies. For
not only theoretical reasoning, but also for practical implementation, reversible calculations with
pixel sets are performed easily, as with individual pixels in terms of Sleator–Tarjan Dynamic trees
and cyclic graphs forming an Algebraic Multi-Layer Network (AMN). The detailing of the latter
significantly distinguishes this paper from our prior works. The establishment of the invariance
of detected objects with respect to changing the context of the image and its transformation into
grayscale is also new.

Keywords: image processing; cluster analysis of big data; Ward’s pixel clustering; Sleator–Tarjan
dynamic trees

1. Introduction

Modern computer vision is a set of heuristic models and specific solutions for prede-
termined types of images (remote, medical, technical, etc.) with apriori known objects-of-
interest (underlying surfaces, cell nuclei, elements of chips, etc.) that are detected to solve
current production problems in real time. At the same time, the theory of adequate primary
image processing [1,2], which substantiates object detection methods and formalizes the
very concept of an image, objects in an image, and superpixels, is still in its infancy. This is
why papers on computer vision are replete with pictures which could be dispensed with in
a proper description of the computational formalism available to a computer.

Meanwhile, it is the detection of objects at the primary stage of processing that is the
stumbling block in computer vision and image recognition. Typically, automated image
recognition begins with segmentation, i.e., the division of the image into connected segments,
and the connectivity of the segments is not only achieved as a result, but is also maintained
in the process of calculations. Compared to conventional image segmentation, more general
pixel clustering [3–6] allows better calculation of the resulting segmentation. However,
for equal programming effort, pixel clustering takes much longer. This is true for N-pixel
image segmentation without real optimization of the quality criterion, namely, the standard
deviation σ or, equivalently, the approximation error E = 3Nσ2, since the problem of
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minimizing the approximation error E in image segmentation is easiest to solve by starting
with optimal pixel clustering [7].

As for the theoretical requirements for segmentation, they are formulated in [8] on
the basis of a generalization of the segmentation model [9,10] and similar others, but
have not yet led to a generally accepted interpretation. Regarding the basic principles of
segmentation, Georges Koepfler in [8] states the following:

1. We admit the possibility of a universal boundary detection device, definable and
analyzable independently from the kind of channels to be used in the texture dis-
crimination problem (see [11,12]). This allows us to begin to obtain a mathematical
understanding of the segmentation problem by considering gray-level segmentation;

2. An algorithm for boundary detection must be scale- and space-invariant. This means
that multiscale segmentation algorithms, invariant by rotation and translation, should
be considered;

3. The last point is what we shall call the comparison principle. Given two different
segmentations of a datum, we shall be able to decide which of them is better than
the other. This implies the existence of some ordering on the segmentations which is
reflected by some real functional E such that, if E(K1) < E(K2), then the segmentation
K1 is “better” than the segmentation K2.

For comparison, according to our version of the interpretation and development of
the above principles, they are expressed as follows:

1. We consider grayscale images as a special case of color ones and admit the possibility
of a unified multi-valued detection of objects defined only by the image, regardless
of processing methods. Adequate segmentation expresses an inherent property of
an image that distinguishes an image from arbitrary data if the segmentation is
achieved as a result of pixel clustering. We do not allow objects to be defined on
specific examples and provide adaptive top-down processing, in which the texture
discrimination problem loses its specificity;

2. Our experience confirms that object detection and image segmentation via pixel
clustering must be multiscale and commute with image scaling. Moreover, to better
account for image ambiguity, we represent the image as a set of approximation
hierarchies. The condition of spatial invariance is also satisfied, since, in our approach,
the clustering of pixels is not affected by their geometric distribution;

3. Of the two image approximations in the same number of colors, the approximation
with the less approximation error E is considered to be better, which is quite consistent
with visual perception. In addition, a characteristic pattern for images has been
established, which is that, with an increase in the number of colors and a decrease in
the approximation error of optimal approximations, the negative derivative ∂E

∂g of the
approximation error E with respect to the number of colors g increases.

In the original, the idea of implementing the G. Koepfler’s principles was to build
a minimization function consisting of at least two additive terms so that, depending on
the number of clusters or another “scaling” parameter, the minimum was achieved for
the desired segmentation. The first term is the approximation error E, and the second is
the total length of the segment boundaries [9,10]. However, in [13] (and our experience),
compared to the approximation error E, the additive second term in the functional often has
an insufficient effect on the calculation results. Therefore, we have omitted the additional
term and identified the functional E with the “pure” approximation error.

It is important to note that, in the latter case, the optimization problem retains a
nontrivial meaning if the approximation errors E are counted not from zero, but from
optimal values depending on the number of clusters, i.e., on the number of colors in a given
approximation of the image.

Thus, guided by the general principles of [8], we associate their implementation
with the well-known problem of calculating optimal image approximations using classical
methods of cluster analysis. It is in the solution of the classical problem by only classical
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methods that the novelty of our approach lies, since the real-life E minimization still remains
insufficiently studied. Contributing in part to the lack of attention to image approximation
quality optimization is [14]’s assertion that standard deviation σ and approximation error
E = 3Nσ2 are inconsistent with natural visual perception, which has become a popular
stereotype in image processing. In fact, this is not the case if cluster analysis is applied in
strict accordance with the classical guidelines [15,16].

Exact minimization of the approximation error E for arbitrary data is NP-hard
(see [17] and subsequent works, most fully listed in [18]). Although the NP-hardness
of the problem does not exclude an approximate solution within a formally limited subject
area [19], there are not enough enthusiasts who are ready to solve this for Full HD images.
As far as we know, the entire range of optimal approximations has been established for only
one standard image [20]. In cluster analysis, the effective minimization of the approxima-
tion error for millions of data elements is hindered by the lack of a formal description of a
specific data domain, as well as limitations caused by insufficiently efficient work with hier-
archies using dendrograms [21–24]. To perform reversible calculations [25,26] with optimal
and nearly optimal image approximations, as well as to generate, store, and transform
their hierarchical sequences adaptively to the image, it is necessary to use Sleator–Tarjan
Dynamic trees [27,28] instead of ordinary trees (dendrograms). Sleator–Tarjan Dynamic trees,
supplemented with cyclic graphs in the Algebraic Multi-Layer Network data structure,
make it possible to obtain truly optimized image approximations using limited computer
memory and in a reasonable time.

The main purpose of this paper is to describe the key points of the AMN software
implementation, as well as highlight the developed principles for object detection.

The main contributions of the paper to image processing and cluster analysis lie in the
proposed elements of the theory of hierarchical clustering of big data:

• Structural definitions of the concepts of an image, its elements, (superpixels) and
objects in the image;

• Proposition about the convexity of the sequence of the minimum possible approxima-
tion errors in a different number of colors;

• Mathematical substantiation of the system of methods for minimizing E, including
the correction of the K-means method and the rules for their joint application;

• Apparatus for reversible calculations with pixel sets in terms of the Algebraic Multi-
Layer Network based on Sleator–Tarjan Dynamic trees and cyclic graphs.

The rest of this study is arranged as follows.
Section 2 describes the research methodology, formalizes the basic concepts and

formulation of the combined approximation–optimization problem, proves the existence
of solution by Ward’s pixel clustering, outlines a target software implementation of the
primary structuring and ordering of image data, and derives the main tuning parameter.

Section 3 describes the main shortcomings of the three original cluster analysis meth-
ods when applied to big data, and suggests how to modernize these methods to effectively
apply them together.

Section 4 introduces the concept of an Algebraic Multi-Layer Network.
Section 5 is the main one in the paper. It describes the key points of programming the

generation and conversion of AMN. This section is intended primarily for programmers.
Section 6 provides some general remarks that motivate the development of object

detection based on advanced optimization of image approximations. It describes the
current state of development and implementation of the discussed pixel clustering methods.
The conclusion is made about the relevance of modernizing methods for minimizing the
approximation error in widely used software tools.

Section 7 demonstrates some of the image experiments available without time-consuming
pre-programming. In this section, for the first time, so-called Dynamic Superpixel Table is
introduced to represent the output of image structuring. In addition, a solution to the problem
of detecting objects using pixel clustering invariant to changes in the image content and
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converting into a grayscale representation has been started. A generalization of the Euclidean
color space to the case of four dimensions is mentioned.

The final section, Section 8, highlights future research directions. In this Section, an
additional mechanism for accelerating calculations due to pixel decimation is outlined as
the next step in the study.

2. An Approach to Detecting Object Hierarchies Using Pixel Clustering

Unlike conventional papers on the detection of specific objects, representing the
image as a matrix of arbitrary pixels, we describe the image by a sequence of optimal
approximations, which are ordered by the number of colors g, the approximation error E,
and the derivative ∂E

∂g of the approximation error E with regard to the number of colors
g. We represent objects as being nested within one another and described with a binary
hierarchical approximation sequence that is also ordered by g, E, and ∂E

∂g . Since the image
contains different objects, it appears as an ordered polyhierarchical structure, which is
not itself hierarchical, but can be approximated by one or another hierarchical sequence
corresponding to objects.

The research methodology for the proposed primary structuring and ordering of the
data contained in the image is being developed within the framework of Descriptive Ap-
proach to Image Processing [29], which states “that the image representation is transformed
from the original form into a form that is convenient for recognition (i.e., into a model)”. At
the same time, our goal is to obtain a simplified solution that is implementable as a certain
computer program or software package. Unlike purely engineering solutions, we prefer to
automate adequate image processing first, and only then speed up calculations, without
losing the quality of the results, especially since automatic processing can be significantly
accelerated by running several copies of the program on several computers.

The developed theoretical principles for detecting objects in an image by classical meth-
ods of minimizing the approximation error E are expressed by the following provisions:

• The approximation error E is taken as a quality criterion for image approximation. To
actually minimize the error E, image segmentation is performed through pixel clustering;

• The convexity of the minimal approximation errors sequence of the optimal image
approximations in 1, 2, . . . colors serves as a criterion for the correspondence of the
input data to the computerized model;

• The concepts of objects, images, and their elements, called superpixels, are treated and
implemented as functions of image only;

• The invariance of calculations with respect to the linear transformation of pixel num-
bers or their intensities, including transformation from positive image to negative,
is supported. The results of clustering are not affected by changing the geometric
placement of pixels. These properties make commutative pixel clustering and image
scaling by pixel duplication;

• Calculations are performed according to the correctly formulated statement of the
approximation–optimization problem in two-dimensional ordering of image approxi-
mations to choose desired object hierarchy.

The listed principles are illustrated in Figure 1, which explains the following:

• The formulation of the combined approximation–optimization problem;
• Structural definitions of an image, objects in an image, and superpixels;
• Proof of the existence of a solution by Ward’s pixel clustering [15,16,18,21];
• Derivation of the main tuning parameter g0;
• The way of ordering N2 output image approximations, which are presented to the user

as a result of the primary image processing, where N is the number of pixels in the image.

We start the discussion of Figure 1 with some definitions.
A set of pixels is considered structured if it is represented by a sequence of approxima-

tions in g = 1, 2 . . . colors, described by a convex sequence of approximation errors.
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Figure 1. The existing multi-valued solution of the problem of image hierarchical approximation,
achievable by Ward’s pixel clustering. The lower gray convex curve describes Eg sequence of
optimal image approximations. The upper non-convex black curve describes errors Eg of image
approximations by superpixels constituting some irregular hierarchical sequence. The remaining red
convex curves describe Eg sequences of hierarchical image approximations, each containing at least
one optimal approximation in a corresponding incrementing number of colors.

Object consists of nested ones and is ambiguously represented by a binary hierarchy
of piecewise constant image approximations that contain at least one optimal image ap-
proximation in g0 colors. The hierarchy of objects, depending on the number g of colors, is
described by a convex sequence of total squared errors Eg = 3Nσ2

g , where N is the number
of pixels and σ is the standard deviation.

An image is a polyhierarchical structure, which, depending on the number g of colors,
is represented by a sequence of overlapping optimal image approximations and is described
by a convex sequence of total squared errors Eg = 3Nσ2

g .
Superpixels are generated by the intersection of successive optimal image approxi-

mations from the restricted approximation series in such a way that, when merged, they
provide error-free reproduction of this series of optimal approximations and, with a vari-
able number of accounted optimal approximations, form an irregular hierarchy described
by a non-convex (sinuous) dependence Eg of E on g.

Thus, the image and objects are structured, while the superpixels are unstructured, in
accordance with our convention for the term “structure”.

Figure 1 shows approximation errors, i.e., total squared errors Eg, for image approximations
in g = 1, 2, . . . N colors. The lower gray convex curve describing the minimum possible
approximation errors of the optimal color image approximations is simulated by the upper red
convex curves describing the approximation errors of the image approximation hierarchies.

The convexity of the lower gray curve for optimal approximation errors is a model
assumption about an inherent property of the image, which is verified experimentally. The
convexity of the upper red curves of approximation errors of hierarchical approximation
sequences is achieved by construction. The upper red curves in Figure 1 do not merge with
the lower gray curve because the pixel clusters of optimal approximations overlap with
each other and the optimal approximation sequence is not hierarchical.

It is easy to convey that any hierarchy of image approximations can be obtained by
Ward’s method if the optimal image approximations are known. To obtain an approxima-
tion hierarchy containing the optimal approximation in g0 colors, it suffices to perform
the following:
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• To calculate the nested hierarchy of pixel clusters within each of the g0 clusters of a
given optimal approximation by means of Ward’s method;

• To re-sort the order of cluster merging in ascending approximation error increment
without changing the clusters themselves;

• To complete the resulting hierarchy using Ward’s pixel clustering within the whole image.

Figure 1 describes N2 image approximations, which are provided to select from them
a desired hierarchy of N approximations and set the tuning parameter g0.

Obviously, neither matrix representation, nor even coding in terms of ordinary trees
or dendrograms generating a set of extra nodes, is suitable for encoding N2 image approxi-
mations in RAM in order to present any desired approximations to the user in the form of
fragments of the so-called Dynamic Table of size N × N [7]. In Dynamic Table, hierarchical
sequences of image approximations, described by red convex curves in Figure 1, are placed
in columns from top to bottom in ascending order of number of colors g, and the columns
are ordered from left to right in ascending order of parameter g0. In this case, the sequence
of diagonal approximations is described by the limit lower gray convex curve and consti-
tuted by approximations with the approximation errors that are minimal within the rows
of Dynamic Table. In image processing, a two-dimensionally ordered Dynamic Table of
hierarchical image approximations provides a visual setting for pixel clustering.

For efficient computations, Sleator–Tarjan Dynamic trees are indispensable, since
they are generated on a given node set located in N pixel coordinates. In general cluster
analysis, hierarchical clustering is usually described using ordinary trees generated as
dendrograms [21–23]. This makes it difficult to study Ward’s method for big data. Because
the adaptive image approximation hierarchy is initiated in a bottom-up strategy, all N2

approximations must be encoded in RAM, which seems difficult to achieve with ordinary
trees due to the generation of additional nodes. Therefore, to generate, store, and transform
N2 image approximations in RAM, it is better to master Sleator–Tarjan Dynamic trees.

The target computer program for structuring and ordering data for detecting objects
in an image is characterized by the following:

• The content of the input image is not limited in any way;
• A hard-to-formalize procedure of program learning is not provided. The problem of

using a priori information is bypassed. To take into account the previous processing
experience, an input enlarged image with attached additional images of objects-of-
interest is used, which makes it possible to dispense with the analysis of features and
identification when objects are detected by the advanced pixel clustering methods [30];

• Instead of program learning, for the convenient processing control, tuning parameters
are introduced, which are determined by the problem statement. The main tuning
parameter is equal to the number g0 of colors in that optimal image approximation,
which is most suitable for hierarchical approximation of objects-of-interest with either
unions or parts of g0 pixel clusters.

• The program outputs N2 image approximations ordered in a two-dimensional Dy-
namic Table [7]; Hierarchies of the image approximations occupy the Dynamic Table
columns, ordered so that the optimal image approximations are on the diagonal.

3. Three Classical Clustering Methods and Their Modernization

This section provides a brief summary on upgrading three methods for minimizing the
color image approximation error: Ward’s clustering, split/merge, and K-means methods,
since they are detailed in our preceding paper [7].

Ward’s method in cluster analysis is usually treated as the simplest algorithm for
generating a structured hierarchical approximation sequence described by a convex se-
quence of approximation errors [15–18,21–24]. The characteristic ambiguity of an image
representation by approximation hierarchies is not given due attention. In the case of big
data, multi-iteration calculations lead to different approximations of the image in a limited
number of colors due to the variability in the input data, as well as due to changes in the
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scanning order of data items and ways to speed up calculations to overcome excessive
computational complexity.

In image processing, Ward’s pixel clustering is rare, where, on the morrow of the
papers on cluster analysis [17,18], it is predominantly applied to calculate the initial clus-
tering for the K-means method [31,32]. In some special cases of processing laboratorial
images, Ward’s pixel clustering is rated as superior to other methods, usually successors
to K-means [33,34]. According to our data, the dependence of Ward’s clustering on the
algorithm for its implementation has so far remained unnoticed either in cluster analysis or
in its applications for detecting objects in an image.

Meanwhile, the “instability” drawback, i.e., a property inherent to the image (Figure 1),
easily turns into an advantage of the method if Ward’s clustering is supplemented by
minimizing the approximation error E for a given color range, say, from 1 to 20. The
easiest way to carry this out is to run Ward’s method, say, 100 times and, from the resulting
hundred approximation hierarchies, select those 20 that contain approximations with the
minimum error for each considered number of colors. As a result, using only Ward’s
original method, we obtain 20 optimal (or close to optimal) approximations that better
represent the image, since the optimal approximations depend only on the image and do
not depend on the generation algorithm.

Modernized versions of split/merge and K-means methods are needed to speed up
calculations and avoid repeating the execution of Ward’s method many times.

For a known optimal image approximation, the hierarchy containing this approxima-
tion is generated by Ward’s method applied to image parts, as described in the previous
section. Image processing in parts by Ward’s method provides faster computations because,
due to the reduction in the number of pixels, the computational complexity drops quadrat-
ically, while linearly increasing along with the increasing number of image parts. If the
optimal approximation of the image is not known in advance, then N pixels can be divided
into subsets in any way. However, to then obtain an approximation hierarchy without
violating the convexity of the corresponding approximation error sequence, it is necessary
to process the structured image parts by the so-called CI (Clustering Improvement) method
before iteratively merging the structured image parts to complete the hierarchy [7].

The CI method is a trivial greedy method for iteratively reducing the approximation er-
ror E as much as possible by dividing one pixel cluster into two, followed by merging a pair
of clusters so that the number of colors in the refined approximation remains unchanged.
This is a split/merge method that does not change structured hierarchical image approx-
imations such as those obtained by Ward’s original method. Similar to other analogous
split/merge methods, the CI method uses a pre-generated binary hierarchy of image ap-
proximations. Conventional split/merge methods typically use a non-adaptive pyramidal
hierarchy [35,36]. In contrast to these, the CI method utilizes an adaptive hierarchy, which,
due to reversible calculations, is built in both bottom-up and top-down strategies. It is
important that the specified binary hierarchy is supported in terms of Sleator–Tarjan Dy-
namic trees, which, compared to ordinary trees, simplify and speed up calculations, and
also reduce the consumed computer memory. Initially, the CI method was invented and
studied as an independent heuristic method for conventional image segmentation [37]. The
results of segmentation improvement turned out to be very promising and all the more
spectacular; the worse approximation was chosen for improvement. As applied to pixel
clustering, the CI method fits better with the theoretical E minimization scheme. In this
case, the CI method is even simplified, since, when splitting a cluster into two, it is not
required to maintain the connectivity of the segments. As such, there is no doubt that, for
image segmentation through pixel clustering, the CI method will be quite useful for solving
applied problems.

According to our logic of combining the classical methods of minimizing the approxi-
mation error E into a system, the CI method and Ward’s clustering together provide efficient
acquisition of image approximation hierarchies described by a convex sequence of errors
E. To obtain an ordered sequence of hierarchies, as in Figure 1, it is necessary to convert
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such hierarchies from one to another. The desired method is obtained by modifying the
well-known K-means method [17,18,31–34,38–43].

From the point of view of efficient E minimization, the K-means method has the
following two main disadvantages:

• Strictly speaking, the K-means method, as is usually stated, only “tends” to minimiza-
tion, but in general does not minimize the approximation error E, since it uses an
unreasonably rough formula for error increment ∆E;

• The calculation of average pixel values in the K-means method hinders the minimiza-
tion of the E error, since it entails staleness errors due to data deterioration.

To verify the validity of the first statement, it is enough to analytically derive the
K-means method, which, in fact, reduces to reclassifying pixels from one cluster i to another
cluster j, using the formulae for the increment ∆E of the approximation error E caused by
the merging or inverse splitting of clusters from ni and nj pixels:

∆Emerge(i, j) =
ninj

ni + nj

∥∥Ii − Ij
∥∥2 ⇒ Esplit(i ∪ j) = −Emerge(i, j), (1)

where Ii, Ij denote the three-dimensional average pixel values within the clusters i, j, and∥∥Ii − Ij
∥∥ denotes the Euclidean distance.

From the expressions in (1), it is easy to derive the formulae for the approximation
error increment ∆Ecorrect, accompanied with the reclassification of k pixels from the cluster
i to the cluster j:

∆Ecorrect = k

(
nj

nj + k
∥∥Ij − Ik

∥∥2 − ni
ni − k

‖Ii − Ik‖2

)
(2)

or, in simplified form:

∆Erough
correct = k

(∥∥Ij − Ik
∥∥2 − ‖Ii − Ik‖2

)
, (3)

where Ik is the average value of k pixels, which are excluded from the i-th cluster and
assigned to the j-th cluster.

The exact criterion for reclassifying k pixels is the condition ∆Ecorrect < 0. However,
K-means instead uses the rough condition ∆Erough

correct < 0, which is obtained by eliminating
(from Expression (1)) the multiplier that depends on the pixel numbers ni and nj . Obviously,
if this multiplier is ignored, this violates the correctness of applying the reclassification of
pixel sets along with the reclassification of individual pixels.

The discrepancy between the Formula (1) used by Ward’s method and the Formula (3)
used by the K-means method is the major hurdle to use them together to effectively
minimize the E error, according to [17,18] and a number of other works. As for the
calculation of cluster centers in the K-means method, it is useful to exclude it, as well
as calculations of other unnecessary intermediate data, if only in order to not encounter
empty clusters, as in [43]. The latter is carried out in the greedy K-meanless method [44],
providing reclassification of pixel subsets from cluster to cluster in accordance with the
condition of maximum reduction of the approximation error, which is estimated either by
calculating the functional E itself or by calculating its increment ∆E using (2).

The use of the exact Formula (2) for ∆E and the elimination of intermediate calculation
of the pixel cluster centers increases the efficiency of minimizing the error E without affect-
ing the speed of computer calculations. Computing in terms of Sleator–Tarjan Dynamic
trees unsurpassedly increases the speed and reduces the computer memory consumption,
especially when using the proper data structure, which is discussed in the next two sections.
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4. Scheme of Algebraic Multi-Layer Network (AMN)

The image model described in [7] and outlined here is transparent and is based on the
classical cluster analysis methods. Nevertheless, its software implementation is non-trivial,
as it demands mastering an equivalent calculation model which would allow one to work
with superpixels and other pixel sets as easily as with the source pixels of the image.

The pixel clusters in question constitute a so-called adaptive hierarchy, i.e., they are
calculated from the image in merge mode and are not pre-restricted in any way. Each
hierarchy contains N image approximations and 2N− 1 pixel clusters which are stored and
processed in-memory. For the millions of pixels in the image, it is obviously impossible
to ensure if approximations are coded in the conventional matrix format. However, the
effect of multiple representation storage is achieved by calculations via a certain network.
A specific requirement to such a network is to support reversible calculations [25,26], which
can be implemented in two ways:

• As unlimited rollback of calculations for any number of steps;
• In terms of reversibility of cluster merge operation, which allows one to modify and

optimize calculations performed in reverse order.

As a specific technical solution, this paper introduces an Algebraic Multi-Layer Network
(AMN) which provides memory and time optimization of reversible calculations but does
not require additional learning and is not intended to imitate intelligence, in contrast to the
currently common Artificial Neural Networks. The network under consideration is called
algebraic, as it is obtained by the merge of cyclic and acyclic graphs (trees). This network
is a multi-layer one, as it is defined in pixel coordinates by arrays of the same length of
N items (Figure 2).

Figure 2. Scheme of the Algebraic Multi-Layer Network.

Figure 2 illustrates the Algebraic Multi-Layer Network, which is “thrown over” the
pixels of the image. It shows a stack of five images each containing N pixels on the left and
an extended stack of, say, 50 images on the right. In a computer, pixels are ordered linearly.
Therefore, instead of two-dimensional images, linear arrays are shown. The trick is that, in
this amount of memory for an image of a million pixels (N = 106), a billion approximations
(stack of N2 = 1012 images) are encoded and available on-line. This seems amazing, but
only for those who confuse Sleator–Tarjan Dynamic trees with ordinary ones.

During storage and transfer steps, the network contains only two graphs: a tree
and a cyclic graph, which, together with the image pixels, encode the hierarchy of N
image approximations.

As part of general data structure, the above-mentioned network of two graphs is called
the network core.

In the process of detecting objects in an image of N pixels by the core network,
metadata are generated, i.e., several more dozens of graphs, pointer systems, numerical
arrays, and other extra components of N items. Metadata are calculated in one pixel



J. Imaging 2023, 9, 146 10 of 27

scanning step and support the whole complex of reversible calculations, including the
network composition and optimization (double-arrow in Figure 2), as well as high-speed
operations with pixel clusters.

For some clarification, it seems appropriate to associate graph-based “neurons” of
AMN with some subset of neurons in Natural Neural Networks.

In AMN, the “neurons” at each layer perform the same actions: store a number,
point out to the “neurons” of their own or another layer, or they are pairwise added
together according to some pointers, for example, according to the edges of a Sleator–Tarjan
Dynamic tree.

In Figure 2, the color image components are included in the three lowest layers of
“neurons”. The next two layers constitute a Sleator–Tarjan Dynamic tree [27,28] and a cyclic
edge interleaving graph, which are built on a set of pixel coordinates. Metadata include a
layer with the weights H ≡

∣∣∣ ∂E
∂g

∣∣∣ = ∣∣∣∆Esplit

∣∣∣ of the edges in a Sleator–Tarjan Dynamic tree.
A feature of AMN is that the edge weights are calculated automatically. Another feature of
AMN is that the “neurons” in the layer, although they perform the same operation, are able
to act collectively. In this case, co-operative routine operations on fixed length data arrays
provide an efficient programmatic and algorithmic solution to the optimization problem,
but the main advantage of AMN is that, for a specific optimization problem of structuring
images and objects, a solution is provided that uses classical methods of cluster analysis.

High-speed calculations are expressed in terms of AMN by simple programs which
perform routine operations on specialized “neurons” layers to describe reversible merge
and split of pixel clusters while optimizing the hierarchy of image approximations.

At a low level of programming, AMN (Figure 2) is formed and transformed by two
mutually reversal program modules:

• Program for pairwise merging of pixel clusters;
• Program to split a pixel cluster into two.

To execute the first program, one must specify a pair of clusters to be merged. Another
program splits given cluster into two clusters, by merging what was obtained. If splitting
the clusters in two is performed in a different order than the reverse order, then AMN state
is modified, which is used to reduce the approximation error in the image approximation
hierarchy optimization algorithm.

5. The Hornbooks of Calculations in Terms of Cyclic and Acyclic Graphs

In the clustering model for image segmentation and object detection, discussed here,
the hierarchy of approximations is encoded with acyclic graphs, or trees. Nevertheless, the
interpretation of trees in the model differs from the stereotypical concept of conventional
trees [17,45], which are often called dendrograms in the image processing domain. In-
stead of conventional trees, our model uses so-called Sleator–Tarjan Dynamic trees [27,28],
which are much more memory-efficient as compared to conventional trees. In addition,
Sleator–Tarjan Dynamic trees support reversible operations with pixel clusters and provide
processing of any binary hierarchy of pixel clusters, comparable in speed to the processing
of individual pixels.

Contrary to conventional trees, Sleator–Tarjan Dynamic trees are as follows:

• They are constructed on the sets of pre-defined nodes without generating extra nodes;
• They are placed over pixels (in their coordinates), so they are clustered together

with pixels;
• They set a binary hierarchy of nodes by means of an irregular tree.

Sleator–Tarjan Dynamic trees are mapped to image pixel clusters. In this case, the
image pixels are considered to be linearly ordered in some scan order. First, each pixel is
assigned to a specific cluster and mapped to a tree consisting of a single root-node that
is encoded by a node pointer pointing to itself. An iterative merging of the pixel clusters
is then performed, which is encoded by the corresponding merging of the trees. In a tree
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merge operation, an edge pointer is set from a pixel with a higher number to a pixel with a
lower number.

In the mathematical structure of Algebraic Multi-Layer Network (AMN), the Sleator–
Tarjan trees are augmented by cyclic graphs that are initiated by pointers pointing to
themselves, similar to Sleator–Tarjan Dynamic trees. Conversely, unlike the merging of
trees, when a pair of cyclic graphs is merged, the corresponding pair of definite nodes
exchange pointers with each other (Figure 3).

Figure 3. Tree merge (left) and cyclic graph merge (right).

Figure 3 illustrates a tree merge and a cyclic graph merge. The top row shows trees
(on the left) and cyclic graphs (on the right) before the merge, and the bottom row shows
them after the merge. In a tree merge, the major root-node is assigned with a pointer to a
minor root-node. In a cyclic graph merge, cyclic graph nodes swap pointers, which account
for the root-nodes of the trees.

Figure 3 shows the principle of Sleator–Tarjan tree and cyclic graph merges. Owing to
cyclic graphs chosen for an example, pixel clusters coordinates lists are available at each
step of processing. Additionally, calculation of any cluster characteristics is provided as
needed via scanning of pixels. Using cyclic graphs which bind the pixels in clusters, as in
Figure 3, in addition to Sleator–Tarjan trees computation, it is convenient in the process of
computation to obtain straightened trees in which all the nodes point to the root-node.

Current data, accessible without pixel scanning, such as the number of pixels and
other additive characteristics, are stored in the root-node of an enlarged tree and are not
modified until the pixel cluster represented by this root-node is further extended. For the
pixel cluster under consideration, static data, which are retained even after the extension
step, are stored at the edge address, i.e., at the address of the node from which the edge
originated. A typical example of static data is the set of values of heterogeneity parameter
H ≡

∣∣∣ ∂E
∂g

∣∣∣ = ∣∣∣∆Esplit

∣∣∣, where such values are used in networking computations as weights
attributed to edges.

Reversibility of pixel cluster merge is provided by the network core Figure 4, which is
established as follows:

• Sleator–Tarjan tree (upper right-hand corner);
• Cyclic graph of edge interleaving in Sleator–Tarjan tree (lower right-hand corner);
• Pointer to the last edge of a cyclic graph indicating its origin point (dotted arrow).
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Figure 4. Reversible coding of the partition hierarchy by means of the network core. On the left the
segmentation sequence is shown for an image of four pixels encoded by a pair of graphs presented
on the right. In the upper right corner the appropriate Sleator–Tarjan Dynamic tree is shown. In the
lower right corner, the bold red arrow indicates the pointer to an edge of a tree which was the first to
be set. The dashed arrow is an external pointer to this arrow. The next black arrow shows a pointer to
the edge, which was set second, etc.

For the sake of clarity, the edges in the upper right-hand picture are numbered in the
order of setting.

On the left part of Figure 4, for an image of N = 4 pixels, a hierarchy of partitions into
clusters of 4, 3, 2, and 1 pixels is shown. The right part of Figure 4 illustrates the encoding
of the specified hierarchy in two ways. Figure 4 at the top right shows the memorization
of a hierarchy using the edges of a Sleator–Tarjan Dynamic tree, numbered in the order of
installation. This technique was used for quite a prolonged time, until an advanced way
of storing edge order, which is shown in the lower right corner of Figure 4, was invented.
In the advanced method, the tree edges are connected one after the other by edges of a
cyclic graph. For a cyclic graph, it is additionally remembered which edge is the end one.
In Figure 4, at the bottom right, the end edge is highlighted in red. The end edge of the
cyclic graph points to the first edge of the Sleator–Tarjan Dynamic tree.

In accordance with Figure 4, the cyclic edge interleaving graph and Sleator–Tarjan tree
are convenient to be generated using a pair of graphs set on one array. These are an edge
interleaving graph and an additional root-node interleaving graph, which, in Figure 4, is a
degenerate one and is marked with a gray arrow pointing to itself.

At the beginning of the generation, all nodes are root-nodes. All of them are somehow
connected with each other by the graph of the sequence of root-nodes. Then, after merging
the first pair of pixels, an edge interleaving graph is created, and the node that has lost
its root status is excluded from the root-node interleaving graph, becoming instead the
first node of the arc interleaving graph. As the pixel clusters and trees merge, the major
root-nodes are connected by edges to the minor nodes. In this case, the major nodes are
excluded from the nodes of the root-node interleaving graph and included in the set of
nodes of the edge-interleaving graph. Finally, due to the iterative expansion of the trees,
N − 1 edges appear in the image, and the root-node alternation graph reduces to a graph
containing the single node.

It is important that the output edge interleaving graph in a tree is formed in the place
of the input image pixels interleaving graph. In order to process any set of pixels as a
specific image part by part, for example in terms of Ward’s method, it suffices to use a
cyclic graph binding the pixels of this cluster as in Figure 3. Alternatively, a graph of
cyclic pointers to the root-nodes of elementary clusters of pixels treated as superpixels is
considered as input.
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A couple of graphs in Figure 4 provides a fast reproduction of pixel clusters merged in
the same order as in the generation stage, but without the accompanying image analysis.
For stepwise reproduction of calculations in reverse order, it is enough to invert the edge
interleaving graph. Edge-breaking in reverse order in this case defines successive divisions
of clusters into two. If online-reverse of calculations is needed, a single-direction edge
alternation graph is simply transformed to a bidirectional one, containing a pair of graphs of
mutually inverse pointers.

Figures 5 and 6 illustrate the network core of an already generated Algebraic Multi-
Layer Network (AMN) data structure using the 25 pixel image as an example.

Figure 5 demonstrates a square image matrix of 25 pixels interconnected by Sleator–
Tarjan Dynamic tree edges, which are shown as thin black lines. The tree in Figure 5 has
a single root-node, coinciding with the first pixel of the image, which is considered as
an identifier for combining all the image pixels into one cluster. When the edge incident
to the root-node breaks, the entire tree is divided into two trees, and the set of image
pixels is divided into two pixel clusters, which are further considered as sets of pixels of
independent images. In addition to the edges of the Sleator–Tarjan Dynamic tree, the image
pixels are interconnected by the edges of a cyclic graph, which are shown in Figure 5 with
red arched lines and define the order in which the edges of Sleator–Tarjan Dynamic trees
are established.

Note that, when applied to cyclic graphs, it is understood that, wherever necessary,
they are bidirectional and provide element-wise scanning of pixels in both the forward and
reverse order.

Figure 5. Encoding the hierarchy of pixel clusters with the Sleator–Tarjan Dynamic trees (black lines)
and cyclic graphs (red lines) through the example of an image containing 25 pixels.

Storage of a particular pixel cluster’s characteristics, for example, the heterogeneity
value H ≡

∣∣∣ ∂E
∂g

∣∣∣ = ∣∣∣∆Esplit

∣∣∣, at the address of the edge established at the moment when this
cluster was created by merging of two ones is supported by a system of cyclic graphs and
pointers, which ensure the ability to locate each next edge at any processing step. The same
set of pointers provides reversibility of image pixel clusters merge (Figure 6).
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Figure 6. Reversible merge operation through the example of an image containing 25 pixels. The
convergent edges of Sleator–Tarjan Dynamic trees (black lines) are interconnected by the edges of the
cyclic graphs (dashed lines) in the order in which they were established. The pointers to the edges of
the trees, established first, are indicated by dotted lines.

Figure 6 illustrates the matrix of pixels interconnected by edges of a Sleator–Tarjan tree,
which are shown as continuous lines. The tree has a single root-node which corresponds to
the first pixel and is treated as an identifier for a union of all image pixels merged into a
single cluster. At the breaking of the edge incident to the root-node, the tree splits into two
ones, and the set of image pixels is divided into two clusters which are further considered
as pixels of separate images. For each node in the tree in Figure 6, the incoming edges are
combined into cyclic graphs which are shown with dotted lines. Cyclic graphs set an order
in which the edges were set up, which is provided with an additional indication for each
cycle of either initial or the final node via pointers, shown in bold dotted lines. Cluster
merge is specified by setting edges between root-nodes, and a reverse operation of splitting
a cluster into two is provided by a break of edges. Under inverting of the pixel cluster
merge for a given root-node, a break of edges is performed in reverse order.

It should be noted that, in a reversible merge operation, the rollback modification
is supported by the corresponding modification of cycling graphs and Sleator–Tarjan
Dynamic trees.

The data structure shown in Figure 6 is defined by three arrays or layers of “neurons”:
an array of dynamic trees, an array of cyclic graphs, and an array of pointers to source or
destination nodes in cyclic graphs (see also Figure 2).

Sleator–Tarjan Dynamic trees and cyclic graphs (Figure 6) constitute a typical network
in which the incoming edges for a particular node are indexed with the values of approx-
imation error increment H =

∣∣∣∆Esplit

∣∣∣, accompanying the bipartition of a pixel cluster
defined by this node. The network under consideration is dynamic, as it is reconstructed
in the process of computation, and is algebraic, as it is generated through the merge of
trees and cyclic graphs by certain rules. The edge weights H =

∣∣∣∆Esplit

∣∣∣ in Sleator–Tarjan
Dynamic trees non-strictly monotonically decrease from the root to the periphery and in
the inverted order of establishing the incoming arcs, which expresses the property of the
encoded hierarchical approximation sequence to be described by a convex sequence of
approximation errors E.
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Considering modelling of natural neurons, an Algebraic Multi-Layer Network (AMN)
includes the following:

• Two or three layers of “neurons” of the network core (Figure 4) containing Sleator–
Tarjan trees, and single-directional or bidirectional cyclic graphs of interleaving edges
and root-nodes;

• One layer of “neurons” defining pixel alternation in each cluster (Figure 3);
• Four layers of “neurons” containing additive characteristics of clusters in coordinates

of root-nodes, including the number of pixels in a cluster and three integral intensities
for color components;

• One layer of “neurons” which contain the value H =
∣∣∣∆Esplit

∣∣∣ of heterogeneity for
each cluster;

• One layer of “neurons” which define straightened trees with pointers to root-nodes;
• Two or three layers of “neurons” providing reversibility of cluster merge (Figure 6),

including a layer of pointers to the last edge, and one or two layers of “neurons” with
pointers of single-directional or bidirectional cyclic graphs, indicating the order of
converging edges.

AMN provides efficient reversible pixel cluster merging with the possibility of modi-
fication while reproducing calculations in reverse order. At the low level of calculations,
the main programs are a program to merge a pair of pixel clusters and a program to di-
vide a particular pixel cluster in half. The first program accepts a pair of root-nodes at
the input which are to be connected to each other to describe cluster merging. For the
second program, it suffices to indicate at the input the single root pixel node, matching
the cluster which is to be split into two clusters. Depending on the sequence of merge and
split instructions for a particular pixel clusters in AMN, a hierarchical image presentation
is automatically established and optimized.

Thus, the AMN network is “thrown over” the image pixels, which allows it to develop
a specific language to describe sets of pixels in terms of coordinates of pixels themselves.
With that, calculations can be arranged without multiple scanning and summation data and
also without moving it from place to place. As a result, the software implementation of the
discussed methods of E minimization with the aid of operations with sets of pixels from any
binary cluster’s hierarchy turns out to be comparable in complexity to the programming of
single-pixel operations.

6. Specifics of Approach to Object Detection

One of the topical problems seems to be a classical problem of optimal data clustering,
regarding the confinement of color images to the problem of calculating the series of optimal
image approximations within a limited color range, say, from 1 to 100. Optimal (or close to,
i.e., optimal-like) approximations in 1, 2, . . . , 100 colors have not been gained yet, even for
Lenna or other standard color images. At the same time, the possibilities of classical pixel
clustering along with minimization of approximation error E have not been developed
sufficiently, and the problem is often categorized as almost unresolvable. Insufficient pixel
clustering and even less efficient image segmentation at the initial processing stage leads to
a more difficult task of selecting objects in an arbitrary image instead of dividing a specific
scene image into object images. Where the selection of objects is understood as the search for
some unique pixel sets without taking into account the pixels that describe the rest of the
objects in the same image, but rather taking into account additional a priori data. Thus, the
formulation and practical solution of the classical optimization problem of pixel clustering
simplifies object disjunction within a limited set of pixel clusters of a given image.

As is known, for grayscale images, the exact solution of the optimization problem is
provided by the multi-threshold Otsu method [46], but obtaining optimal image approxi-
mations in dozens of colors becomes practically unattainable due to excessive computa-
tional complexity.
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According to our experience, obtaining practical optimal approximations, at least
for grayscale images, turns solvable [20]. For the problem of object detection, the exact
solution is helpful but not indispensable. It is much more important that a series of optimal
image approximations in different numbers of colors are easier to obtain than any of them
separately. This is facilitated by the experimentally established convexity property of the
approximation error sequence, which is applicable to any sequence of more than two
image approximations.

The paper contains an overview of the hierarchical and optimal approximation model,
which has been developed over several decades within the framework of the problem
detection of objects in the image. The gradual development of the model has led to the
classical clustering algorithms that remove the contrived condition for the mandatory use
of a priori data in the stage of initial image processing.

An important feature of the model is the condition of detecting all objects in the scene,
and this task is confined to disjunction of the objects without using a priori information,
such as learning data.

The model takes into account a dual ambiguity of image, which consists in the fact
that, depending on the task being solved, a particular pixel can refer to the following:

• Various objects constituting a hierarchy;
• Various hierarchies of objects.

Therefore, optimal approximations with a different number g0 of pixel clusters (colors)
originate different hierarchies of objects detected by a computer, where g0 is interpreted as
the number of basis objects to which a computer program is tuned for the best detection of
objects-of-interest as basis objects themselves, their unions, or parts of basis objects.

An essential and innovative development in this paper is a plain and accurate def-
inition of superpixels and the hierarchy of superpixels which allows us to move from
processing of a traditional pixel matrix to processing of an image consisting of elementary
sets of pixels. Defining elementary sets of pixels (superpixels) as intersection of a series of
g basic optimal image partitions into 1, 2, . . . , g clusters explains the difficulty in detecting
objects in agglomerative (bottom up) algorithms of pixel segmentation or pixel clustering.
While developing agglomerative algorithms, a programmer has to take into account local,
texture characteristics of distribution of close pixels, which are indistinguishable to them,
and contend with detection of objects-of-interest, disregarding the characteristics of other
objects. In this case, one has to use a priori data on objects-of-interest, and the task confines
itself to detecting sets of pixels with pre-set characteristic features. In the discussed model, a
less complicated task of disjuncting objects in the image is solved and the above-mentioned
problem is overcome with the help of divisive (top-down) algorithms which provide de-
tection of all the objects in the scene but envisage a pre-constructed adaptive hierarchy of
image approximations.

As the initial hierarchy of approximations for a color image is constructed by adaptive
agglomerative algorithms, a necessity arises in an efficient data structure which supports
reversible calculations and optimization of any binary hierarchy of pixel clusters while re-
producing calculations in reverse order. Speed operations with millions of approximations
and with pixel clusters of a Full HD image in limited RAM are provided by Sleator–Tarjan
Dynamic trees and cyclic graphs which, together with other graphs, constitute an Algebraic
Multi-Layer Network (AMN, Figure 2) supporting a reversible merge of arbitrary clusters
of pixels (Figures 3–6). It should be noted that AMN in the model of hierarchical and
optimal image approximations does not influence the logic or meaningful interpretation of
calculations in any way, but only provides acceleration of calculations and limited usage of
operating memory.

The simplest way to implement the model of hierarchical and optimal image approx-
imations without resorting to optimization of calculations is its application to grayscale
images. In this case, the calculations are provided by versions of Otsu’s multi-threshold
and hierarchical methods [20,46], intended for processing of such images.
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In the general case of color images, calculations are provided by three modernized
methods of classical cluster analysis: Ward’s method for generation of a hierarchy of
approximations, as well as the split/merge CI-method [7] and the K-meanless method
(modernized K-means method [7,44]) for the improvement of structured image approxima-
tions (Table 1).

Table 1. Modernization of classical methods of cluster analysis.

Computing Technique Specifics

Otsu’s multi-threshold and
hierarchical methods

Only for grayscale images, without
normalizing of histogram

Ward’s method→ recursive Ward’s method Speed-up image processing by parts
Split/merge methods→ CI-method Reversible merging pixel clusters

K-means method→ K–meanless method Exact criterion for reclassification of
cluster parts

Dendrograms→ AMN Working with pixel clusters via
pixel coordinates

In Table 1, the left column describes modernization of standard methods of cluster
analysis available in MatLab and other packages. The right column of Table 1 comments
on some specifics of software implementation.

When programming image processing according to N. Otsu, modernization involves
only the exclusion of histogram normalization, since the latter contradicts the minimization
of E. In the case of grayscale images, the K-means method can be dispensed with, since
it is used to compensate for the inapplicability of Otsu methods in the general case of
color images. Modernization of the classical methods of approximation error minimization
(Table 1) provides an extension of the capabilities of Ward’s method, and also combined
merge/split and K-means methods without worsening the results of their traditional
application. Thus, it makes sense to modernize each of the methods separately. At the
same time, for the most efficient E minimization, it is important to use combinations of
modernized methods.

At present, methods of K-means type seem to be the most popular and are actively
studied as independent methods for minimizing E [40–42]. In our opinion, in this case, the
experience of inefficient pixel clustering piles up. For hierarchical clustering, dendrograms
are usually used, which contributes to an insufficiently adequate description of the hierar-
chies of pixel sets. Modernization of the classical pixel clustering methods for minimizing
the approximation error E corrects these shortcomings.

Speed and memory optimizations are achieved by the Algebraic Multi-Layer Network
(AMN). In our experience, programming operations with sets of pixels in a specific graph
language is beyond the power of an ordinary programmer. Therefore, for AMN implemen-
tation, it is necessary not only introduce the modernized methods into software, but also to
place them in public application packages such as MatLab.

7. Experimental Results

We illustrate some specific aspects of our approach, considering, as examples, the
results of image processing. We first examine the images given in Figure 7. These are the
images treated in [47].

The paper [47] is conceptually similar to [14], aiming to obtain an adequate image
segmentation. The algorithm is designed with regard to the relationships among the
adjacent pixels. In contrast to Koepfler’s approach [8], not one single numerical criterion,
but rather several are analyzed here to evaluate the quality of a segmented image. There is
no requirement for these criteria to reach extreme values simultaneously. It is assumed that,
depending on the relevant objects, preference is given to a certain criterion. It is shown that
the developed segmentation method outperforms the similar methods in several criteria.
This can be attributed to the failure to achieve real optimal values, though, in intermediate
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calculation steps, Otsu’s multi-threshold method is applied, which ensures an accurate
minimization of the approximation error E for grayscale images. Contrary to the elementary
cluster analysis [15,16], in [47] we obtained as output such versions of segmented images,
which did not belong to piecewise constant image approximations with g = 1, 2, . . . of
colors in the image. Invariance conditions were not regarded here.

Figure 7. Three sample images for experiments. (Left): “Girl” image (top) of 321× 481 pixels and
the corresponding grayscale representation of this image (bottom). (Right): composite “5images”
picture, consisting of five image components, merged into a single entity of 814× 978 pixels.

Images merged into a single composite in Figure 7 and the Figures below are outlined
in red.

Compared to [47], we set up and solved a more generalized problem of invariant image
segmentation through pixel clustering here. This setting depends only on the relevant
image, i.e., does not change in transformations such as image scaling and converting the
image from positive to negative. This setting also remains robust with regard to changes in
the image context and in the instance of image conversion to its grayscale representation. To
solve the problem at hand, we estimated the optimal image approximations in g = 1, 2, . . .
colors. Realistic estimation of the optimal image approximations principally do not depend
on the actual method the approximations were obtained with, since the definition of the
optimal approximation does not limit the methods, available for its generation. However,
it is the most straightforward approach to calculate optimal image approximations using
classical cluster analysis methods and, primarily, Ward’s pixel clustering method.

Let us estimate the optimal approximations for the color 321× 481-pixel “Girl” picture
to compare them with the optimal approximations for grayscale “Girl” representation. The
condition for adequate object detection should be expressed in the comparability of pixel
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clustering in color and grayscale representations, since they are perceived as images of the
same objects (which they are).

In Figure 8, the grayscale image representations in 2, 3, and 4 intensity levels from
the bottom row look like they were obtained by transforming the above color image
representations in 2, 3, and 4 colors. In optimal approximations in 5 and 6 gradations,
several light flecks appear differently in color and grayscale representations.

Figure 8. Comparison of optimal approximations for color and grayscale image representations. In
the upper row, the optimal color image approximations in g = 2, 3, 4, 5, and 6 colors are presented
from left to right, and, below them, similar approximations of the grayscale image are shown. Image
approximations at the top are labeled with g cluster numbers and standard deviation values σ.

Figure 9 shows the dependences of the standard deviation σ on the number g of cluster
numbers in the range from 1 to 100 for optimal approximations of the color and grayscale
image representations.

Characteristically, both curves in Figure 9 are strictly convex. The difference between
the curves seemed to be related to the change in the operating intensity range.

As it turned out, there was a similar effect of stable segmentation of the object, regard-
less of the image content. This effect is illustrated in (Figure 10).

Figure 10 shows the optimal approximations in two to seven colors for the 814× 978-
pixel “5images” picture (compare the optimal approximations for the 321× 481-pixel “Girl”
image, given in Figure 8 with the optimal approximations of the same image embedded
into the “5images” picture in Figure 10). The observed stability effect can be, to some
extent, explained as follows: optimal pixel clustering is achieved via image merging, both
in the case of merging identical images and when merging such images, where the average
intensities turn out to be quite disparate, although the intensity ranges may overlap.

In general, objects in a given image are divided into stably and unstably segmented
ones. This seems promising for object classification and can provide a separation of
foreground and background objects, automation of artistic photography, and simpler
handling of other applied problems.

The similarity of optimal approximations of an image in color and grayscale repre-
sentations can be utilized in different ways. Since, compared to color images, optimal
partitions are much easier to calculate for grayscale representations, they can be taken as
initial ones when calculating optimal approximations for color images.
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Figure 9. Comparison of optimal approximations for color and grayscale image representations.
Minimal standard deviations for the number of cluster numbers ranging from 1 to 100. The top red
graph describes a color image and the bottom black graph describes a grayscale representation.

Figure 10. Optimal approximations of “5images” picture in two to seven colors arranged in two
rows in lexicographic order. Image approximations at the top are labeled with g color numbers and
standard deviation values σ.
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As far as purely engineering applications are concerned, the study of the relationship
between optimal approximations of a color image and grayscale representation is obviously
useful for solving colorization problems [48], avoiding heuristic learning.

It should be noted that the learning process involves human participation and does
not seem necessary when modeling the vision of simpler systems, say, insects. The primary
ordering of the input data by the number of colors g, the approximation error E, and the
heterogeneity parameter H =

∣∣∣∆Esplit

∣∣∣ is treated here as a common stage of perception
for different natural visual systems. Data ordering can be represented as a program that
automatically generates the so-called Dynamic Table of image approximations introduced
in [7].

The Dynamic Table for “Girl” image is shown in Figure 11.

Figure 11. Dynamic Table of approximations for “Girl” color image (dimensions 321× 481 pixels). The
first row and first column of the table were cropped. The columns of Dynamic Table, containing the
optimal image approximations in 2–6 colors, are shown. Each column contains a binary hierarchical
sequence of image approximations with incrementally added colors: g = 2, 3, and 4. On the main
diagonal of the Dynamic Table are the optimal image approximations in g0 = 2, 3, and 4 colors. Image
approximations at the top are labeled with g color numbers and corresponding standard deviation
values σ.

Figure 11 shows the fragment of the Dynamic Table that actually illustrates Figure 1.
Hierarchies of image approximations are located in columns of the Dynamic Table. When
the row number is increased by 1, one of the colors in the current image approximation
is split up into two ones. The diagonal approximations are just that in the upper row of
Figure 8, which are improved in the error E when applying various generation algorithms.
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Parameter g0 is equal to the number of colors in the optimal approximation of the image
and is counted along the diagonal.

In the user’s view, the entire Dynamic Table of N × N image approximations is
allocated in RAM. In fact, it is encoded in RAM by AMN core (Figures 2 and 5) and the
viewed approximations are generated on-line as needed. That is why the discussed table is
called a Dynamic Table.

The user’s task is to choose a column of approximations in which the structured
objects-of-interest are best displayed. According to the user’s choice, the tuning parameter
g0 is set up, and the objects are approximated either by unions or by parts of pixel clusters
of the optimal image approximation in g0 colors. For example, in the problem of identifying
a person by the relative position of the eyes, corners of the lips, and the tip of the nose,
the penultimate hierarchy of image approximations and the corresponding parameters
g0 = 2 and 3 are preferable.

A Dynamic Table contains a sequence of hierarchies of image approximations. Given
optimal image approximations, it can be easily generated using Ward’s pixel clustering
method, as described in Section 2. However, optimal approximations as such may be
poorly suited for detecting some objects, since certain sharp boundaries separating pixel
clusters are erased in the non-hierarchical image structure, but they can remain in optimal
approximations, where the color range is much narrower.

Such boundaries are relevant in superpixel image approximations in 1, 2, . . . , k(i), . . . , N
colors, where i = 1, 2, 3, . . . , N, i ≤ k ≤ min(i!, N), and exclamation mark denotes factorial.
To take into account every one of the sharp boundaries, it is sufficient to build hierarchies
of image approximations using the original Ward’s method, starting from superpixel
approximations. In this case, the superpixels are considered as unit objects, and the rest
objects are obtained by iterative merging of the superpixels.

Figure 12 illustrates how the optimal image approximations can be improved.

Figure 12. Improving object detection using superpixel approximations. (Top): Sample images
from the SIPI Image Database combined into a single 1024×512-pixel “Tanks” image. (Bottom):
Optimal image approximation in four intensity levels (left) and improved image approximation in
four intensity levels (right). The segments containing the object-of-interest are filled with white.

Figure 12 shows two images of tanks, combined into a single entity in order to perform
object detection without performing any feature analysis or identification. Let us consider
as relevant objects the three five-pointed stars on the tank armor. These five-pointed stars
have to be highlighted in the same intensities. For the rightmost five-pointed star, this is
more difficult than for the rest ones because it melts into the background, as shown in the
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bottom left image approximation. The relevant five-pointed star considered here has been
successfully detected in the bottom right image approximation.

The bottom right image approximation in four intensity levels is obtained by inter-
secting the first five optimal image approximations, followed by iterative merging of the
resultant eleven pixel clusters down to four. At the same time, generating the optimal image
approximation in four intensity levels results in the destruction of the problematic object, as
shown at the bottom left of Figure 12. Hence, it is interesting to provide this at the output of
image structuring, involving the generation of a so-called Dynamic Superpixel Table, which,
in practical terms, is used in the same way as the Dynamic Table demonstrated above.

The i-th column of Dynamic Superpixel Table is generated by Ward’s clustering of
superpixels of the i-th superpixel approximation, which is obtained by intersecting the
optimal image approximations in 1, 2, . . . , i intensity levels. If the image turns out to be
hierarchically structured, then the superpixel approximations coincide with the optimal
ones, and the Dynamic Superpixel Table coincides with the upper triangular approximation
table, cut off by the main diagonal of Dynamic Table. Otherwise, the number k(i) of
approximations in the i-th column of the Dynamic Superpixel Table exceeds i.

Dynamic Superpixel Table for the grayscale “Tanks” image is shown in Figure 13.
In practical terms, it may be useful to a priori define objects-of-interest as superpixels

that persist in a succession of image approximations in an incrementally increasing number
of colors or grayscale intensity gradations.

Figure 13. Dynamic Superpixel Table for the grayscale “Tanks” image (dimensions 1024× 512 pixels).
The columns contain binary hierarchical sequences of approximations in the incremental number
of intensity levels from g = 1 to g = 11, indicated on the left. The lowest approximations in each
column are the superpixel approximations obtained as intersections of the 1, 2, . . . optimal image
approximations. The other approximations are generated from the latter using Ward’s pixel clustering.
A problematic five-pointed star (filled with white) appears at approximations in intensity levels 4–11.
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Regarding the Dynamic Table and the Dynamic Superpixel Table at the output of the
image structuring, it should be noted that they are generated completely automatically,
which is extremely important. Less important is the generation rate. Of the many ways
to boost calculations, it is necessary to choose those that do not introduce coupling of
calculations to images of specific content. For this, it is necessary to make sure, in advance,
that the calculation routine is adequate for the problem at hand to obtain reference values
for control purposes.

The “Tanks” image optimal approximations of 1024× 512 pixels and “Girl” grayscale
optimal approximations of 321× 481 pixels were obtained as in [20]. The optimal approx-
imations of the “Girl” color image and “5images” color picture of 814× 978 pixels were
obtained by many iterations of Ward’s method, using different initial values of enlarged
pixel count, with further selection of approximations having the lowest values of error E
for each color number, ranging from 1 to 100. For this purpose, Ward’s method was run
by two versions of the software implementation, with the number Ñ of enlarged pixels in
the range from 100,000 to 154,401 for the “Girl” color image and with Ñ in the range from
560,000 to 796,092 for the “5images” color picture.

8. Conclusions

As is known, the forced use of learning or a priori known information about objects in
the image complicates the problem [49]. To overcome these obstacle, we relied on classical
cluster analysis methods, modernized them for modern applications, and formalized the
concepts of an image, superpixels, and object hierarchy through optimal image approxima-
tions. The only difficulty came down to the organization of high-speed calculations.

There are many ways to speed up calculations.
For example, acceleration is achieved by any of the following:

• Apply Ward’s method within the image parts, followed by the CI method of processing;
• Enlarge the original pixels, replacing them with enlarged image segments or superpixels;
• Reduce the number of colors in the image within the limits of visual invisibility.

The first method is preferable, since it does not use modifications to the original data.
This method allows for various implementations that need to be explored. The second
method works in current software implementations. The third method should be used with
caution, as it suppresses the variability of Ward’s method.

However, it seems obvious thatm for an acceptable speed of processing an image of N
pixels by Ward’s method, an insurmountable obstacle is the need to scan N2 pairs of pixels
(and the more interesting it is to deal with this problem). The idea is to represent the image
as multispectral by using pixel decimation.

Pixel decimation is an operation that models the inverse operation of pixel duplication
commuting with pixel clustering by the methods in question. However, pixel decimation
results in several reduced-sized images. In order not to lose data, the idea arises of combine
these several images with several of increased pixel dimensions. Programming this will
not be difficult at all. We hope to present the results in our next paper.

9. Patents

There is a patent resulting from the work described in this manuscript: Nenashev, V.A.;
Khanykov, I.G., and Shepeta, A.P. Device for multiple-angle synthesis of complex image
of the Earth’s surface, Patent for invention RU 2756904 C1, 10/06/2021. Application No.
2021107671 dated 08/24/2020, 15p, 2021.
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