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Abstract: Bees play a critical role in pollination and food production, so their preservation is essential,
particularly highlighting the importance of detecting diseases in bees early. The Varroa destructor
mite is the primary factor contributing to increased viral infections that can lead to hive mortality.
This study presents an innovative method for identifying Varroa destructors in honey bees using
multichannel Legendre–Fourier moments. The descriptors derived from this approach possess
distinctive characteristics, such as rotation and scale invariance, and noise resistance, allowing the
representation of digital images with minimal descriptors. This characteristic is advantageous when
analyzing images of living organisms that are not in a static posture. The proposal evaluates the
algorithm’s efficiency using different color models, and to enhance its capacity, a subdivision of the
VarroaDataset is used. This enhancement allows the algorithm to process additional information
about the color and shape of the bee’s legs, wings, eyes, and mouth. To demonstrate the advantages of
our approach, we compare it with other deep learning methods, in semantic segmentation techniques,
such as DeepLabV3, and object detection techniques, such as YOLOv5. The results suggest that our
proposal offers a promising means for the early detection of the Varroa destructor mite, which could
be an essential pillar in the preservation of bees and, therefore, in food production.

Keywords: Legendre–Fourier multichannel moments; honey bee; Varroa destructor

1. Introduction

The honey bee (Apis mellifera) is a species native to Africa, Europe, and western Asia;
its management has contributed to the presence of this species in all continents except
Antarctica and some oceanic islands [1]. They are vital as pollinators, visiting more than
90% of the world’s principal crops [2]. They also generate essential products such as honey,
pollen, propolis, and royal jelly, producing jobs mainly in rural areas [3]. Hence, reducing
their population could affect the production and quality of food whose crops depend on
insect pollination [4]. Despite its relevance, a decline in bee diversity has been recorded
due to climate change, pesticide use, and loss of natural habitats [5]. In addition, diseases
associated with fungi, bacteria, viruses, and invertebrate parasites threaten the health
of bees [2]. These diseases tend to spread to nearby bee populations due to commercial
management, mass breeding, transport, trade, and physical contact between bees, especially
during harvesting, representing a problem for conserving wild bee species.

The worldwide transmission and spread of the ectoparasitic mite Varroa destructor
is the main factor in increasing viral infections. Furthermore, it inoculates in the larvae
and adults, causing the death of hives [6]. A decrease in production of 45% is estimated
in a swarm of domestic bees infested with Varroa, which causes economic losses due to
sanitary treatments, the repopulation of the packs, the treatment of secondary diseases, and
labor [7]. Currently, different chemicals and application methods keep the mite population
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under control. However, to achieve an optimal effect, these control methods must consider
the climate, the conditions inside the hive, and the mode of application [6].

Nowadays, diagnostic tools are an essential component of integrated pest manage-
ment. Monitoring the level of infestation requires washing, separating, and counting the
number of bees and mites. Therefore, proposals have been made to evaluate and monitor
different factors that allow the health of bee colonies to be tracked with minimal human
interaction through computer vision systems. For example, Rodríguez et al. [8] perform
pollen detection by analyzing the hive entrance, where they perform a comparative analysis
with images of pollen-bearing and non-pollen-bearing bees using different types of neural
networks. Sledevivc [9] presents image classification with pollen-bearing bees using a con-
volutional neural network. Marstaller et al. [10] propose DeepBees, which is a non-invasive
system to monitor hives using computer vision based on a Raspberry Pi by transferring
cropped image sequences of each insect for pollen detection and bee pose.
On the other hand, the work presented by Tiwari [11] uses deep learning to recognize
bees in videos and monitor the behavior of the colonies through traffic analysis; this vari-
able is essential to observe the availability and demand for food, the age structure of the
colony, and the impact of pesticides. Rodríguez et al. [12] develop a system for detecting,
locating, and tracking bee body parts from a video at the entrance ramp of the colony.
Tashakkori et al. [13] implement a data collection and monitoring system called Beemon
that captures sensor data (temperature, humidity, and weight) and sends video and audio
recordings, as well as input to hives, for analysis and research.

Regarding pest detection, Bjerge et al. [14] describe a portable computer vision system
that performs infection detection and automatic counting of bees to determine the level
of infestation and minimize damage to the colony. This system uses a multispectral
camera and illumination with blue, red, and infrared LEDs to facilitate Varroa separation
using machine vision algorithms based on deep learning. Sevin et al. [15] develop the
Var-Gor system using bee passage tunnels, an autofocus detection camera, and a solar-
panel-generated power supply to detect Varroa mites. Bilik et al. [16] present an object-
detector-based method for monitoring the health status of bee colonies with a dataset of
600 images of healthy and infested bees in various scenes, and the detectors reach 87% in
the detection of infested bees and up to 71% in the detection of the Varroa destructor mite
itself. Schurischuster and Kampel [17] classify bees into two classes, healthy and infested
with the parasitic mite Varroa destructor, through images acquired at the hive’s entrance.
They compare two classification methods based on AlexNet and ResNet and a semantic
segmentation approach using DeepLabV3, with the latter achieving a classification of 90.8%
with an F1 score of 95%.

The mentioned works use extensive databases because deep learning models require
a large amount of information for their training and usually use data augmentation to
improve their results [14,16]. In addition, these systems present problems for the correct
classification of Varroa, such as the bee’s orientation at the time of acquiring the image
and the characteristic color of Varroa being confused with parts of the bee. Therefore, new
strategies are required to deal with this type of problem. In this context, circular moments
are a novel tool to represent information with minimal redundancy and invariance to
transformations of geometric type [18], which allows the classification of images with
reduced databases without requiring data augmentation or image preprocessing.

Recently, the multichannel approach emerged as a new proposal to extract features in
RGB images showing higher efficiency than the quaternion moments. Sing and Sing [19]
present the orthogonal multichannel moments based on Zernike moments (ZMs). Similarly,
Hosny and Darwish [20] present a new set of Chebyshev–Fourier multichannel moments
(MMCFs), introducing new sets of multichannel moments [21–25]. Furthermore, the mo-
ments distinguish the characteristic color of objects in images with a reduced number of
descriptors [19].

There is a large number of families of moments capable of characterizing images;
however, studies have shown that Legendre–Fourier moments perform well with respect
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to other moments [26–29]. On the other hand, using different color models to analyze
different image features is common. For example, Bolappa Gamage et al. [30] evaluate
the nutritional status of strawberry crop leaves using the RGB color model; this same
color model is also used by Malgorzata et al. [31] to analyze the health status of horses
after exercise. Wan Yuanbin et al. [32] perform image segmentation in RGB and YCbCr
color models for forest fire image recognition. The works presented to identify the Varroa
mite describe problems differentiating between the mite and the bee’s eye due to the color
similarity [16]. In addition, as they are living beings, it is difficult to keep the bee’s capture
in a single position [33], so it requires descriptors robust to different changes.

In this research work, an alternative method is proposed to classify bee images using
Legendre–Fourier multichannel moments. The descriptors used have relevant qualities
that allow the representation of digital images with a minimum number of descriptors; this
characteristic is beneficial in cases where images of living beings that do not keep a static
position are analyzed. The multichannel moments provide the information of each channel
of the color space necessary to carry out the classification with greater accuracy and a lower
computational cost. The proposed algorithm is also used with different color models to
evaluate its effectiveness.

It is essential to mention that deep learning neural-network-based methods such as
semantic segmentation and object detection have shown high performance in numerous
computer vision challenges. Although these methods are relevant and have demonstrated
excellent performance, they have limitations, especially regarding computational demand
and the need for large volumes of data. Our study tried to address these problems using
Legendre–Fourier multichannel moments, providing an alternative for handling images
of living beings in various positions with fewer descriptors and less computational cost.
One of the innovative approaches in object detection is provided by Li et al. [34], which
explores using single-vision transformers for object detection, demonstrating performance
comparable to convolution networks. In addition, Wang et al. [35] present a new state-of-
the-art in real-time object detector, further improving the precision and speed of object
detection in images. Although these methods are highly effective, they rely on complex
network structures and large amounts of training data, which can be challenging in resource-
constrained environments or where the data volume is insufficient. Improving image
quality can be crucial to effective object detection, as shown by Liu et al. [36]. This study
uses an image enhancement guide to improve object detection in visually degraded scenes.
However, this approach could be problematic since the image enhancement could alter
the color characteristics critical for detecting the Varroa destructor. On the other hand,
Su et al. [37] introduce an efficient method of detecting objects without anchors, which
could be relevant to our study. However, this method still requires a lot of training
data, which can be problematic. Regarding semantic segmentation, Strudel et al. [38]
and Zhang et al. [39] present efficient transformers for semantic segmentation. These
approaches achieve high performance in segmentation tasks, but as with the method
mentioned above, these detection methods require large amounts of training data and
significant computational resources. Finally, Yan et al. [40] introduce an approach to
domain adaptation that could be relevant in our case if the training and test data come
from different domains. However, this method may not be necessary if our training
and test data are consistent regarding image quality and shooting conditions. Therefore,
although these methods have shown significant performance in their respective fields,
their limitations may make them less suitable for our Varroa destructor classification task.
Based on Legendre–Fourier multichannel moments, the proposal seeks to address these
limitations by providing an alternative that can handle images of living beings in various
positions with fewer descriptors and less computational cost. The present approach can give
comparable or even superior results to those obtained with deep-learning-based methods
that classify Varroa destructor using semantic segmentation [17] and object detection [16],
with the added advantages of lower data demand and computational cost.
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The document is organized as follows. Section 2 briefly describes the database to be
used, the definition of multichannel Legendre–Fourier moments, and the different test
color spaces. Section 3 presents the strategy to improve the classification of the Varroa mite
in bees. Section 4 shows the results and discusses this work’s advantages compared to
current techniques. Finally, we provide the conclusions of the work carried out.

2. Materials and Methods
2.1. Database of Honey Bees with Varroa

Most works compile and use databases unavailable to the public. However, Varroa-
Dataset [17] is a public database available for Varroa detection. The dataset consists of
13,509 resolution images 160× 280 px of healthy bees and bees infested with the Varroa
destructor mite taken in a laboratory in a controlled environment and manually labeled.
The predefined dataset is split into subfolders: train, test, and validation subsets, where
the images of bees and parasites are different in the three sub-datasets: train, test, and
validation. The configuration is not static due to the parasites’ active movements and the
bee’s position change [17]. Table 1 lists the dataset’s statistics provided by the authors [17].
Figure 1 shows some images of the dataset where the classes are labeled healthy bees and
infested bees. The presence of the Varroa mite can be seen marked with a bounding box
with the reddish-brown coloration that characterizes it.

Table 1. VarroaDataset statistics.

Total Train Test Val

Infested 3947 2554 942 451
Healthy 9562 5671 2466 1425

(a) (b) (c)

Figure 1. Some images from the VarroaDataset: (a) healthy bees, (b) bees with Varroa mites. (c) The
Varroa mite has a reddish-brown coloration and usually hides under the tergite of the adult bee.

2.2. Implementation and Comparison of DeepLabV3 and YOLOv5 Models

Our study directly compared two leading techniques in detecting the Varroa destructor
based on leading model architectures in image analysis: DeepLabV3 and YOLOv5. Both
models excel in their respective areas of expertise: semantic segmentation and object
detection. However, the authors have taken a novel approach using these techniques to
classify bees directly.

DeepLabV3 [41] is a state-of-the-art convolutional neural network model explicitly
designed for semantic segmentation tasks, classifying each pixel in an image into one
of several predefined categories. The model is the third version of the DeepLab series,
which has set a milestone in performance and precision in this type of task. Instead of
using a standard convolutional network that processes the entire image simultaneously,
DeepLabV3 uses a series of filters of different scales to capture details at varying levels
of granularity. In addition, it includes an atrous spatial pyramid pooling (ASPP) module
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that improves segmentation at multiple scales. ASPP accurately captures detail at different
scales using parallel convolutions with varying dilation rates, allowing the model to handle
objects of various sizes. DeepLabV3 has proven highly effective and accurate in multiple
semantic segmentation tasks, providing cutting-edge results on several standard metrics.
The architecture is implemented uniquely to classify bees as ’healthy’ or ’infected’ based on
the presence of the Varroa destructor parasite [17]. This approach is innovative as it allows
us not only to segment the image but also to obtain a direct classification of the condition
of the bees in the images.

On the other hand, YOLOv5 [42] is the fifth version of the ’you only look once’ (YOLO)
series of models, designed for real-time object detection tasks. This convolutional neural
network architecture has become popular due to its fast and accurate performance. The
architecture evaluates the entire image in a single pass, unlike other approaches that ana-
lyze several parts of the image separately, which facilitates its high processing speed. The
network is designed to simultaneously predict the bounding box coordinates and object
class, allowing you to handle multiple objects of different categories in a single image.
Compared to previous versions of YOLO, YOLOv5 features speed, accuracy, and function-
ality improvements, including support for large-scale detection, multi-label classification,
and instance segmentation. These features have led YOLOv5 to be widely recognized as
one of the best choices for real-time object detection tasks in various practical applications.
YOLOv5 is used to identify and locate infected bees and the Varroa destructor parasite in
images, not only detecting them as individual objects but also classifying them to determine
the health status of the bee colony [16].

To compare these models, we followed a standardized approach using the same
validation sets used in the references mentioned, allowing us to compare our results with
those reported in those studies directly. We did not use data augmentation techniques, as
none of the reference studies used them. This approach allowed us to be on a level playing
field with the references mentioned and provides a fair comparison of the effectiveness of
our implementation of the models.

2.3. Color Space

There are different ways to define the color space to detail the color in a standardized
form. Depending on their application, they are expressed in three or four color components;
the best known are RGB, HSV, and YCbCr. In the RGB model, each color appears in its
primary spectral components of red (R), green (G), and blue (B). Generally, it is used in
monitors, web pages, and digital photography [43]. This space is an additive color model,
described by the value of each component as an integer in the range of 0 to 255. On the
other hand, the HSV model provides an intuitive color space for natural human perception.
It also includes information on tone or hue (H), as well as its saturation (S) and brightness
(V), which is used in color palettes, television, and digital video. Furthermore, it is easy to
convert from RGB space to HSV using the following expressions [44],

H = arccos
1/2[(R− G) + (R− B)]√

[(R− G)2 + (R− B)(G− B)]
,

S = 1− 3
min(R, G, B)
R + G + B

,

V =
1
3
(R + G + B).

(1)
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Digital video and image processing use the YCbCr model. This defines color in terms
of luminance (Y), blue chrominance (Cb), and red chrominance (Cr). The transformation
from the RGB color space to YCbCr is given by [44],

Y =0.299R + 0.587G + 0.114B,

Cb =B−Y,

Cr =R−Y.

(2)

The presented models represent the color depending on their application in such a way
as to facilitate their implementation. The information of each channel is easily implemented
using the multichannel moments to characterize the data with a small number of descriptors
to report objects based on their shape and color. For this reason, exploring their behaviors
with different color spaces is interesting.

2.4. Multichannel Legendre–Fourier Moments

Moments of an image and their invariants to geometric transformations have been
widely used in computer vision [45] and pattern recognition [46] applications. They can
describe objects with changes in scale, translation, noise, and various factors involved
in image acquisition. Recently, multichannel moments have been used for RGB image
analysis because they perform better than their predecessors, quaternion moments [19].
Multichannel moments are defined as moments where each channel belongs to an element
of a color space of an image fc(r, θ). The moments of each channel are given by,

Mc
n,m =

∫ 2π

0

∫ 1

0
fc(r, θ)Ln(r)e(−jmθ)rdrdθ (3)

where n is the radial order, m the angular order, e(−jmθ) is the Fourier exponential, and Ln(r)
is the Legendre shifted orthogonal polynomial. The recurrence relation is given by [26],

anLn(r) = (2r− 1)Ln−1(r)− an−1Ln−2(r), (4)

where r ∈ [0, 1] and the coefficient an is calculated as follows,

an =
n√

4n2 − 1
. (5)

The initial calculation of the zeroth and first orders is given by,

L0(r) = 1,

L1(r) =
√

3(2r− 1).
(6)

On the other hand, the channel c can be defined by different color spaces, such as

c = {R, G, B},
c = {H, S, V},

c = {Y, Cb, Cr}.
(7)

The multichannel moments configuration can be adapted to analyze images with
different channels to extract color characteristics.

One of the most important properties of orthogonal moments defined on a unit disk is
their rotation and scale-invariant representation. If we consider that an image fc(r, θ − γ) is
rotated γ degrees, then M(γ)

n,m are related to the Legendre–Fourier moments of the original
image by

M(θ−γ)
n,m = Mp

n,m exp(−imγ). (8)
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Therefore, when computing the modulus of the Legendre–Fourier moments,∣∣∣M(γ)
n,m

∣∣∣ = ∣∣∣Mp
n,m

∣∣∣, (9)

it is shown that circular moments are invariant to rotation. A key aspect to consider in
image analysis using Legendre–Fourier moments is scale invariance. This concept refers
to the ability to identify and analyze an object, in this case a bee, regardless of the size or
resolution of the image. However, this invariance only holds if the images are cropped
to contain only the bee. Suppose the images of the same bee are obtained from different
distances, and an adequate clipping is not carried out. In that case, the Legendre–Fourier
moments lose their invariance property before this scale. The change in the distance from
which the image is taken generates a variation in the perceived size of the bee that cannot
be adequately managed at this time. However, scale invariance is achieved by mapping
the image to a disk drive, regardless of the image’s resolution. This mapping allows a
normalizing of the representation of the object, allowing the Legendre–Fourier moments
to effectively identify and analyze the object in question, despite the variations in size or
resolution. Table 2 shows an example of rotation and scale invariance. Note that the values
in the descriptors remain constant at different degradations.

Table 2. Example of invariant Legendre–Fourier multichannel moments.

Original α = 45◦ α = 90◦ k = 0.5 k = 1.5

MLFMs
MB

0,0 53.023 53.023 53.023 53.023 53.023
MB

0,1 0.628 0.628 0.628 0.628 0.628
MB

1,2 2.080 2.080 2.080 2.080 2.080

3. Multichannel Legendre–Fourier Moments for the Varroa Detection

Moments being naturally invariant to rotation, scale, and noise-robust eliminate the
need for data enlargement or data reduction preprocessing. However, the acquisition of
the dataset images is not static due to the active movement of the bees and mites; for
this reason, the images have different positions. The database contains images from the
dorsal and ventral sides. Furthermore, both classes consider information about the color
and shape of the bee’s legs, wings, eyes, and mouth. Table 3 shows examples of images
according to this classification.

When evaluating different approaches to detect parasites in bees, we considered re-
splitting the database to obtain four classes of 500 images each. The new sets respect
the original labels of the database through a manual classification separating the images
into four categories: bee dorsal side healthy, bee dorsal side with Varroa, bee ventral side
healthy, and bee ventral side with Varroa.

The proposal consists of determining the initial orientation of the bee, such as the
dorsal or ventral side, regardless of whether it is infested, to identify the presence of the
Varroa mite later. Figure 2 shows the two stages of Varroa identification. First, the position
is identified; subsequently, the Varroa mite is detected.
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Table 3. Subdivision made to the VarroaDataset database.

Healthy With Varroa Mite

Bee dorsal side

Bee ventral side

Figure 2. Varroa classification process.

We use MATLAB R2021b (MathWorks, Natick, MA, USA) and the classification learner
application in the model implementation with standard parameters. The computer hard-
ware includes an Intel Core i7-9750H processor (Intel Corporation, Santa Clara, CA, USA)
and 16 GB RAM. Additionally, a GeForce GTX 1050 graphics card (Nvidia Corporation,
Santa Clara, CA, USA) is incorporated to achieve GPU acceleration, significantly enhancing
the training processes of specific models.

The multichannel moments are calculated from the databases under normal condi-
tions without preprocessing, with order five in the RGB, HSV, and YCbCr color models.
Consequently, 75 descriptors are obtained, i.e., 25 per color channel. In this context, “color
channel” refers to each component of the color model. For example, in the RGB model, R
(red), G (green), and B (blue) are each a color channel. For each channel, 25 descriptors
are calculated, leading to 75 descriptors. Therefore, each channel’s individuality in a color
space dictates the number of descriptors, not the color space. Layering this information
by channel allows for a more detailed and granular analysis, maximizing the amount of
information that can be extracted from each image. The analysis considers the classification
accuracy using a k-fold cross-validation strategy with k = 10. Furthermore, the study
implements a test suite of the VarroaDataset [17] ensemble to validate the robustness of our
conclusions. This set was not used at any stage of training or cross-validation, thus ensuring
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its complete independence and allowing an unbiased assessment of the generalizability
of our model. The final metrics we present in this paper, such as classification accuracy,
are derived from this independent test suite. This approach provides a more rigorous
and reliable validation of the effectiveness of our model, as it tests its ability to handle
previously unseen data and ensures that our results are not biased by potential overfitting
during the training phase.

The cubic support vector machine (SVM) algorithm is chosen to assess the proposal.
The utilized images, as well as the multichannel Legendre–Fourier moment descriptors,
are publicly available (https://www.kaggle.com/datasets/alicianoriega/varroadestructor-
legendrefouriermoments (accessed on 9 July 2023)).

The proposal evaluates the performance of the descriptors in different color models
to carry out the subclassification process. In the first stage, the features of the Legendre–
Fourier moments are extracted for each channel of the selected color model. Figure 3 shows
an example of the color models used and their respective channels. The descriptors are
obtained to enter the first classifier to detect the bee’s orientation (dorsal side or ventral
side). According to the output received, the second classifier identifies the presence of the
Varroa mite. Figure 4 shows the proposed classification process for the YCbCr model.

Figure 3. Classification with Legendre–Fourier moments using different color models.

Figure 4. Diagram of the proposed classification process: classification with the YCbCr color space.

https://www.kaggle.com/datasets/alicianoriega/varroadestructor-legendrefouriermoments
https://www.kaggle.com/datasets/alicianoriega/varroadestructor-legendrefouriermoments
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The model performance evaluation metrics generally use the F1 score, conformed by
the harmonic mean of precision and recall, the two most common metrics considering class
imbalance. On the other hand, the confusion matrix or error matrix allows the visualization
of the model’s performance. It makes it easy to check if the system is confusing two classes,
i.e., mislabeling one class with another. From the confusion matrix, the accuracy and F1
score metrics are obtained. Table 4 shows the metrics used to evaluate the proposal.

Table 4. Set of performance measures.

Measure Formula

True positive rate (TPR) TPR = TP/(FN + TP)
False positive rate (FPR) FPR = FP/(TN + FP)
True negative rate (TNR) TNR = TN/(TN + FP)
False negative rate (FNR) FNR = FN/(FN + TP)
Accuracy Accuracy = (TP + TN)/(TP + FP + FN + TN)
F1 score F1 = (2 * TP)/(2 * TP + FP * FN)

4. Results

The experiments explore the behavior of the MML-F as descriptors to classify the
database with the subdivisions obtained. The first experiment organizes the database into
two regular classes, healthy bees and bees infested with the Varroa parasite. Figure 5 shows
the scatter plot of the classification with the three moment-type descriptors in the color
models: RGB, HSV, and YCbCr. The image shows an intersection between classes that
makes classification difficult.

Table 5 shows an accuracy of 91.86% was reached in the YCbCr color model. However,
since they are living beings, it is difficult to capture the image in a single position of the
bee [33]. Furthermore, other challenges are associated with distinguishing between the
color of the mite and the bee’s eye. Therefore, it is crucial to consider the color information
found on the bee’s dorsal and ventral sides [16]. Furthermore, it is important to note that
mites often conceal themselves under adult bees’ sternites, adding a layer of complexity to
their detection [6].

Using moment-type descriptors provides valuable information regarding shape and
color characteristics. Therefore, the strategic subdivisions implemented in the database
play a crucial role in distinguishing between various bee parts, such as the tongue, and the
Varroa mite, even when they exhibit similar color patterns.

The following classification exercises consider the above issues to help determine the
bee’s position and the Varroa parasite’s location on the host. The proposal uses the subdi-
vision to perform the classification exercise. First, using 2000 images from the database,
the classification determines the bee’s position, with the abdomen in a ventral or dorsal
orientation. In the second part of the table, the accuracy in the classification achieved is
99.09% in the YCbCr color model.

The next step allows the determination of the presence of the Varroa parasite. Training
is performed using data sets of bees, distinguishing between those with a healthy back
and an infested back, those with a healthy ventral side, and those with Varroa on the
ventral side. The accuracy increases for the first exercise and reaches 97.70% and 97.34%,
respectively.

On the other hand, we use the SVM classifier with a cubic kernel because it has good
results when used with moment descriptors in [47]. Furthermore, we perform the cross-
validation with k = 10 to validate the proposed model in the different color models. Table 5
shows the rates obtained with varying metrics in each classification exercise.
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(a)

(b)

(c)

Figure 5. Scatter diagram of the classification: bees with healthy dorsal side and bees with healthy
ventral side in the color models (a) RGB, (b) HSV, and (c) YCbCr.
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Table 5. Set of performance measures.

TPR TNR FPR FNR Accuracy F1 Score

Healthy bees and bees
with Varroa parasite
RGB 89.5 87.6 12.4 10.6 88.5 88.4
HSV 92.4 89.4 10.6 7.7 90.9 90.8
YCbCr 91.7 92.0 8.0 8.3 91.9 91.9

VarroaDataset with subdivision

Bees dorsal side and ventral side
RGB 97.6 98.8 1.2 2.4 98.2 98.2
HSV 97.4 98.6 1.4 2.6 98.0 98.0
YCbCr 99.4 98.8 1.2 0.6 99.1 99.1
Healthy bees and Varroa-
infested bee on dorsal side
RGB 96.0 92.3 7.7 4.0 94.1 94.0
HSV 97.9 95.5 4.5 2.1 96.7 96.7
YCbCr 97.6 97.8 2.2 2.4 97.7 97.7
Healthy bees and Varroa-
infested bee on ventral side
RGB 95.7 94.7 5.3 4.3 95.2 95.2
HSV 97.4 96.2 3.8 2.6 96.8 96.8
YCbCr 99.6 95.4 4.6 41.8 97.4 97.3

The experiments were performed with multichannel moments of higher orders; how-
ever, even when a higher order more accurately represents the images, it does not improve
the results. In addition, the feature vector is more significant, which increases compu-
tation time and presents numerical instability in some cases. Lower-order multichannel
moments provide both shape and color information; therefore, they are sufficient for higher
classification accuracy.

Finally, all the exercises performed are used to train the classification models of the
proposed algorithm for the RGB, HSV, and YCbCr color models to identify the space of
color that provides more information for extracting characteristics from the Legendre–
Fourier multichannel moments. The double classification carried out with the subdivision
of the database allows the extraction of specific characteristics in training to increase the
recognition rate of the parasite in bees.

The VarroaDataset has also been analyzed with different deep learning algorithms to iden-
tify Varroa in bees using semantic segmentation [17] and object detection models [16]. Table 6
shows the results obtained with different classification proposals and the proposed method.

Table 6. Classification results with VarroaDataset.

Model Accuracy F1 Score

DeepLabV3 [17] 90.8 95
YOLOv5 [16] - 86.3
MLFM-RGB 94.1 93.9
MLFM-HSV 94.2 94.2
MLFM-YCbCr 96.7 96.6

5. Discussion

The results show a particular advantage with multichannel moments and the YCbCr
color space over other color spaces and deep learning algorithms. The Varroa color group is
more compact in YCbCr than in different color spaces. Furthermore, it has a minor overlap
between the Varroa and honeybee data under various lighting conditions. The Y denotes
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the luminance component, and Cb and Cr represent the chrominance factors. Mainly, the Cr
component highlights the characteristic red color of Varroa, thus facilitating the classification.

Furthermore, the difference between the classification results with YCbCr and RGB
spaces is that the former represents color as brightness and two color difference signals.
In contrast, the latter represents red, green, and blue colors. The color composition in the
primary colors limits the classification of the Varroa. In HSV color space, it is separated
by hue, saturation, and brightness, so it performs better than in RGB space. The tone
component must highlight the Varroa, unlike the Cr of the YCbCr space.

On the other hand, the inherent characteristics of moments, such as their natural
invariance to rotation and scale, allow classification with relatively small databases, unlike
deep neural networks. Without a doubt, with more extensive databases and transfer
of learning, deep neural networks can cover most inconveniences, such as the constant
mobility of bees that causes Varroa to be confused with body parts; therefore, deep neural
networks easily overcome the proposal. However, with the current dataset, the proposal
presented is an excellent option for early detection of the Varroa destructor mite.

6. Conclusions

Currently, most of the applications in the identification of Varroa use segmentation
techniques and convolutional neural networks, which present problems in differentiating
the mite due to the information contained in the images of bees in training. On the other
hand, the proposed algorithm has a high recognition rate by subdividing the database
and using the color space to identify the Varroa mite more accurately. The accuracy in
the classification achieved by the moment-type descriptors is possible due to the image
characteristics used; the objects have a similar shape and color, differing by the character-
istic color of the presence of the Varroa parasite. Low-order moment descriptors provide
low-dimensional feature vectors and lower computation time without affecting their clas-
sification ability. In addition, they work with small databases and do not require data
augmentation due to their invariance properties and noise robustness. The integration of
the characteristics of the color spaces combined with the multichannel moments has also
been explored.

Experimental results showed that this combination and subdivision of classes provide
more accurate results than semantic segmentation [17] and object detection models [16].
The YCbCr color space presents a more significant advantage than other color spaces
in combination with multichannel Legendre–Fourier moments because it highlights the
features of the characteristic color of Varroa. There is a long way to go to improve the
early detection of the Varroa destructor mite. However, the presented work lays the
groundwork to explore other techniques for detecting Varroa by extracting features in
different color spaces.
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Abbreviations
List of important symbols and abbreviations:

R Red
G Green
B Blue
H Hue
S Saturation
V Brightness
Y Luminance
Cb Chrominance
Cr Red chrominance component
SVM Support vector machine
TPR True positive rate
FPR False positive rate
TNR True negative rate
FNR False negative rate
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