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Abstract: In hyperspectral image (HSI) classification, convolutional neural networks (CNNs) have
been widely employed and achieved promising performance. However, CNN-based methods face
difficulties in achieving both accurate and efficient HSI classification due to their limited receptive
fields and deep architectures. To alleviate these limitations, we propose an effective HSI classification
network based on multi-head self-attention and spectral-coordinate attention (MSSCA). Specifically,
we first reduce the redundant spectral information of HSI by using a point-wise convolution network
(PCN) to enhance discriminability and robustness of the network. Then, we capture long-range
dependencies among HSI pixels by introducing a modified multi-head self-attention (M-MHSA)
model, which applies a down-sampling operation to alleviate the computing burden caused by the
dot-product operation of MHSA. Furthermore, to enhance the performance of the proposed method,
we introduce a lightweight spectral-coordinate attention fusion module. This module combines
spectral attention (SA) and coordinate attention (CA) to enable the network to better weight the
importance of useful bands and more accurately localize target objects. Importantly, our method
achieves these improvements without increasing the complexity or computational cost of the network.
To demonstrate the effectiveness of our proposed method, experiments were conducted on three
classic HSI datasets: Indian Pines (IP), Pavia University (PU), and Salinas. The results show that our
proposed method is highly competitive in terms of both efficiency and accuracy when compared to
existing methods.

Keywords: hyperspectral image; image classification; deep learning; spectral-coordinate attention;
long-range dependency

1. Introduction

Hyperspectral image (HSI) classification is a hot topic in the field of remote sensing.
HSIs, captured by airborne visible/infrared imaging spectrometer (AVIRIS), provide rich
spectral and spatial information that is highly valuable for the fine segmentation and
identification of ground objects. Therefore, HSIs have been widely applied in various
fields such as geological exploration, military investigation, environmental monitoring,
and precision agriculture [1–4].

In the past decades, traditional feature extraction methods for HSI classification, such
as k-nearest neighbor [5], random forest [6], Markov random fields [7], and support vector
machines (SVM) [8], have been widely used. However, these methods require manual
labeling and expert experience, which make them expensive and limited in their ability
to extract high-level features. Additionally, HSIs with redundant information also pose
challenges for classifiers.

Deep learning methods have received significant attention for their ability to automat-
ically learn robust features from training samples. These methods have been successfully
applied to HSI classification, including stacked autoencoder (SAE) [9], recurrent neural
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network (RNN) [10], deep belief network (DBN) [11], CNNs [12–14], and others. These
approaches have achieved remarkable results when compared to traditional methods.
Chen et al. [15] first introduced deep learning into hyperspectral data and used SAE to ob-
tain spectral and spatial features, respectively, to achieve classification. Later, Hu et al. [16]
used five 1×1 convolution layers to capture spectral information for HSI classification but
ignored the importance of spatial information. Ying et al. [17] proposed a 3-D convolutional
neural network to extract spectral-spatial features of 3-D hyperspectral images to achieve
accurate classification of HSI. Yang et al. [18] proposed a two-channel deep convolutional
neural network model (TCCNN) to extract joint spectral-spatial features of HSIs and two
branches were used to extract spectral and spatial features, respectively. Chen et al. [19]
added 3-D convolution to extract spectral-spatial features of HSI based on TCCNN, and
the results show that the method is effective. However, 3-D CNN will cause excessive
training parameters and high calculation costs. As neural networks become deeper, the
extracted features become more abstract and robust. However, the limited number of
training samples can lead to overfitting. To address this problem, Zhong et al. [20] and
Wang et al. [21] used residual connections [22] and dense connections [23], respectively,
to enhance the robustness of the network and avoid overfitting. Due to the ability to
perform convolutions on arbitrary graph structures, graph convolutional networks (GCNs)
have been applied to HSI. Qin et al. [24] proposed a semi-supervised GCN method, which
can flexibly encode irregular non-Euclidean data and effectively express the relationship
between each node. However, it requires a large amount of computing cost to construct an
adaptive graph structure.

Attention mechanisms [25] have gained attention in the field of vision for their ability
to focus on important information and disregard redundant information. The transformer
model uses a multi-head self-attention (MHSA) module to capture long-range dependen-
cies in input sequences. Song et al. [26] proposed a hierarchical transformer network that
uses MHSA to better extract spectral-spatial information. However, the computational
cost of MHSA is high due to the excessive dot-product operations involved. T et al. [27]
combined the Squeeze-and-Excitation (SE) Network, known for its effectiveness in chan-
nel attention, with CNN for HSI classification, effectively utilizing spectral information.
Similarly, Sun et al. [28] proposed a spectral-spatial attention mechanism, adding spectral
and spatial attention to each traditional convolution, enabling a higher focus on useful
information and improving the classification accuracy. Li et al. [29] proposed a double-
branch dual-attention network (DBDA) to capture spectral and spatial features separately,
to achieve refinement and optimization of the extracted features. And the coordinate
attention network (CA) [30] was proposed to address the high computational cost and
complexity of the attention mechanism. It retains spatial coordinate position information
and captures global information of image pixels.

Although the above methods have already achieved promising results, they are still
facing some problems. (1) The classification performance of CNN-based methods for HSI
classification is limited by the size of the convolutional kernels, and it is difficult to capture
long-range dependencies between pixels in HSI. (2) HSI typically contains hundreds of
continuous spectral bands, but not all bands contribute equally to classification accuracy.
The invalid bands not only increase computational cost but also degrade classification per-
formance. (3) Existing methods for HSI classification have complex network architectures,
which can lead to inefficient classification results.

Inspired by the attention mechanism, this paper proposes an effective HSI classification
network based on MHSA and spectral-coordinate attention. The proposed method first uses
a point-wise convolution network (PCN) to remove redundant spectral band information
and provide more discriminative features. Then, an M-MHSA module is introduced, which
down-samples the k and v projections to a low-dimensional embedding to alleviate the
computing burden caused by dot-product operations in MHSA. The method also assigns
weights based on pixel correlation to capture long-range dependencies among the HSI
pixels, addressing the limitations of CNNs having a small receptive field. Furthermore, a
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lightweight spectral-coordinate attention fusion network is proposed. On the one hand,
spectral attention is used to model the importance of each spectral feature and suppress
invalid channels. On the other hand, the coordinate attention network is used to aggregate
features along two spatial directions, which addresses the limitation of MHSA ignoring
inherent position information and strengthens the connection between channels. Finally,
we conducted experiments on three classical datasets, Indian Pines (IP), Pavia University
(PU), and Salinas. The experimental results demonstrate that our proposed method is
highly competitive among existing HSI classification methods.

The rest of this paper is organized as follows: the proposed method is described in
Section 2. The experiments and analysis are presented in Section 3. The conclusion is drawn
in Section 4.

2. Proposed Methods

The goal of HSI classification is to assign a specific label to each pixel in order to
represent a particular category. In this paper, we propose an effective network based on
multi-head self-attention and spectral-coordinate attention (MSSCA). The overall architec-
ture of the proposed network is depicted in Figure 1.
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2.1. Point-Wise Convolution Network (PCN)

HSIs often contain redundant bands, which not only increase computational complex-
ity but also negatively impact classification accuracy. To reduce the redundant information
and provide more discriminant features for subsequent networks, we propose the PCN to
process the band information of the HSI. Specifically, let X ∈ RH×W×B′ as the HSI input,
and the PCN is composed of two 1×1 convolutional layers. Using this network, the output
feature map can be expressed as:

Xl
j = f

(
W l

j ·X̃l−1 + bl
j

)
(1)

where Xl represents the output representation of the feature map of the l-th spectral
convolution layer, Xl

j represents the value of the j-th output feature channel in the l-th layer,

X̃l−1 = BN
(

Xl−1
)

denotes the input feature mapping of the (l-1)-th convolution layer

after batch normalization, W l
j and bl

j represent the j-th convolutional kernel with the size
of 1 × 1 and the bias in the l-th layer, respectively, and f (·) is the activation function. The
resulting PCN output is then fed as input to subsequent networks, providing robust and
discriminative initial spectral characteristics for these networks.
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2.2. Modified Multi-Head Self-Attention (M-MHSA)

The transformer has gained significant attention in computer vision due to its success-
ful applications. Specifically, the self-attention mechanism, which is a key component of
the transformer, is capable of capturing long-range dependencies, making it an attractive
technique. In this paper, an M-MHSA network is introduced, where K and V are projected
to a low-dimensional embedding using a lightweight down-sampling. This operation
reduces the computing burden caused by performing attention calculations on all pixels,
while simultaneously enriches feature subspace’s diversity by independent attention heads.
Moreover, it assigns weights based on the inter-pixel correlations, allowing for the extrac-
tion of global feature dependency and overcoming the limitation of the small receptive
field of a traditional CNN. The network architecture of M-MHSA is shown in Figure 2.
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Hyperspectral pixels can be viewed as a sequence of vectors X ∈ R(H×W)×B. Each
vector is multiplied by three weight matrices to obtain Query (Q), Key (K), and Value (V).
The linear transformation for this process can be expressed as follows:

Q = WqX
K = WkX
V = WvX

(2)

where Wq, Wk, and Wv represent the transformation matrix of Q, K, and V, respectively.
The attention weight calculation can be expressed as:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (3)

where dk represents the dimension of Q and K.
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To focus on different parts of the feature representation and extract richer long-range
dependencies, Q, K, and V are divided into h submatrix as follows:

Q = {Q1, Q2, . . . , Qi, . . . , Qh}
K = {K1, K2, . . . , Ki, . . . , Kh}
V = {V1, V2, . . . , Vi, . . . , Vh}

(4)

where h represents the number of heads.
The i-th head can be expressed as:

headi = Attention(Qi, Ki, Vi) (5)

where Qi, Ki, Vi ∈ R(H×W)× B
h .

Multiple independent heads are spliced together to form MHSA, so MHSA can be
expressed as:

MHSA(Q, K, V) = concat(head1, . . . , headh)WO (6)

where WO indicates the output projection matrix.
To reduce the computational burden caused by dot product of Q and K, we propose

to perform down-sampling on K and V after obtaining them, while preserving important
information. Specifically, we reduce the spatial dimensions of K and V from (H ×W) to
(16 × 16), which Ki, Vi ∈ R(16×16)× B

h in each head. This not only reduces the computational
cost but also enables the network to capture long-range dependencies of the input image
pixels. The modified MHSA can be expressed as:

M−MHSA = MHSA(Q, DSA(K, V)) (7)

where DSA(·) function represents a down-sampling operation.

2.3. Spectral-Coordinate Attention Fusion Network (SCA)

HSIs typically contain hundreds of bands, but many of them contribute little to the HSI
classification and thus lead to poor classification performance. In this work, we perform
spectral attention and coordinate attention for better utilization of the discriminative
spectral and spatial features present in HSIs. Finally, we perform feature fusion to further
enhance the HSI classification performance.

2.3.1. Spectral Attention

As shown in Figure 3, we incorporate the SE-Net architecture to recalibrate the spectral
features in the HSI to strengthen the connections between spectral bands. This helps the
network focus on valuable spectral channel information while suppressing irrelevant or
invalid characteristic channel information.
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Let X = [x1, x2, . . . , xB] ∈ RH×W×B represents the input of SE network and xb ∈ RH×W

represents b-th channel of feature mapping. By using a squeeze operation Fsq, the input
feature map can be compressed along the spatial dimension, reducing two-dimensional
features to one-dimensional data. This is achieved through global average pooling. zb ∈ RB

generated by squeeze can be expressed as follows:

zb = Fsq(xb) =
1

H ×W

H

∑
i=1

W

∑
j=1

xb(i, j) (8)

This operation is equivalent to indicating the value distribution of b feature maps.
xb(i, j) represents the element value of the b-th feature map at position (i, j).

The two fully connected layer networks are utilized to automatically learn the inter-
dependency between different channels, with the importance of each channel determined
by learned weight coefficients WE. This enables the Excitation formula to capture the
dependency relationship between channels, which can be expressed as follows:

s = Fex(z, WE) = σ(g(z, WE)) = σ(W2δ(W1z)) (9)

where s represents the weight of each feature map, δ is the ReLU activation function
operation, W1 ∈ R

B
r ×B, W2 ∈ RB× B

r , and r represents a ratio of dimension reduction.
At last, the output of the SE block is obtained by rescaling X with the activations s can

be expressed as:
x̃b = Fscale(xb, sb) = sb·xb (10)

where X̃ = [x̃1, x̃2, . . . , x̃B], Fscale(xb, sb) represents channel-wise scalar multiplication be-
tween the scalar sb and feature mapping xb.

2.3.2. Coordinate Attention

SE module uses 2-D global pooling to weigh channels and capture dependencies
between them, providing significant performance gains at a relatively low computational
cost. However, the SE module only considers information encoding between channels and
ignores the importance of positional information, which is actually crucial for obtaining
target information. Therefore, we propose incorporating Coordinate Attention (CA) to the
network, which not only captures cross-channel information but also provides information
on direction and position perception, enabling the model to locate and identify the target
of interest more accurately. Moreover, the CA module is flexible and lightweight, making it
easy to integrate into classic modules. The CA module encodes channel relationships and
long-range dependencies through precise location information, similar to the SE module.
It consists of two steps: coordinate information embedding and coordinate attention
generation. By incorporating the CA module, we can improve the accuracy of the model in
identifying targets, while still maintaining computational efficiency. The structure of CA is
shown in Figure 4.

First, the input X = [x1, x2, . . . , xB] ∈ RH×W×B is processed by the CA module, which
converts it into two separate vectors using two-dimension global pooling. This operation
encodes each channel along the two spatial directions using average pooling cores of sizes
(H, 1) and (1, W), respectively.

The output of b-channel at height H can be expressed as:

zh
b(h) =

1
W ∑

0≤i≤W
xb(h, i) (11)

Similarly, the output of channel b at width W can be expressed as:

zw
b (w) =

1
H ∑

0≤j≤H
xb(j, w) (12)
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After the two transforms are generated, feature aggregation is carried out along two
spatial directions. The two transformed vectors are concatenated and passed through the
1 × 1 convolution transformation function F1 to generate an intermediate feature map
f ∈ RB/r×(H+W), which captures the spatial information of the horizontal and vertical
directions. The parameter r represents the reduction ratio, and the function f can be
expressed as:

f = δ
(

F1

([
zh, zw

]))
(13)

Next, we divide the function f into two separate tensors fh ∈ RB/r×H and fw ∈ RB/r×W

along the two spatial directions. The resulting feature maps are then transformed using
two 1 × 1 2-D convolution operations, enabling them to be brought to the same channel
number as the original input X; the formula is as follows:

oh = σ
(

Fh

(
fh
))

ow = σ(Fw(fw))
(14)

where σ is the sigmoid function. And then, oh and ow are then expanded and used as the
attention weights of the H and W direction, respectively. The final output of the coordinate
attention module can be defined as:

yb(i, j) = xb(i, j)× oh
b(i)× ow

b (j) (15)
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3. Experiments

In this section, we conduct experiments on three classical public datasets: the Indian
Pines, the Pavia University, and the Salinas datasets to evaluate the performance of our
proposed method. We compare our method with several existing methods, including
SVM [8], FDSSC [21], SSRN [20], HybridSN [31], CGCNN [32], DBMA [33], and DBDA [29].
We evaluate the effectiveness of our proposed method using overall accuracy (OA), av-
erage accuracy (AA), and Kappa statistics (KPP). OA measures the overall accuracy of a
classification model, which is defined as the proportion of correctly classified samples in
the entire test set. AA is the average accuracy per class, which considers the accuracy of
the model for each class. Kappa index is a measure of agreement between the predicted
and true class labels that considers the agreement that could occur by chance. The kappa
index can be calculated from the confusion matrix, and it is widely used in multi-class
classification problems to evaluate the performance of a classifier.
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3.1. Configuration for Parameters

The proposed MSSCA method comprises of four modules: PCN, M-MHSA, SA, and
CA. Specifically, the PCN module utilizes two network layers and 128 1×1 convolution
kernels, and the activation functions used in PCN are leaky rectified linear units (Leaky
ReLUs). In the M-MHSA, the numbers of the heads are set to four, and we reduce the
spatial dimensions of K and V from (H×W) to (16×16). We adopt a learning rate of 0.005
for iterative updating, and the maximum number of iterations is set to 600. Finally, we
conduct experiments on an NVIDIA Geforce RTX 3090 computer with 16 GB of RAM. The
experiments were carried out on a Windows 10 Home Edition platform, and the code was
implemented using Python 3.7.13 and PyTorch 1.11.0.

3.2. HSI Datasets

(1) Indian Pines dataset: The first dataset is the Indian Pines dataset acquired by the
imaging spectrometer AVIRIS in northwest Indiana, USA. The HSI of this scene
consists of 145 × 145 pixels, with 220 bands and a spatial resolution of 20 m/pixel.
After removing interference bands, the dataset includes 200 available bands. The
dataset comprises 16 different categories of ground objects, with 10,249 reference
samples. For training, validation, and testing purposes, 10%, 1%, and 89% of each
category were randomly selected, respectively. Figure 5 displays the false-color
image and real map, while Table 1 provides detailed category information for this
HSI dataset.

(2) Pavia University dataset: The second dataset is the Pavia University dataset acquired
at the Pavia University using the Imaging Spectrometer Sensor ROSIS of the Reflexol-
ogy System. The HSI of this scene comprises 610 × 340 pixels, with 115 bands and a
spatial resolution of 1.3 m/pixel. After removing the interference bands, the dataset
includes 103 available bands. The dataset contains nine different categories of ground
objects, with 42,776 reference samples. For training, verification, and testing purposes,
1%, 1%, and 98% of each category’s samples were randomly selected, respectively.
Figure 6 displays the false-color image and real map, while Table 2 provides detailed
class information for this HSI dataset.

(3) Salinas dataset: The third dataset is the Salinas dataset acquired by the AVIRIS Imag-
ing Spectrometer sensor over the Salinas Valley. The HSI of the scene comprises
512 × 217 pixels, with 224 bands and a spatial resolution of 3.7 m/pixel. After dis-
carding 20 interference bands, the dataset includes 204 available bands. The dataset
contains 16 different categories of features, with 54,129 samples available for the
experiment. For training, verification, and testing purposes, 1%, 1%, and 98% of each
category’s samples were randomly selected, respectively. Figure 7 displays the false-
color image and the real object map, while Table 3 provides detailed class information
for this HSI dataset.
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Table 1. Category information of Indian Pines Dataset.

No. Class Train. Val. Test.

1 Alfalfa 5 1 48
2 Corn-notill 143 14 1277
3 Corn-mintill 83 8 743
4 Corn 23 2 209
5 Grass-pasture 49 4 444
6 Grass-trees 74 7 666
7 Grass-pasture-mowed 2 1 23
8 Hay-windrowed 48 4 437
9 Oats 2 1 17
10 Soybean-notill 96 9 863
11 Soybean-mintill 246 24 2198
12 Soybean-clean 61 6 547
13 Wheat 21 2 189
14 Woods 129 12 1153
15 Buildings-Grass-Trees-Drives 38 3 339
16 Stone-Steel-Towers 9 1 85

Total 1029 99 9238

J. Imaging 2023, 9, x FOR PEER REVIEW 9 of 19 
 

 

  
(a) (b) 

Figure 5. Indian Pines images: (a) false-color image; (b) ground truth. 

(2) Pavia University dataset: The second dataset is the Pavia University dataset acquired 
at the Pavia University using the Imaging Spectrometer Sensor ROSIS of the Reflex-
ology System. The HSI of this scene comprises 610 × 340 pixels, with 115 bands and 
a spatial resolution of 1.3 m/pixel. After removing the interference bands, the dataset 
includes 103 available bands. The dataset contains nine different categories of ground 
objects, with 42,776 reference samples. For training, verification, and testing pur-
poses, 1%, 1%, and 98% of each category’s samples were randomly selected, respec-
tively. Figure 6 displays the false-color image and real map, while Table 2 provides 
detailed class information for this HSI dataset. 

(3) Salinas dataset: The third dataset is the Salinas dataset acquired by the AVIRIS Imag-
ing Spectrometer sensor over the Salinas Valley. The HSI of the scene comprises 512 
× 217 pixels, with 224 bands and a spatial resolution of 3.7 m/pixel. After discarding 
20 interference bands, the dataset includes 204 available bands. The dataset contains 
16 different categories of features, with 54,129 samples available for the experiment. 
For training, verification, and testing purposes, 1%, 1%, and 98% of each category’s 
samples were randomly selected, respectively. Figure 7 displays the false-color image 
and the real object map, while Table 3 provides detailed class information for this HSI 
dataset. 

  
(a) (b) 

Figure 6. Pavia University images: (a) false-color image; (b) ground truth. Figure 6. Pavia University images: (a) false-color image; (b) ground truth.

Table 2. Category information of Pavia University dataset.

No. Class Train. Val. Test.

1 Asphalt 67 67 6497
2 Meadows 187 187 18,275
3 Gravel 21 21 2057
4 Trees 31 31 3002
5 Painted metal sheets 14 14 1317
6 Bare Soil 51 51 4927
7 Bitumen 14 14 1302
8 Self-Blocking Bricks 37 37 3608
9 Shadows 10 10 927

Total 432 432 41,912
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Figure 7. Salinas images: (a) false-color image; (b) ground truth.

Table 3. Category information of Salinas dataset.

No. Class Train. Val. Test.

1 Brocoli_green_weeds_1 21 21 1967
2 Brocoli_green_weeds_2 38 38 3650
3 Fallow 20 20 1936
4 Fallow_rough_plow 14 14 1366
5 Fallow_smooth 27 27 2624
6 Stubble 40 40 3879
7 Celery 36 36 3507
8 Grapes_untrained 113 113 11,045
9 Soil_vinyard_develop 63 63 6077
10 Corn_senesced_green_weeds 33 33 3212
11 Lettuce_romaine_4 wk 11 11 1046
12 Lettuce_romaine_5 wk 20 20 1887
13 Lettuce_romaine_6 wk 10 10 896
14 Lettuce_romaine_7 wk 11 11 1048
15 Vinyard_untrained 73 73 7122
16 Vinyard_vertical_trellis 19 19 1769

Total 549 549 53,031

3.3. Comparison of Classification Results

In this section, we evaluate the performance of our proposed method and compare it
with several deep learning-based networks on three datasets. We conducted 10 repeated
experiments and report the experimental results as mean ± standard deviation. The
classification accuracy of different classification methods on each dataset is presented in
Tables 4–6. Additionally, we display the classification maps obtained by these methods in
Figures 8–10.

Experiments on the Indian Pines dataset demonstrate that our proposed method
achieves the highest classification accuracy compared to other methods. The SSRN network
extracts spectral and spatial features through continuous spectral and spatial residual
blocks, respectively, effectively alleviating the gradient descent phenomenon. Compared to
traditional methods, it has shown significant improvement. Our proposed method further
improves the accuracy by incorporating an attention mechanism, which has been shown to
be more effective than that of SSRN. As shown in Table 4, the proposed method improves
the overall accuracy by 25.84% and 15.10% compared to DBMA and DBDA, respectively.
Moreover, it also surpasses the advanced CNN network CGCNN.
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Table 4. Classification performance of different methods on the Indian Pines dataset.

Class SVM FDSSC SSRN HybridSN CGCNN DBMA DBDA MSSCA
1 18.88 ± 7.76 45.20 ± 30.35 75.95 ± 29.99 97.16 ± 2.27 97.04 ± 2.46 39.23 ± 19.48 73.37 ± 25.28 97.54 ± 1.58
2 46.05 ± 6.40 78.02 ± 12.10 85.75 ± 4.76 97.15 ± 0.56 98.62 ± 0.59 70.87 ± 10.59 79.10 ± 8.95 99.01 ± 0.67
3 45.88 ± 15.31 75.69 ± 14.23 83.49 ± 12.87 98.25 ± 0.65 98.61 ± 1.13 67.69 ± 14.74 79.24 ± 12.45 99.35 ± 0.62
4 30.05 ± 7.38 74.05 ± 30.61 77.95 ± 27.61 97.90 ± 2.75 97.91 ± 1.32 64.24 ± 20.66 82.49 ± 16.99 98.86 ± 1.06
5 71.42 ± 21.58 96.71 ± 3.60 96.07 ± 7.65 98.49 ± 0.96 98.64 ± 1.31 89.66 ± 6.55 96.89 ± 3.97 99.44 ± 0.78
6 74.53 ± 4.01 90.74 ± 12.06 94.83 ± 4.15 98.92 ± 0.38 99.75 ± 0.16 85.52 ± 4.97 95.36 ± 5.63 99.75 ± 0.18
7 25.70 ± 15.00 36.11 ± 28.85 70.04 ± 29.66 100.00 ± 0.00 99.20 ± 0.16 32.95 ± 26.11 30.56 ± 14.81 100.00 ± 0.00
8 87.20 ± 3.06 97.55 ± 5.29 97.82 ± 3.43 99.67 ± 0.31 99.63 ± 0.48 99.03 ± 2.20 100.00 ± 0.00 99.95 ± 0.10
9 18.28 ± 9.91 43.79 ± 29.36 79.96 ± 28.87 92.38 ± 5.25 100.00 ± 0.00 12.05 ± 5.46 45.58 ± 17.69 86.67 ± 15.15

10 50.16 ± 8.78 80.41 ± 12.34 87.96 ± 7.00 98.74 ± 0.81 97.29 ± 1.48 70.97 ± 13.57 84.06 ± 8.54 97.89 ± 1.26
11 52.03 ± 4.62 80.90 ± 8.31 86.75 ± 6.39 99.16 ± 0.26 99.22 ± 0.46 73.04 ± 5.70 83.82 ± 9.71 99.49 ± 0.49
12 34.82 ± 10.77 74.71 ± 27.55 85.83 ± 5.92 97.47 ± 1.17 97.95 ± 0.91 63.04 ± 15.42 81.08 ± 12.23 98.94 ± 0.93
13 76.72 ± 5.64 92.72 ± 12.56 99.50 ± 1.49 98.02 ± 1.64 99.45 ± 0.01 92.24 ± 7.71 93.20 ± 8.57 99.78 ± 0.44
14 79.21 ± 5.25 91.99 ± 4.60 93.93 ± 3.81 99.32 ± 0.44 99.80 ± 0.13 93.12 ± 4.56 93.90 ± 4.10 99.96 ± 0.04
15 48.80 ± 20.15 69.33 ± 35.62 93.06 ± 4.79 97.64 ± 1.58 98.01 ± 0.02 67.51 ± 12.90 89.00 ± 13.52 98.64 ± 1.87
16 98.50 ± 2.57 80.07 ± 7.38 95.68 ± 3.51 91.02 ± 4.07 99.04 ± 0.12 81.27 ± 12.08 83.83 ± 6,76 97.10 ± 2.36

OA (%) 55.98 ± 2.75 81.89 ± 6.27 88.63 ± 3.98 98.44 ± 0.16 98.85 ± 0.18 73.39 ± 2.88 84.13 ± 1.19 99.23 ± 0.19
AA (%) 53.64 ± 3.45 76.00 ± 11.45 87.79 ± 8.56 97.58 ± 0.82 98.76 ± 0.18 68.91 ± 4.26 80.72 ± 4.33 98.27 ± 1.03

KPP (×100) 48.72 ± 3.32 79.19 ± 7.37 86.97 ± 4.63 98.23 ± 0.18 98.69 ± 0.21 69.53 ± 3.27 81.85 ± 1.39 99.12 ± 0.21

Table 5. Classification performance of different methods on the Pavia University dataset.

Class SVM FDSSC SSRN HybridSN CGCNN DBMA DBDA MSSCA

1 85.83 ± 7.24 91.37 ± 5.38 91.80 ± 7.91 95.13 ± 1.81 98.49 ± 0.81 91.41 ± 2.88 93.76 ± 2.83 99.10 ± 0.60
2 73.97 ± 4.12 94.37 ± 4.01 86.40 ± 4.03 99.16 ± 0.49 98.92 ± 0.40 89.02 ± 5.77 96.20 ± 2.11 99.96 ± 0.03
3 31.14 ± 8.49 59.20 ± 18.76 59.59 ± 20.11 88.73 ± 4.90 87.73 ± 5.44 65.63 ± 23.57 81.67 ± 9.26 95.76 ± 2.94
4 70.16 ± 25.62 97.69 ± 1.72 98.38 ± 3.37 98.18 ± 0.77 97.11 ± 1.26 94.38 ± 4.47 98.22 ± 1.39 97.23 ± 1.62
5 97.27 ± 2.47 99.40 ± 0.75 98.76 ± 1.58 98.98 ± 0.93 100.00 ± 0.00 99.44 ± 0.94 98.17 ± 2.50 99.95 ± 0.09
6 45.73 ± 22.56 86.06 ± 9.10 77.77 ± 8.00 98.66 ± 0.96 99.55 ± 0.69 74.11 ± 11.22 90.50 ± 8.77 99.95 ± 0.07
7 43.20 ± 7.05 90.68 ± 7.72 65.61 ± 25.35 96.64 ± 2.37 99.11 ± 0.64 66.72 ± 14.16 85.39 ± 15.01 99.85 ± 0.27
8 64.45 ± 9.43 68.03 ± 20.33 74.50 ± 14.25 90.69 ± 2.72 97.77 ± 1.93 66.76 ± 16.60 79.61 ± 9.58 98.13 ± 1.98
9 99.90 ± 0.11 96.91 ± 1.91 98.28 ± 1.61 97.21 ± 1.86 99.98 ± 0.04 90.27 ± 11.33 94.35 ± 3.64 99.74 ± 0.16

OA (%) 69.86 ± 2.21 88.46 ± 4.24 82.10 ± 3.01 97.01 ± 0.69 98.21 ± 0.13 83.45 ± 3.58 92.10 ± 1.12 99.26 ± 0.18
AA (%) 67.96 ± 5.27 87.08 ± 4.55 83.45 ± 2.55 95.93 ± 0.87 97.63 ± 0.26 81.97 ± 4.60 90.88 ± 1.41 98.85 ± 0.30

KPP (×100) 58.26 ± 3.78 84.61 ± 5.83 75.88 ± 4.07 96.02 ± 0.92 97.63 ± 0.18 77.85 ± 4.93 89.52 ± 1.45 99.02 ± 0.24
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Table 6. Classification performance of different methods on the Salinas dataset.

Class SVM FDSSC SSRN HybridSN CGCNN DBMA DBDA MSSCA

1 92.70 ± 7.26 96.81 ± 9.56 96.51 ± 6.29 99.79 ± 0.24 99.97 ± 0.04 97.16 ± 8.39 95.67 ± 8.61 99.98 ± 0.02
2 98.61 ± 1.01 99.89 ± 0.29 92.61 ± 12.10 99.97 ± 0.02 99.12 ± 0.82 98.48 ± 2.16 99.99 ± 0.02 100.00 ± 0.00
3 75.17 ± 7.04 93.61 ± 4.44 92.84 ± 7.88 99.96 ± 0.04 66.86 ± 3.93 95.16 ± 2.74 97.65 ± 1.25 100.00 ± 0.00
4 96.79 ± 0.99 95.65 ± 3.38 95.55 ± 3.39 98.35 ± 1.05 99.79 ± 0.18 85.27 ± 4.98 90.16 ± 3.58 99.88 ± 0.12
5 91.04 ± 5.51 95.99 ± 6.43 89.26 ± 8.50 99.93 ± 0.07 95.67 ± 4.80 94.43 ± 6.80 92.90 ± 6.88 98.28 ± 1.81
6 99.87 ± 0.28 99.99 ± 1.62 99.91 ± 0.15 99.93 ± 0.10 99.76 ± 0.30 99.23 ± 1.14 99.88 ± 0.23 99.96 ± 0.07
7 94.30 ± 2.30 99.27 ± 0.84 98.84 ± 2.19 100.00 ± 0.00 99.91 ± 0.05 95.84 ± 5.05 99.71 ± 0.21 99.98 ± 0.03

8 65.65 ± 3.55 84.04 ± 6.33 76.61 ± 8.99 98.81 ± 0.88 91.43 ± 3.59 81.52 ± 8.59 81.60 ± 9.69 99.12 ± 0.81
9 95.03 ± 6.16 98.88 ± 0.76 98.73 ± 1.33 99.96 ± 0.02 99.48 ± 0.31 98.53 ± 1.52 97.80 ± 1.98 100.00 ± 0.00
10 80.87 ± 11.45 95.96 ± 2.68 94.79 ± 3.45 98.96 ± 1.06 93.76 ± 2.90 92.15 ± 5.03 94.29 ± 2.99 97.03 ± 2.46

11 58.82 ± 27.59 100.00 ± 0.00 93.23 ± 4.40 99.21 ± 1.05 97.50 ± 2.17 80.78 ± 17.94 93.45 ± 4.67 99.87 ± 0.18
12 86.41 ± 10.28 99.00 ± 1.35 94.51 ± 7.94 99.81 ± 0.33 99.82 ± 0.31 97.75 ± 2.10 98.56 ± 1.31 100.00 ± 0.00
13 81.66 ± 11.84 98.24 ± 2.60 92.66 ± 7.85 98.77 ± 2.28 98.28 ± 1.79 86.76 ± 16.37 99.53 ± 0.24 99.93 ± 0.09

14 80.08 ± 14.32 94.24 ± 4.79 97.01 ± 1.50 99.60 ± 0.45 98.10 ± 2.05 89.69 ± 7.44 95.76 ± 1.86 98.70 ± 0.83
15 48.14 ± 24.59 77.43 ± 9.62 69.53 ± 10.99 97.88 ± 2.67 75.90 ± 12.45 75.30 ± 10.42 80.91 ± 5.96 99.33 ± 0.41
16 88.65 ± 15.52 99.66 ± 0.69 99.02 ± 1.39 100.00 ± 0.00 96.12 ± 0.64 96.39 ± 5.84 99.11 ± 1.73 99.55 ± 0.55

OA (%) 80.50 ± 2.68 91.23 ± 1.94 86.85 ± 1.98 99.27 ± 0.29 92.78 ± 1.20 88.29 ± 2.03 91.41 ± 2.86 99.41 ± 0.32
AA (%) 83.36 ± 5.23 94.77 ± 1.43 92.60 ± 1.20 99.43 ± 0.19 94.47 ± 0.56 91.53 ± 2.09 94.81 ± 0.91 99.48 ± 0.25

KPP (×100) 78.21 ± 3.06 90.23 ± 2.18 85.33 ± 2.20 99.19 ± 0.32 91.94 ± 1.36 86.96 ± 2.29 90.41 ± 3.22 99.34 ± 0.35
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As shown in Figure 8, our proposed method has fewer misclassification points, which
is more consistent with the ground truth. In contrast, the traditional SVM method produces
a lot of salt and pepper noise, resulting in many misclassifications. By combining spectral
and coordinate attention, our network focuses on effective information, resulting in a
significant reduction in the error rate and smoother classification maps.

Similar to the results on the Indian Pines dataset, our proposed method achieves
the best classification results on the Pavia University dataset compared to other methods,
demonstrating the stability of our network. As shown in Table 5, our proposed method
outperforms current state-of-the-art methods, such as CGCNN, DBMA, and DBDA, by
improving OA by 1.05%, 15.81%, and 7.16%, respectively. Moreover, our proposed MSSCA
method achieves an accuracy of 95% in each category, indicating its effectiveness.

Figure 9 shows that our proposed MSSCA method has fewer misclassification points
on the Pavia University dataset, which is more consistent with the ground truth compared
to CGCNN, which has shown good performance on this dataset.

Table 6 presents the classification results on the Salinas dataset, where our proposed
MSSCA method achieves the best overall accuracy (OA), average accuracy (AA), and
Kappa statistics (KPP), with an OA accuracy of 99.41%. Moreover, our proposed method
achieves almost the best classification results in each category.
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The classification results of different methods on the Salinas dataset are shown in
Figure 10, where our proposed MSSCA method outperforms other methods in misclassified
categories, such as Lettuce_romaine_7 wk and Vinyard_untrained. The classification map
generated by our method is more consistent with the ground truth, and the class boundaries
are clearer.

3.4. Ablation Study

To evaluate the effectiveness of each module in the MSSCA architecture, we conducted
a set of ablation experiments by splitting and combining different network modules. Table 7
presents the classification accuracy of different modules. As can be seen from the table,
using only the SE or CA module results in lower OA compared to when both modules
are combined. This indicates that the addition of both SE and CA modules improves the
classification accuracy. The SE module focuses on the importance of channels, while the CA
module focuses on the importance of spatial locations. By paying attention to both channel
and coordinate information, the model can more effectively utilize relevant information,
resulting in improved classification results. Moreover, incorporating the PCN module
improves classification accuracy by providing more discriminative input and optimizing
network feature modules.

Table 7. Ablation study on attention modules (OA%).

Dataset CA SE CA + SE PCN + SE + CA

Indian Pines 98.19 ± 0.17 98.18 ± 0.84 99.15 ± 0.13 99.23 ± 0.19
Pavia University 98.09 ± 0.40 98.17 ± 0.24 98.52 ± 0.18 99.26 ± 0.18

Salinas 97.79 ± 0.26 98.20 ± 0.73 98.60 ± 0.47 99.41 ± 0.32

3.5. Training Sample Ratio

As is well known, deep learning algorithms heavily depend on large amounts of high-
quality labeled data, and the network performance improves as the quantity of labeled data
increases. In this section, we analyze the comparative results of different training ratios.
Figure 11 presents the experimental results. For the Indian Pines dataset, we use 0.5%, 1%,
3%, 5%, and 10% samples as the training sets. For PU and SV datasets, we use 0.1%, 0.5%,
1%, 5%, and 10%, respectively.
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As shown in Figure 11a–c, the classification accuracy of all three datasets increases
as the training ratio increases. With sufficient training samples, almost perfect classifica-
tion results can be achieved. Moreover, as the training ratio increases, the difference in
classification accuracy between different methods becomes smaller. Notably, even with a
small training ratio, our proposed MSSCA method outperforms other comparison methods.
The performance of our proposed method exhibits a steady growth trend across all three
datasets, indicating its effectiveness and stability.

3.6. Running Time

This section presents the training and testing times of different methods on different
datasets, as shown in Tables 8–10. Since the goal of HSI classification is to assign a specific
label to each pixel, we consider the time taken to classify all pixels as the test time. From
the tables, we can see that SVM has a short training time, but it can only extract shallow
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features and has poor classification performance. Existing deep learning methods such as
DBMA and DBDA perform well but have long testing times. In contrast, our proposed
MSSCA method not only achieves outstanding classification performance, but also has
a short testing time and low computational cost. This is because we use a lightweight
attention mechanism, which reduces the computational cost while improving performance.

Table 8. Running time (s) of different methods on the Indian Pines dataset.

Dataset Methods Train Time Test Time

Indian Pines

SVM 44.50 15.43
FDSSC 129.39 205.27
SSRN 77.23 204.72

HybridSN 239.82 6.89
CGCNN 108.23 1.72
DBMA 107.87 59.60
DBDA 100.107 28.35

MSSCA 52.93 0.52

Table 9. Running time (s) of different methods on the Pavia University dataset.

Dataset Methods Train Time Test Time

Pavia University

SVM 16.42 53.05
FDSSC 81.14 171.25
SSRN 132.98 10.11

HybridSN 97.12 52.60
CGCNN 679.44 6.69
DBMA 146.28 201.41
DBDA 58.81 115.80

MSSCA 99.65 8.93

Table 10. Running time (s) of different methods on the Salinas dataset.

Dataset Methods Train Time Test Time

Salinas

SVM 9.85 3.82
FDSSC 129.39 205.27
SSRN 77.23 204.72

HybridSN 375.15 46.48
CGCNN 340.81 4.69
DBMA 84.12 323.03
DBDA 62.29 161.02

MSSCA 69.49 3.41

4. Conclusions

In this paper, we propose an effective deep learning method called MSSCA for HSI
classification. In MSSCA, to reduce the computational burden caused by the dot-product
operation, the down-sampling operation is introduced into MHSA, and the novel M-MHSA
is proposed to depict the long-range dependencies of HSI pixels. On this basis, we integrate
SE and CA networks to effectively leverage spectral and spatial coordinate information,
which enhances network performance and classification results without compromising
network complexity or computational costs. Three classical datasets, including Indian Pines,
Pavia University, and Salinas, are used to evaluate the proposed method. The proposed
method’s performance was validated by a performance comparison with some classical
methods, such as SSRN, HybridSN, and DBDA. The proposed MSSCA method achieved an
overall accuracy of 99.96% for Indian Pines datasets, 99.26% for Pavia University datasets,
and 99.41% for Salinas datasets, outperforming most existing HSI classification methods,
highlighting the effectiveness and efficiency of our proposed method in HSI classification.
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In the future, we will continue to explore more lightweight and effective classification
frameworks to HSI classification under complex conditions.
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