
Citation: Bischoff, P.; Kaas, A.;

Schuster, C.; Härtling, T.; Peuker, U.

Fast and Efficient Evaluation of the

Mass Composition of Shredded

Electrodes from Lithium-Ion Batteries

Using 2D Imaging. J. Imaging 2023, 9,

135. https://doi.org/10.3390/

jimaging9070135

Academic Editors: Bin Fan and

Wenqi Ren

Received: 18 May 2023

Revised: 21 June 2023

Accepted: 3 July 2023

Published: 5 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

Fast and Efficient Evaluation of the Mass Composition of
Shredded Electrodes from Lithium-Ion Batteries Using
2D Imaging
Peter Bischoff 1,2,* , Alexandra Kaas 3 , Christiane Schuster 1, Thomas Härtling 1,2,4 and Urs Peuker 3

1 Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Str. 2,
01109 Dresden, Germany; christiane.schuster@ikts.fraunhofer.de (C.S.);
thomas.haertling@ikts.fraunhofer.de (T.H.)

2 Institute of Solid State Electronics, Technische Universität Dresden, 01069 Dresden, Germany
3 Institute of Mechanical Process Engineering and Mineral Processing, TU Bergakademie Freiberg,

09599 Freiberg, Germany; alexandra.kaas@mvtat.tu-freiberg.de (A.K.); urs.peuker@mvtat.tu-freiberg.de (U.P.)
4 Fraunhofer Portugal Center for Smart Agriculture and Water Management—AWAM,

Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal
* Correspondence: peter.bischoff@ikts.fraunhofer.de

Abstract: With the increasing number of electrical devices, especially electric vehicles, the need for
efficient recycling processes of electric components is on the rise. Mechanical recycling of lithium-ion
batteries includes the comminution of the electrodes and sorting the particle mixtures to achieve the
highest possible purities of the individual material components (e.g., copper and aluminum). An
important part of recycling is the quantitative determination of the yield and recovery rate, which
is required to adapt the processes to different feed materials. Since this is usually done by sorting
individual particles manually before determining the mass of each material, we developed a novel
method for automating this evaluation process. The method is based on detecting the different
material particles in images based on simple thresholding techniques and analyzing the correlation
of the area of each material in the field of view to the mass in the previously prepared samples. This
can then be applied to further samples to determine their mass composition. Using this automated
method, the process is accelerated, the accuracy is improved compared to a human operator, and the
cost of the evaluation process is reduced.

Keywords: image segmentation; recycling; separation process; mass composition

1. Introduction

The production of lithium-ion batteries (LIB) has increased during the last years and is
continuing to do so. One reason for this is the rising number of electric vehicles (EV), which
is predicted to go from 11 Mio in 2020 to approximately 145–230 Mio in 2030 [1]. Therefore,
the return flow of LIBs is estimated to be around 1.5 Mio t per year by 2040 [2]. This
increasing number is related to both the rising number of EVs and the estimated lifespan of
battery packs, i.e., 4.5–14.5 years depending on the operation conditions [3,4]. One challenge
with LIBs is the availability of critical and geostrategically important materials such as
cobalt, nickel, lithium, and graphite [5,6]. This highlights the importance of recycling LIBs
and ensuring a closed material loop to reduce the further exploitation of resources.

Recycling battery cells requires the recycled materials to be high purity to achieve
a constantly high battery performance. The graphite used in LIB has a purity of up to
99.9% [7]. Impurities in the recycling products cause decreased ion transport in battery
cells produced from the recycled material. Therefore, it is necessary to monitor and control
the separation processes.

Introducing sensors into separation processes enables the outcome to be controlled,
which optimizes the separation result in situ [8]. Different sensor systems for mechanical
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recycling were reviewed by Kroell et al. [9]. Optical sensors show a big advantage due
to the possibility of large scale applications, low investment and operation costs, and low
health risks compared to X-ray [8,10]. Kroell et al. concluded that RGB and hyperspectral
sensors are most suited for material flow characterization. They are chiefly applied to
differentiate materials and are mostly used for glass, paper, and metal detection in the
recycling industry [9,11].

In battery recycling processes, RGB sensors are used to identify the components
of disassembled cells: the separator, cathode, and anode [12]. The crushed battery cell
products, especially the coarse fraction, need further separation in the housing, separator,
and delaminated current collector foils. A combination of metal sensors and RGB cameras
is used to purify the separation products after air-flow separation [13,14] using a blow-out
system. Moreover, a system of only RGB sensors is used to detect copper and aluminum
from the housing fraction and subsequently further separate those components [15,16].

Determining the mass composition before and after separation is critical for a quanti-
tative description of separation products. Currently, the characterization of the separation
products of battery recycling is performed by manual sorting [14,15,17–22]. This procedure
is time consuming and labor and cost intensive [16,23]. Being able to measure the mass
composition of samples of mixed materials inline would significantly improve the efficiency
and facilitate rational decision-making during the separation process.

Even though this is a problem that could, for example, be solved using modern
machine learning and, especially, deep learning technology, those approaches do not only
require expert knowledge but are also time consuming to set up and can still be prone to
errors. In combination with the hardware required for the training and inference of such
models, this can result in cost-intensive projects.

Therefore, this paper aims to calculate overall the mass composition (mass of alu-
minum particles vs. mass of copper particles) of mechanically processed LIB material
from continuously collectible image data using simple computer vision techniques to
detect individual particles. This contributes to maximizing the efficiency and lowering
the cost of analyzing and validating separation processes. The introduction of the devel-
oped system as an inline measurement tool allows for the quantification of the respective
separation process.

2. Materials and Methods
2.1. Material Preprocessing

The battery material in our work originated from automotive cells. Our experiments
were performed on the material of a prismatic cell (Samsung SDI, 2019), which was sub-
jected to multiple charging and discharging cycles. More details on the original cell are
described by Werner et al. [24].

For the first comminution a low-speed axial-gab rotary shear (0.4 m/s) (developed
and built by TU Freiberg 1994) was used to open up the battery [17,25,26]. Two types of
comminution tools were used: a V-shaped shear and a typical rotor shear. Subsequently,
a one-shaft rotary shear, hereinafter, a granulator (MeWa Andritz Universal Granulator
UG 300; Hechingen, Germany) with a 20 mm grid was used to determine the particle size
in the first process stage. More detailed information about the machines in the first process
stage can be found in [16,17,25,27].

The shredded cell was then dried for 14 days at 24 °C. To remove the released black
mass, the material was screened with a sieve size of 1 mm. In order to remove the separator
foil and the cell housing, the material was sorted in a 120° angle air classifier with a velocity
range of 0–19.04 m/s and nine stages. The separator foil was removed at 2.0 m/s and the
cell housing at 4.7 m/s.

A high-speed impact mill (Turborotor Görgens G-35S, Dormagen, Germany) was
applied for the second comminution. After the second screening at 0.5 mm, the remaining
black mass was removed. Particles larger than 0.5 mm formed the material used for this
paper. Figure 1 shows a mixture of those aluminum and copper particles.
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Figure 1. Aluminum and copper particles from a battery cell after processing.

2.2. Experimental Setup

To achieve a cost-efficient setup compared to manual sorting, we used a single-board
computer (Raspberry Pi 4B) in combination with the appropriate camera module (V2) with
a combined cost of less than EUR 150. The camera was mounted facing downwards onto
the material, covering a field of view (FOV) of approximately 50 mm by 60 mm as shown
in Figure 2. The focal length of the camera was 3.04 mm and the focal ratio was 2.0. The
built-in sensor (Sony IMX219) had an area of 3.68 mm by 2.76 mm with a physical pixel
size of 1.12 µm by 1.12 µm (3280 by 2464 pixels). The working distance LW (the distance
between the camera lens and the background on which the particles were placed) was
88.5 mm. The resulting feature resolution RF (the smallest feature, which was reliably
resolved by spanning over at least four pixels) was 0.08 mm.

The material samples being analyzed were placed on a bright paper background with
the illumination set to avoid large shadows and dark areas as much as possible. We did not
use a specialized, external light source but only ceiling lighting and asserted that neither
reflections from the surrounding walls nor through sunlight would affect the image quality.
The captured images were intermediately saved in the PNG format with a pixel bit depth
of 24 bits. The processing was performed in a Python script to analyze the material mass.
The analysis is described in more detail in the following sections.

Figure 2. Schematic drawing of our experimental setup, displaying the Raspberry Pi (a), the camera
module (b), and the particles placed on the background (c).

Additional approaches we considered for the material specific segmentation of mixed
samples were transfer-learning a pretrained deep learning model designed for instance-
segmentation problems (mask R-CNN [28,29]) and using a conventional clustering al-
gorithm (K-means clustering) to assign the pixels to the different material classes after
removing the background. Even though we had a relatively large dataset with approx-
imately 500 images with multiple particles each, the deep learning approach failed to
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accurately segment and classify our particles. We suspect that this was due to the high
number of particles (>100) per image in contrast to a relatively small number of objects of
each class in the original dataset (“Common objects in Context”, COCO). Therefore, we do
not consider deep learning approaches further in this paper.

2.3. Calibration from Pure Material Samples

To calibrate our readings and enable the material mass analysis of mixed-material
samples (in our case aluminum and copper particles), we first analyzed samples of pure
materials, either aluminum or copper. We manually sorted the preprocessed material to
achieve pure samples. Both materials were divided into small batches of particles with a
cumulative weight less than one gram. Each batch was weighed individually on a precision
balance before being placed underneath the camera setup and roughly distributed to avoid
the overlap of multiple particles.

The sample particles were segmented from the background using different color
spaces depending on the material under consideration. We found that aluminum is best
segmentable in images using the YUV color model, which displays colors based on their
luminosity (Y) and their chrominance (U and V). The YUV channels can be retrieved from
the RGB channels using the following conversion, which we adopted from ImageJ [30]: y

u
v

 =

 0.299 0.587 0.114
−0.169 −0.332 0.5

0.5 −0.419 −0.0813

 ·
 r

g
b

+

 0
128
128

 . (1)

We manually identified thresholds for the YUV channels using ImageJ. The threshold
was set to the following condition:

3 < Y < 187∧ 126 < U < 136∧ 119 < V < 133. (2)

The resulting binary mask was further processed using morphological closing with a
circular neighborhood of six pixels followed by a morphological opening with a circular
neighborhood of twelve pixels. Finally, the correlation between the foreground pixels
in the binary mask and the mass of the material samples was analyzed using a linear
regression model.

The copper particles, on the other hand, were more easily distinguished from the back-
ground using the HSV color space (hue, saturation, value). The conversion from an RGB to
HSV color space was implemented in scikit-image [31]. We also set the thresholds through
manual experimentation in ImageJ and found the following expression to work well:

(H < 30∨ H > 234) ∧ S < 46∧V < 255. (3)

We did not follow this thresholding by morphological operations in the case of the
copper particles. Similar to the regression of the aluminum particles, we also used a linear
regression model here to determine the correlation between the foreground area and the
mass of the copper particles.

2.4. Validation Using Mixed-Material Samples with Known Mass Distribution

Before applying this method in practical environments, the correlation between the
segmented areas and the mass of the respective particles had to be validated using samples
with mixed materials. We, therefore, prepared additional samples by firstly sorting the
materials and preparing pure samples and then documenting their mass. The samples
were then interspersed and finally placed on the paper background with the exact same
camera setup as described above. The images were taken under the same illumination and
segmented twice: once in the YUV color space to find the mass of the aluminum particles
and once in the HSV color space to find the mass of the copper particles.
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The result of the copper segmentation from the background can be seen in Figure 3 in
a mixed-material sample. The yellow area in the segmentation mask in Figure 3b marks
the copper particles in the input image in Figure 3a.

(a) (b)
Figure 3. (a) Image of the mixed-material samples. (b) Resulting segmentation mask for the copper
particles in the sample after color thresholding in the HSV color space. The segmentation mask
clearly shows the copper particles. Due to irregular shapes and light reflections, the segmentation is
superimposed with noise.

Subsequent to the segmentation and determination of the foreground area for both
materials, the mass of both components was computed using the linear regression coeffi-
cients observed in the previous experiment via the calibration on pure material samples.
Finally, the approximated mass of each material in each image was compared to the
weighed masses.

2.5. Transformation from the FOV to Provide Setup-Independent Measurements

The linear regression coefficients for the correlation between the segmented area of
one material and its mass were dependent on the setup, as the area in the image increased
when the working distance LW decreased.

Therefore, we also validated our method by calculating an equivalent spatial area
of all particles and analyzed the correlation of that equivalent area to the particles mass.
Any object size measured in the images can be converted to dimensions in the FOV using
the relationship between focal length (LF) and working distance (LW). Given the size of a
single pixel (sP) on the sensor, a lateral length in the FOV can be calculated by:

dFOV =
sP · nP

LF
· LW . (4)

where nP denotes the number of pixels over which an object extends. In our experiments,
we implemented the transformation from the area measured in number of pixels to the
spatial area (in mm2) by computing the radius of a circle with an area that is equivalent
to the area covered by the segmented foreground pixels. This radius can be converted to
millimeters, which leads to the absolute area of a circle with the equivalent radius in mm2.

LW in our setup is (88.5 ± 0.5) mm, the focal length of the camera LF according to
the data sheet is 3.04 mm, and the physical size of an individual pixel on the sensor sP is
1.12 µm in both dimensions. LF and sP are taken from the camera module’s data sheet,
which does not provide an uncertainty, but we assumed they were one to two orders of
magnitude smaller than the uncertainty of LW .
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3. Results and Discussion
3.1. Evaluating Mass from 2D Images for Pure Material Samples

To evaluate whether our proposed method is suitable to estimate the actual mass of
electrode particles from LIB in the recycling process, different experiments were performed.
Our very first approach, which is not described in this paper, was imaging individual
particles and correlating the segmented foreground area to their mass. This led to an
insufficient correlation (r = 0.79), likely due to the segmentation error, which was large in
relation to the area of individual particles.

In our first relevant experiment, copper and aluminum particles were tested indi-
vidually but with a larger number of particles in each sample. We found that the mass
and projected area in 2D images clearly correlated even if the particles were not regularly
shaped. The results for different samples are depicted in Figure 4. Here, we show the
actual mass of the material samples determined by weighing versus the formal number of
foreground pixels in relation to the overall number of pixels in our images. The diagram
clearly indicates the correlation between the two variables. We prepared 10 pure samples
of copper particles and 14 samples of aluminum particles. The linear regression analysis
shows a steeper slope for the copper samples compared to the aluminum samples (Table 1).
This was expected as the density of copper (8.92 g/cm3) is roughly 3.3 times higher than
the density of aluminum (2.7 g/cm3). Since the offset of the intercept is relatively small
compared to the slope, this method seems to be well extrapolatable. To receive the most
accurate results, this method should be calibrated in a sensible working range.

Small deviations can occur due to the complex shape of the particles. The compaction
of the particles results in a different roughness of the surface of the two materials. Due to
different orientations of surface facets, light reflections can be different for each particle and
even for different surface sections of one particle. This can lead to different identification of
the particle edges. Light reflections on the background can also falsely count in the relative
proportion of foreground pixels. The harsh pretreatment process, which compacts and
folds the foils into compact particles, generates a certain distribution of the internal porosity.
This also leads to some fluctuations in the relation of particle size and mass. However, as
long as the pretreatment of the calibrated material and, finally, the measured material is
identical, this error is assumed to be minor.

Figure 4. Correlation between the relative amount of foreground pixels in the segmented images and
the mass of the respective particles.

Table 1. Linear regression analysis of the data shown in Figure 4.

Material n Slope Intercept R2 Pearson’s r

Aluminum 14 1151.29 −1.4252 0.9684 0.98407
Copper 10 3980.25 −31.775 0.9772 0.98853
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3.2. Detecting and Analyzing Mixed-Material Samples

With our second experiment, we tested the accuracy of our method when applied to
real samples of unseparated mixed materials. Applying the color thresholding to samples
of mixed materials can lead to unexpected results as the surface of the particles is not
homogeneous in color, which can lead to wrongly segmented masks. As described in the
previous chapter, we compared different methods to find the most accurate separation of
materials. As seen in Table 2, there were significant differences in how well the approxi-
mated masses correlated with the real mass. The clustering approach did not achieve a
sufficient correlation. The thresholding method worked well with a correlation coefficient
of 0.984 for aluminum and 0.997 for copper. Since the mass of the overall sample was easy
to determine (even inline), a third approach was to only compute the mass of one material
component from the image analysis, weigh the entire sample, and subtract the computed
mass to obtain the mass of the second material component (cumulative mass). This method
worked slightly better for the copper component, so we continued using this approach for
the copper particles.

Table 2. Pearson’s correlation r for each of the tested methods with the respective mass of both
materials with the greatest correlation highlighted for each material.

Material Clustering Thresholding Cumulative Mass

Aluminum 0.6512 0.98431 0.90318
Copper 0.8345 0.99718 0.99781

In Figure 5, we display the true mass of both materials from our four mixed samples
versus the approximated mass with the formerly described respective best method. For
a perfect approximation, all data points should be on the diagonal line. For our samples,
they were distributed around the line with relatively small uncertainties (compare Table 3).
Table 3 also shows that when averaging the results of all samples, we achieved relative
uncertainties lower than 2% for both materials. This is not only better than the human
performance we usually observe (see Section 3.4) but also requires only a small fraction of
the time after setting up the method.

Figure 5. Weighed mass of both materials in the sample versus the approximated mass determined
by weighing the cumulative mass and subtracting the mass of aluminum approximated using
our method.
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Table 3. Weighed masses m, approximated masses m′, and relative uncertainty δ of mixed samples of
copper and aluminum from images determined using the segmentation of aluminum and subtraction
from overall mass.

Sample mAl m′
Al δAl mCu m′

Cu δCu
(#) (mg) (mg) (%) (mg) (mg) (%)

1 165.0 150.16 8.99 101.6 116.44 14.6
2 64.1 61.96 3.35 169.8 171.94 1.26
3 97.8 97.65 0.15 251.6 251.75 0.059
4 175.0 183.19 4.68 246.4 238.2 3.33

Total 501.9 492.96 1.78 769.4 778.33 1.16

3.3. Setup-Independent Results

As described in Section 2.5, the previously computed regression coefficients (Table 1)
were bound to the exact setup we used. To make this method independent of the setup or
specific parameters (e.g., the working distance LW of the imaging system), we transferred
the area of particles measured in pixels into spatial areas using Equation (4) to compute a
radius (in mm), which was equivalent to the radius (in pixel) of a circle with the same area
as all foreground pixels. This approach increased the error since additional measurements
with uncertainty were introduced (especially the working distance LW). We found the
correlation of the area in the field of view to be 0.952 for aluminum and 0.977 for copper
with pure material samples, which was not significantly lower than the correlation using
setup-dependent particle measurements in pixels. Those results suggest that the method
can also be used to compare measurements from different setups as long as it is possible to
average over multiple samples.

3.4. Comparison to the Existing Method

According to our experience, a skilled person is able to determine the mass composi-
tion with an accuracy of around 94% in roughly 65 h of work for 500 g of mixed particles.
Adapting the shown method requires hardware costs of less than EUR 150 for a Rasp-
berry Pi including the camera module. The hardware costs amortize after the first sample
analysis. The human performance is exceeded by the system with an accuracy of >98%.
This shows that a cost-effective, reliable, and quick method has been identified to analyze
battery materials after recycling. The method offers a faster way to evaluate and adjust the
separation process.

4. Conclusions

The evaluation of separation processes in recycling, in particular, the mass determi-
nation of the separated material streams is currently performed through manual sample
separation. We introduced a method that enables the fast and accurate approximation of
the mass composition of samples from aluminum and copper particles as they are found in
the recycling process of lithium-ion batteries. The method can be automated after initial
calibration and, therefore, is an important contribution towards making recycling pro-
cesses and the corresponding performance evaluation more efficient. We showed that it is
possible to segment the processed material with simple thresholding methods, providing
sufficiently accurate information about the projected area of the particles present in an
image. Furthermore, we showed that the segmented area, even though being impacted by
both false positive and false negative segmented areas, can clearly be correlated to the mass
of the particles, which enabled us to quantify the previous separation process with a higher
accuracy than through manual sorting.

Since the material samples in the recycling process can differ from the ones we have
shown, we also tested our segmentation method with different thresholds on the material
from a battery cell with a different cathode material (Li-NCA instead of Li-NMC) and a
different thickness of the individual layers, resulting in less reflective aluminum particles
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and a lower internal porosity after the compaction process. The correlation of the segmented
areas to the material mass is comparable to the results shown but the differing internal
porosity resulted in different regression parameters. Therefore, as expected, the method
has to be recalibrated but is applicable on different materials as long as the initial color
segmentation is sufficiently accurate. The introduced method enables users to save time
and manual work after the initial set up, thus cutting costs as the system quickly amortizes
and even exceeds the accuracy of manual sorting.

Both the illumination and the used background material could be optimized to im-
prove the contrast between the particles and between the particles and the background.
Additionally, the amount of false positive and false negative detected pixels could be
optimized by more advanced postprocessing steps and by fine-tuning the morphological
operations applied. Another important possible source of errors impacting the transforma-
tion from measurements in the images to spatial measurements is radial lens distortion.
For an industrial use case with high accuracy requirements, the lens distortion could be
determined and compensated mathematically. We plan to further investigate the effects of
such improvements on our method in the future.

With recent advances in the deep learning-based segmentation of arbitrary objects
(e.g., by Kirillov et al. [32] and Ke et al. [33]), these approaches could also be considered
as an alternative way of finding the projected area of particles in the images. As stated
previously, the state-of-the-art models we tested are not able to segment large quantities of
objects within a single image. We are also considering this specific instance segmentation
problem for further research, but we are focusing on the simpler approach of threshold
segmentation, which seems more suitable for production implementation.
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LIB Lithium-ion battery
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Li-NCA Lithium nickel cobalt aluminium oxides
Li-NMC Lithium nickel manganese cobalt oxides
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