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Abstract: Deep neural network (DNN) watermarking is a potential approach for protecting the intel-
lectual property rights of DNN models. Similar to classical watermarking techniques for multimedia
content, the requirements for DNN watermarking include capacity, robustness, transparency, and
other factors. Studies have focused on robustness against retraining and fine-tuning. However, less
important neurons in the DNN model may be pruned. Moreover, although the encoding approach
renders DNN watermarking robust against pruning attacks, the watermark is assumed to be em-
bedded only into the fully connected layer in the fine-tuning model. In this study, we extended the
method such that the model can be applied to any convolution layer of the DNN model and designed
a watermark detector based on a statistical analysis of the extracted weight parameters to evaluate
whether the model is watermarked. Using a nonfungible token mitigates the overwriting of the
watermark and enables checking when the DNN model with the watermark was created.

Keywords: DNN watermark; fine-tuning model; constant weight code; detection; non-fungible token

1. Introduction

Digital watermarking [1–4] is the technique of inserting messages into multimedia
content for various purposes, including copyright protection, authentication, access con-
trol, and broadcast monitoring. Depending on the message used as a watermark and the
method of recovery of the message from the host signal, watermarking techniques can be
categorized into two methods, namely multibit and zero-bit watermarking. In multibit
watermarking, the watermark is extracted as the bit string of the message, whereas the
presence of a hidden watermark is checked in the case of zero-bit watermarking. Multibit is
termed watermark extraction, and zero-bit is termed watermark detection. To extract a wa-
termark, determining the presence of a watermark in a given host signal is critical because
even if no watermark is embedded, a certain message is extracted. To prevent incorrect
extraction when no watermark is embedded, checking whether watermark information
exists in the host signal, that is, watermark detection, is critical.

1.1. Background

Improvements in computer performance and the generation of a large amount of data
have encouraged the development of deep learning technology. In deep neural networks
(DNNs), training the weight parameters requires considerable computational resources and
a large amount of data for target application. Expert tuning of several hyperparameters
is required for obtaining high performance. Therefore, such a DNN model should be the
intellectual property of the owner. The model should be protected against violations of
ownership and copyright. A promising approach is to embed a watermark into a DNN
model [5]. Originally, watermarking was used for secretly embedding information in
multimedia content. In watermark embedding, some forms of redundancy involved in
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the host signal is exploited such that the perceptual quality of the original content is not
degraded. A similar technique is used for DNN watermarking. However, a watermark
should be embedded without considerably degrading DNN model performance.

A DNN model consists of several network layers with a large number of weight
parameters. Several degrees of freedom exist in the choice of weights. The DNN water-
marking technique is based on a slight modification of the weight parameters sampled
from many candidates. DNN watermarking is classified into white box and black box
techniques based on permissions from the watermark extractor [6]. In the white box tech-
nique, internal parameters that directly correspond to the weights of the DNN models
are accessible. However, using the black box technique, only the final output of the DNN
model is observed. In this case, the watermark is extracted by querying a set of trigger
inputs to the DNN model.

In the white box technique, the weight parameters can be accessed not only by the
model owner but also by attackers, which renders protecting against external perturbations
difficult. Typically, an attacker steals a DNN model and modifies its parameters or structure
to fool watermark detection or to cause extraction failure of hidden messages. The primary
constraints for the attacker are that the modification of the model should not require more
resources than when training the DNN model from scratch, and the performance of the
attacked model should not decrease considerably.

An example of perturbation is model pruning in which redundant neurons are pruned
without compromising the performance of the DNN model. Initially, pruning is performed
to remove less important weight parameters from the DNN model, whose contribution to
the loss is small [7]. Attackers can prune some weight parameters to remove the watermark
signal. Therefore, robustness against pruning attacks is an important requirement for
the white box technique, which ensures that the watermarked parameters are relevant to
the original task. In [8], the watermark does not disappear, even after a pruning attack
that prunes 65% of the parameters. Li et al. [9] achieved robustness against 60% pruning
using the spread transform dither modulation watermarking technique. Zhao et al. [10]
embedded watermarks during the pruning process. Tondi et al. [11] proposed a white
box multibit watermarking algorithm that adopted the spread spectrum approach [3] to
spread watermarks over several weight parameters in a DNN model. Prior to training,
the amplitude of such parameters is controlled to be sufficiently large to survive retraining
and other modifications.

From the perspective of the communication channel, pruning can be considered to
be an erasure channel between the watermark transmitter and receiver. To prevent the
erasure of symbols, watermark information is encoded using a binary constant weight code
(CWC) [12,13] to ensure robustness against weight-level pruning attacks in [14]. In the
encoding method, the symbol “0” is stable even if the corresponding weight parameter are
pruned because the symbol is regarded as “0” when it is pruned or its absolute value is
small. By producing the bias of symbols “1” and “0” in the code word, high robustness can
be achieved against pruning attacks. However, the watermark is embedded only in the
fully connected (FC) layer in a fine-tuning model in the experiment. To adapt to any DNN
model, evaluating its performance quantitatively when a watermark is embedded in the
convolution layer is necessary. Furthermore, although the watermark detection approach
has been discussed, a statistical model of the watermarked weight parameters is yet to be
theoretically analyzed.

1.2. Our Contributions

In this study, we extend the embedding region of the conventional method [14] to any
layer of the DNN model. The convolutional neural network consints of multiple layers,
including convolution, pooling, dropout, and batch normalization. The suitability of these
types of networks for embedding watermarks was evaluated in terms of the transparency
and secrecy of the hidden messages and the performance of the original task assigned to
the DNN model.
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We theoretically analyzed the distribution of the weight parameters and designed
a detector to check for the presence of hidden watermarks for the DNN watermarking
method [14]. The initial weight parameters of the DNN model were assumed to be random
sequences following a uniform distribution, and their distributions were assumed to be
approximately equivalent, even after model training. Furthermore, the distribution of
the pretrained CNN models was approximately Gaussian. However, the distribution of
the weight parameters selected for embedding the watermark was biased according to
the CWC code word because the embedding process was performed during DNN model
training. In the proposed method, this bias is used to determine whether the selected
weight parameter is a CWC code word or a random sequence.

The contributions of this study are summarized as follows:

1. In the DNN model, a suitable layer for embedding the watermark is quantitatively
evaluated among multiple layers. Because the number of parameters for convolutional
operations is considerably larger than for other operations, the secrecy of the choice
of weight parameters can be controlled. Even if these weight parameters are modified
by embedding the watermark at the initial setup and are fixed during the training
phase, local minima whose model performance is close to other local minima can
be determined.

2. Under the assumption that the weight parameters are uniformly distributed or Gaus-
sian, if the watermark is encoded by CWC, the statistical bias of the weight parameters
extracted from the watermarked and nonwatermarked DNN models is formulated in
the analysis. Therefore, a simple threshold calculated from the statistical distribution
can be used to determine the presence of a hidden message.

3. To protect against overwriting attacks, we introduced a nonfungible token (NFT) in
the watermark. This token enables us to check the history of the hidden message; the
tokenId of the NFT is encoded in the CWC code word and embedded as a watermark.

1.3. Organization

The remainder of this paper is organized as follows. In Section 2, we provide an
overview of DNN watermarking and its threats. In Section 3, we review the conventional
method using the CWC. The proposed method is described in detail in Section 4, and the
experimental results are presented in Section 5. Finally, the conclusion to this paper is
presented in Section 6, and directions for future research are highlighted.

2. Preliminaries

The DNN watermarking is a method of embedding a digital watermark into a DNN
model to safeguard intellectual property rights and to prohibit unauthorized use or dis-
tribution. This section reviews the numerous DNN watermarking strategies and possible
attack scenarios.

2.1. DNN Watermarking

Various watermarking techniques have been devised to protect multimedia content,
such as audio, still images, video, and text. A watermark signal is inserted into the host
signal selected from the multimedia content using a secret key. In the embedding process,
the redundancy of the host signal can be mitigated without compromising perceptual
quality. This technique can be extended to DNN models. During the training phase,
the weight parameters are optimized to minimize the loss function to express the difference
between the predicted class labels and the ground truth labels. Because of the large number
of weight parameters in a DNN model, many degrees of freedom exist during parameter
tuning in the training phase. This phenomenon enabled inserting a watermark without
compromising DNN model performance.

Watermarking techniques should control the trade-off requirements of capacity, ro-
bustness, and fidelity [5]. For the DNN watermark, fidelity refers to the capability of the
watermarked DNN model to accomplish a task.
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In [8,15], a binary sequence of watermark information was embedded into the weight
parameters of the convolution layer of a DNN model. The weight parameters were updated
during each training process such that multiplication with a secret matrix approached the
watermark in parallel with the training of the model. Watermarks can be easily modified
by overwriting [16].

Generally, the weight parameters of the DNN model are initialized before the training
process and refined to reach a single local minimum after a series of epochs. With increased
parameters, a DNN model has many local minima with similar performances [17,18].
Based on these characteristics, a watermark is embedded into the initial values of the
selected weight parameters, and the selected parameters are not updated during the
training phase in the case of the method presented in [19]. As displayed in Figure 1,
the watermarking operation moves the initial point in the parameter space according to
the secret key. The embedding operation based on the constraint is the initial assignment
of weight parameters to a DNN model. The weight change at each epoch is corrected by
iteratively performing the operation.

Figure 1. Parameter space in a DNN model. The closest local minimum is selected in a training phase
from a given initial point.

2.2. Threats of DNN Watermark

Similar to multimedia watermarking, certain requirements exist for robustness against
potential attacks and indicate the possibility of extracting or detecting a watermark from
a perturbed version of the host signal. Attacks include signal processing operations such
as adding noise, filtering operations, and lossy compression. For DNN watermarking,
threats such as fine-tuning, network pruning, and watermark overwriting, which remove
watermarks while maintaining the performance of the DNN model, should be considered.

2.2.1. Transfer Learning and Fine-Tuning

Generally, training a DNN model is extremely expensive in terms of computational
resources and large training datasets. Therefore, DNN models that have already been
trained are used. To adapt the model pretrained for one task to a new task, the pretrained
layers were frozen and replaced with new FC layers. A novel DNN model was trained on
the new dataset for the trainable layers above the frozen layer.

If a watermark is embedded in an FC layer, then the watermark is completely removed
when the fine-tuning model is created because watermarked weight parameters are re-
placed, and the weight parameters in the unfrozen layers change. Therefore, the watermark
must be robust against the retraining of the unfrozen layer during fine-tuning.

2.2.2. Pruning DNN Model

Even if the DNN model is pretrained, considerable computational resources are
required to perform the desired task, and removing redundant weight parameters from the
DNN model can efficiently reduce the memory space and computation time [20]. Several
heuristic pruning methods have been developed to identify unimportant components in
DNN models and to retrain pruned models to recover model performance. Therefore,
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to create robust DNN watermarking, considering the effects of pruning and changes during
retraining are critical.

Pruning methods are roughly classified into three categories. The first method is
weight-level pruning, which sets less important weights to zero and does not change the
network structure. The other two methods are channel- and layer-level pruning, which
can change the network structure but require large computations to determine efficient
network modifications with limited performance loss. Therefore, in this study, we focused
on weight-level pruning in which after training, the DNN model is compressed by cutting
off parameters with absolute values smaller than the threshold value to zero. The threshold
value was set such that the accuracy of the model was not degraded considerably.

2.2.3. Overwriting

A new watermark can be embedded in a previously watermarked model to overwrite
the original watermark. In [5], overwriting was defined as an attack in which an additional
watermark is inserted into the model to render the original watermark undetectable.

Even if a watermark is detectable, a DNN model may contain two signals. In such
cases, disputes over the ownership of the model may occur. From a third-party perspective,
determining the originality of a watermark is difficult.

3. DNN Watermarking Robust against Pruning

Yasui et al. [14] investigated a channel-coding approach for protecting DNN water-
marking against pruning attacks. The k-bit watermark b is encoded into a binary code
word using CWC.

CWC C(α, L) with parameters α and L is a set of binary code words of length L,
all with weight α; CWC has a fixed Hamming weight. Therefore, the code word c =
(c0, c1, . . . , cL−1), ci ∈ {0, 1} of CWC satisfies the condition that

L−1

∑
i=0

ci = α, (1)

where α denotes a fixed constant. Because of its simplicity, the Schalkwijk’s algorithm [12]
is used in [14], which does not restrict the use of other algorithms [13,21–23].

The weights corresponding to the symbols “1” become more than a higher threshold,
whereas the weights corresponding to symbols “0” become less than a lower threshold.
When the watermarked DNN model is pruned, the subsequent weight parameters are
pruned because of the low values, which does not affect the judgment of symbol “0” in
the code word.

3.1. Embedding

At the initialization of the DNN model, L weight parameters w = (w0, w1, . . . , wL−1)
were selected from N candidates according to a secret key. Let T0 and T1 be lower and
higher thresholds, respectively. Subsequently, an encoded watermark c was embedded in
w under the following constraints:

• If ci = 1, then |wi| ≥ T1; otherwise, |wi| ≤ T0, where T0 and T1 are thresholds
satisfying 0 < T0 < T1.

During the training process of the DNN model, the weight parameters were iteratively
updated to converge to a local minimum. In the proposed method, the changes in weights w
selected for embedding c were controlled only by the restrictions during the training process.

First, a k-bit watermark b was encoded into the code word c. Here, parameters α and
L should satisfy the following conditions:

2k ≤
(

L
α

)
=

L!
α!(L− α)!

< 2k+1. (2)
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During the embedding operation, weight parameters w selected from the DNN model
were modified into w using the two thresholds, namely T1 and T0.

w†
i =


wi (ci = 1) ∩ (|wi| ≥ T1)
sgn(wi) · T1 (ci = 1) ∩ (|wi| < T1)
wi (ci = 0) ∩ (|wi| ≤ T0)
sgn(wi) · T0 (ci = 0) ∩ (|wi| > T0)

, (3)

where

sgn(x) =
{

1 x ≥ 0
−1 x < 0

(4)

3.2. Extraction

The distribution of the selected weights to be embedded is expected to be the same as
the distribution of all candidates (Gaussian or uniform distribution). When embedding a
watermark, the change in the distribution depends on thresholds T1 and T0 as well as the
length L of the encoded watermark.

3.3. Design of Detector

If a watermark is embedded in the weight parameters w′ selected from the DNN
model based on the secret key, then top α values and the remaining values follow various
distributions. The top α values follow a uniform distribution in the range [T1, δ] because
the weight parameters are modified based on the threshold value T1. Figure 2a displays
the distribution of values when a watermark is embedded in the weight parameters,
where U(0, T0) denotes a uniform distribution in the range [0, T0]. However, weight
parameters, except for the top α follow a uniform distribution in the range [0, T0] because
they are modified based on T0. If the watermark is not embedded in the weight parameters,
then it follows the original distribution, that is, a uniform distribution in the range [0, δ],
as displayed in Figure 2b.

(a) CWC code word (b) Random sequence

Figure 2. Probability density function of selected weight parameters.

A watermark detector was designed by focusing on the difference in the distribution
of the weight parameters with and without the watermark. The distribution when the
watermark was embedded in the weight parameters is displayed in Figure 2a. Therefore,
the average value of the top α weight parameters was (δ + T1)/2, whereas that of the L− α
weight parameters, except for the top α, was T0/2. The distribution when no watermark
was embedded is displayed in Figure 2b. The average value of the weight parameter is 1/δ.
The proposed detector discriminates differences in the distribution of the weight parameter
c′ extracted from the target DNN model by using the variation in the mean value presented
in the previous section as an indicator. The variation index was calculated using the mean
square error (MSE) as follows:

MSE =
1
L

L−1

∑
i=0

di, (5)
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where

di =


(

c′i −
δ+T1

2

)2
(0 ≤ i < α)(

c′i −
T0
2

)2
(α ≤ i < L)

(6)

If the watermark is embedded in the weight parameters, the value of MSE is smaller;
if not, then the value of MSE is larger.

3.4. Recovery of Watermark

First, the weight parameters were selected from the same DNN model positions,
denoted by w′. Subsequently, the αth largest element w̃′L−α is determined from w′, and
the code word c′ is constructed as follows:

c′i =
{

1 if |w′i | ≥ w̃′L−α
0 otherwise

, (7)

where w̃′ = sort(|w′|). Finally, watermark b′ is reconstructed from the code word c′.
In the operation, the top-α symbols in w′ are regarded as “1”, and the others are “0”.

Even if L− α symbols whose absolute values are smaller than those of the top-α symbols
are pruned, the code word can be correctly reconstructed from the weight parameters w′

in the pruned DNN model. When the pruning rate R satisfies the condition

R <
L− α

L
= R, (8)

No statistical errors were observed in the aforementioned extraction methods. Be-
cause L weight parameters w′ are sampled from N candidates in a DNN model to embed
the watermark, the condition does not coincide with the robustness against a pruning
attack at rate R.

4. Proposed DNN Watermarking Method
4.1. Embedding Layers

A novel CNN-based model architecture was designed in a fine-tuning model by
replacing the last few parts of network layers, including FC layers. Because several common
architectures that follow open-source software have been released, Refs. [14,19] considered
that a common architecture is not subject to protection. Therefore, the FC layers are targeted
for embedding the watermark. However, from the perspective of the intellectual property
of the DNN model, common architectures should be protected instead of FC layers.

If an attacker simply makes a copy of a DNN model, the watermark embedded into
the fully connected layer will remain in a pirated copy. However, a clever attacker might
perform a fine-tuning attack by replacing the fully connected layer with a newly designed
one. In such a case, the watermark must be completely removed. Therefore, we can counter
the fine-tuning attack by embedding the watermark not only into the fully connected layer
but also into the convolution layer.

4.1.1. Characteristics of Convolution Layers

In contrast to conventional studies in [14,19], we extended the network layer targeted
for watermarking to any layer of the CNN model. Two factors should be considered in
the context of the imperceptibility—one is the secrecy of the choice of weight parameters,
and the other is the effect on model performance for the original task.

Although the FC layers are composed of a large number of weight parameters, some
networks in the convolution layer, such as batch normalization, pooling, skip connection,
and dropout, have a limited number of candidates for selecting parameters. By contrast,
convolution networks such as Conv1D and Conv2D have sufficient parameters to be
watermarked. For example, the number of parameters in VGG16 [24] is enumerated
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by Table 1. Therefore, if sufficient candidates exist, embedding a watermark in weight
parameters selected from any convolution layer is possible based on a secret key.

Table 1. Example of weight parameters of a pretrained model for VGG16, which are derived by
model.get_weights in the Keras environment.

Layer Name Shape #Param.

0 block1_conv1/kernel:0 (3, 3, 3, 64) 1728
1 block1_conv1/bias:0 (64,) 64
2 block1_conv2/kernel:0 (3, 3, 64, 64) 36,864
3 block1_conv2/bias:0 (64,) 64

4 block2_conv1/kernel:0 (3, 3, 64, 128) 73,728
5 block2_conv1/bias:0 (128,) 128
6 block2_conv2/kernel:0 (3, 3, 128, 128) 147,456
7 block2_conv2/bias:0 (128,) 128

8 block3_conv1/kernel:0 (3, 3, 128, 256) 294,912
9 block3_conv1/bias:0 (256,) 256
10 block3_conv2/kernel:0 (3, 3, 256, 256) 589,824
11 block3_conv2/bias:0 (256,) 256
12 block3_conv3/kernel:0 (3, 3, 256, 256) 589,824
13 block3_conv3/bias:0 (256,) 256

14 block4_conv1/kernel:0 (3, 3, 256, 512) 1,179,648
15 block4_conv1/bias:0 (512,) 512
16 block4_conv2/kernel:0 (3, 3, 512, 512) 2,359,296
17 block4_conv2/bias:0 (512,) 512
18 block4_conv3/kernel:0 (3, 3, 512, 512) 2,359,296
19 block4_conv3/bias:0 (512,) 512

20 block5_conv1/kernel:0 (3, 3, 512, 512) 2,359,296
21 block5_conv1/bias:0 (512,) 512
22 block5_conv2/kernel:0 (3, 3, 512, 512) 2,359,296
23 block5_conv2/bias:0 (512,) 512
24 block5_conv3/kernel:0 (3, 3, 512, 512) 2,359,296
25 block5_conv3/bias:0 (512,) 512

26 dense/kernel:0 (25,088, 256) 6,422,528
27 dense/bias:0 (256,) 256
28 dense_1/kernel:0 (256, 17) 4352
29 dense_1/bias:0 (17,) 17

In [17,18], a DNN model has many local minima that are almost optimal. Even if
some parameters are changed slightly, their influence can be adjusted to be small in the
remaining parameters. Thus, if the watermark is embedded in the convolution layer and the
watermarked weight parameters are frozen during the retraining phase, the corresponding
local minima can be determined by adjusting other weight parameters without sacrificing
model performance.

On publication of the pretrained model, a watermark is embedded in the weight
parameters selected from the convolutional network according to a secret key, and these
parameters are frozen during training. To ensure robustness against retraining attacks, these
parameters should be selected from the early stages of the convolutional layer. For fine-
tuning, the FC layer should be targeted to embed the watermark because it is a newly
designed part of the overall DNN model. The FC layer of the fine-tuning model should be
protected because the first common convolution layer should be derived from a model that
is publicly available or may be licensed by its owner.

Figure 3 displays the statistical distribution of weight parameters in the three CNN
models VGG16 [24], ResNet50 [25], and XceptionNet [26] trained using the ImageNet
dataset [27]. The distribution at each layer is close to Gaussian, and the variance decreases
with the layer depth.
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(a) VGG16 (b) ResNet50

(c) XceptionNet

Figure 3. Comparison of the histogram of weight parameters in various convolution layers in
pretrained CNN models.

4.1.2. Design of Threshold

Because of the difference in statistical characteristics, the thresholds T0 and T1 are
determined when the target convolution layer is selected. According to a secret key, we
choose L weight parameters and modify them by an embedding operation such that the
absolute value of α elements is greater than T1 and that of the others is less than T0.

Let Nt be the total number of weight parameters in the t-th layer. To avoid statistical
irregularities, the absolute value of the top β weight parameters is managed to be greater
than T1, where β satisfies the following equation:

β =
α

L
Nt = (1− R)Nt (9)

The weight parameters are ωt = (ωt,0, ωt,1, . . . , ωt,Nt−1). These parameters are sorted
by absolute values such that the order of their absolute values is from largest to smallest,
as represented by ω̃t in the following equation:

ω̃t = sort(|ωt |) = sort(|ωt,0|, |ωt,1|, . . . , |ωt,Nt−1|). (10)

Here, ω̃t,i > ω̃t,j > 0 for i < j. Then, threshold T1 is determined as follows:

T1 = ω̃t,β. (11)

Figure 4 illustrates the procedure for determining the threshold T1. The other threshold
T0 is calculated using rate γ:

T0 = γT1 (12)

For simplicity, γ = 1/2 is used in the following discussion.
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Figure 4. Procedure of calculating a threshold T1 from the t-th convolution layer of a DNN model.

From the secrecy perspective, attackers can calculate the threshold T1 by observing the
target convolution layer. However, without a secret key, determining the layer to be selected
and identifying the elements that satisfy |wt,j| ≥ T1 is difficult. Because the number of such
weight parameters is β, finding α among them renders maintaining the model performance
difficult. Another approach is to increase the values of selected weight parameters whose
values are |wt,j| ≤ T0. Because of the large number of candidates, finding such weights
without a secret key is challenging.

4.2. Detector

In the DNN watermarking method [14] explained in the previous section, the bias of 0
and 1 symbols in a CWC code word is exploited to check the presence of hidden watermarks
in a DNN model. However, a theoretical analysis is yet to be performed on detecting
whether a watermark is embedded in the weight parameters selected from the DNN model
based on the secret key. In this study, we theoretically explained the characteristics of the
distribution of weight parameters with and without embedded watermarks and proposed
a detector that can detect the presence of watermarks.

4.2.1. Measurement

According to the secret key, L weight parameters are extracted from the target DNN
model. The embedding operations are given by Equation (3). The upper α values of the
weight parameters were equal to or greater than T1. Furthermore, when the symbol “0”
of the CWC code word is embedded, the weight parameters are modified to be less than
or equal to T0, and the number of such symbols are L− α. If the watermark is embedded
in the selected L weight parameters, then their values are not expected to be in the range
[T0, T1]. Therefore, we proposed a novel measurement method for detecting watermarks.

For detection, we used the same secret key to select L weight parameters from the
specified convolution layer. Here, thresholds T0 and T1 are calculated from the selected
weight parameters by observing only the distribution with parameter α of the CWC code
word and rate γ. Here, T1 is determined using the weight parameter with the absolute
value of the αth largest, and T0 is calculated using Equation (12).

The following figure illustrates how the watermark is detected using the proposed
method.

1. Extract L weight parameters c′ based on the secret key from the DNN model.
2. Sort c′ in descending order:

sort(c′) = c̃ = (c̃0, . . . , c̃α−1, c̃α, . . . , c̃η−1, c̃η , . . . , c̃L−1), (13)

where T1 = c̃α, T0 = γT1, and

η = arg min
0≤i<L

[c̃i > T0]. (14)
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3. Calculate the modified ˜MSE from c̃ satisfying c̃i > T0, except for the top α parameters.

˜MSE =
1

η − α + 1

η

∑
i=α

(c̃i − T0)
2 (15)

4. Determine the presence of the watermark if the ˜MSE value exceeds a detection
threshold.

If the watermark is not embedded, then the sorted weight parameters c̃ should satisfy
the following conditions: 

c̃i ≥ T1 (0 ≤ i < α)
T0 < c̃i < T1 (α ≤ i ≤ η)
c̃i ≤ T0 (η < i < L)

(16)

During the embedding process, for α ≤ i < η, c̃i is maintained at less than T0.
Therefore, ˜MSE should be close to 0 if the watermark is to be embedded in a DNN model.

4.2.2. Uniform Distribution

The initial weight parameters in a DNN model are assumed to be uniformly distributed
in the range [−δ, δ], and these absolute values are considered for simplicity.

As displayed in Figure 2a, if the watermark is embedded, then the probability in the
range [T0, T1] should be zero. The theoretical expected value of ˜MSE can be obtained using
the following formula:

CWC codword: Ẽunif
C

Ẽunif
C =

∫ T1

T0

(x− T0)
2 · 0dx = 0 (17)

Random sequence: Ẽunif
N

Ẽunif
N =

∫ T1

T0

(x− T0)
2 · 1

2δ
dx +

∫ −T0

−T1

(x + T0)
2 · 1

2δ
dx =

1
δ

∫ T1−T0

0
x2dx =

1
3δ

(T1 − T0)
3 (18)

If T0 = T1/2 (i.e., γ = 1/2), then Ẽunif
N = T3

1 /24δ.

4.2.3. Gaussian Distribution

After training, the weight parameters in the DNN model were expected to follow a
Gaussian distribution with a mean of zero and variance σ2. For simplicity, we considered
the absolute values.

CWC code word: ẼGauss
C

ẼGauss
C =

∫ T1

T0

(x− T0)
2 · 0dx = 0 (19)
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Random sequence: ẼGauss
N

ẼGauss
N =

∫ T1

T0

(x− T0)
2 · 1√

2πσ2
e−

x2

2σ2 dx +
∫ −T0

−T1

(x + T0)
2 · 1√

2πσ2
e−

x2

2σ2 dx

=
2√
π

∫ T1√
2σ

T0√
2σ

(
2σ2x2 − 2

√
2σT0x + T2

0
)
e−x2

dx

=
4σ2
√

π

∫ T1√
2σ

T0√
2σ

x2e−x2
dx− 4

√
2σT0√
π

∫ T1√
2σ

T0√
2σ

xe−x2
dx +

2T2
0√
π

∫ T1√
2σ

T0√
2σ

e−x2
dx

=
4σ2
√

π

(
− T1

2
√

2σ
e−

T2
1

2σ2 +
T0

2
√

2σ
e−

T2
0

2σ2 − 1
2

∫ T1√
2σ

T0√
2σ

−e−x2
dx
)

− 4
√

2σT0√
π

(
− 1

2
e−

T2
1

2σ2 +
1
2

e−
T2

0
2σ2

)
+

2T2
0√
π

∫ T1√
2σ

T0√
2σ

e−x2
dx

=−
√

2σT0√
π

e−
T2

0
2σ2 +

√
2σ√
π
(2T0 − T1)e

− T2
1

2σ2

+ (σ2 + T2
0 )

(
erfc

( T0√
2σ

)
− erfc

( T1√
2σ

))

(20)

If T0 = T1/2, then we have the following equation:

ẼGauss
N =

(
σ2 +

T2
1

4

)(
erfc

( T1

2
√

2σ

)
− erfc

( T1√
2σ

))
−
√

2σT1

2
√

π
e−

T2
1

8σ2 , (21)

where erfc() denotes the complementary error function defined by the following
equation:

erfc(a) =
2√
π

∫ ∞

a
e−x2

dx (22)

4.3. Non-Fungible Token

Even if a malicious party attempts to overwrite the watermark, then removing the
hidden watermark from a watermarked DNN model without a secret key is difficult.
When a new watermarked version is created using a different key and watermark, the two
watermarks must remain. An nonfungible token (NFT) is introduced to check the operation
history of the watermark.

Since the invention of Bitcoin [28], blockchain has been adopted in various new guaran-
teed applications based on a consensus algorithm called proof of work (PoW). Bitcoin uses
the PoW algorithm to reach an agreement on transaction data in a decentralized network.

When the shared data on the blockchain are confirmed by the most distributed nodes,
any changes to the stored data are immutable because all subsequent data become in-
valid. The most popular blockchain platform for NFT schemes is Ethereum [29], which
provides a secure environment for running smart contracts. In Blockchain-based smart
contracts, a turing-complete scripting language is used for complex functionality to per-
form a thorough replication of state transitions using a consensus algorithm to achieve
ultimate consistency. The applications running on top of smart contracts are based on
state-transition mechanisms. The state, including instructions and parameters, is shared
by all participants, which guarantees transparency in instruction execution. Furthermore,
the positions between states should be the same across the distributed nodes; therefore,
consistency is critical.

The NFT system [30] is a blockchain-based application that relies on smart contracts
to ensure order-preserving operations. This operation implies that the order of contracts in
a blockchain-based application is guaranteed when it is confirmed in the state transitions.
Thus, the history of the NFT remains unchanged and ownership is preserved.
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A contract address is a unique identifier that comprises a fixed number of alphanu-
meric characters generated from a pair of public and private keys. To transfer NFTs,
the owner sends a transaction to involve smart contracts in the ERC-777 standard (https:
//ethereum.org/ja/developers/docs/standards/tokens/erc-777/ accessed on 1 May 2023).
Among the token standards related to NFTs, ERC-721 (https://eips.ethereum.org/EIPS/
eip-721 accessed on 1 May 2023) introduces a NFT standard, in which every NFT has a
uint256 variable called tokenId, and the pair of contract addresses and uint256 tokenIds is
globally unique. Thus, tokenId can be represented as a 256-bits binary sequence.

Because tokenId can be used as an input to generate special identifications, it can
be connected to intellectual multimedia content and DNN models to be protected from
unauthorized copying. When a DNN model is combined with NFT, the corresponding
tokenId is embedded as a watermark in our method. If two watermarks are extracted,
then the watermark history can be checked by evaluating the NFT corresponding to the
takenIds. The main purpose of NFT is to guarantee the validity of a DNN model and its
timing registered at a trusted center. If the tokenId is embedded as a watermark, its validity
can be easily verified.

5. Simulations

We encoded a watermark using CWC and then embedded the code word into DNN
models to evaluate its effects on DNN models.

5.1. Experimental Conditions

Because the bit length of the NFT tokenId is 256, the number of watermarks is fixed at
k = 256 bits in the experiments. Randomly generated 20 binary sequences of length 256
were encoded by the CWC, and the code words were embedded as a watermark to measure
the performance in terms of accuracy and loss. According to [14], the CWC parameters
were selected, as listed in Table 2. We calculated the threshold T1 according to the method
presented in Section 4.1.2 and fixed the other threshold T0 = T1/2 at the embedding
operation. These thresholds were calculated as explained in Section 4.2.1 at detection.

Table 2. CWC parameters CWC(α, L) for k = 256, where α is the number of symbol 1 in the code
word of length L.

k α L R
256 32 3307 0.9903

36 2011 0.9821
40 1373 0.9709
43 1090 0.9606

Based on the VGG16 [24], ResNet50 [25], and XceptionNet models as pretrained
models, we fine-tuned the models with a batch size of 32 by replacing the new FC layers
connected to the final convolutional layer, similar to the experiments in [14,19]. The number
of nodes in the final convolutional layer is 25,088 (=7 × 7 × 512) in VGG16, 100,352
(=7 ×7× 2048) in ResNet50, and 204,800 (=10 ×10× 2048) in XceptionNet. These nodes
are connected to new FC layers with 256 nodes. These fine-tuned models are trained using
the 17 Category Flower Dataset (https://www.robots.ox.ac.uk/~vgg/data/flowers/17/)
(accessed on 1 May 2023) provided by the Visual Geometry Group of Oxford University—
62.5% of images were used as training data, 12.5% were used as validation data, and 25.0%
were used as test data. We used the stochastic gradient descent optimizer with a learning
rate of 10−3 and categorical cross-entropy as loss functions in the experiments. Notably,
embedding loss was not used in the proposed method. The baseline performances of the
fine-tuned model for these three pretrained models are listed in Table 3.

https://ethereum.org/ja/developers/docs/standards/tokens/erc-777/
https://ethereum.org/ja/developers/docs/standards/tokens/erc-777/
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721
https://www.robots.ox.ac.uk/~vgg/data/flowers/17/
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Table 3. Baseline performance of the original fine-tuning model, where the top t layers are frozen in
the training.

VGG16 ResNet50 XceptionNet

Frozen layer 15 150 80

Epoch 50 100 30

Accuracy 0.925 0.934 0.970

Loss 0.299 0.361 0.124

5.2. Dependency of Embedding Layer

To evaluate the sensitivities of model performance to watermark embedding, we
conducted experiments by embedding watermarks into nine individual convolution layers,
where the selected layers and their number of weight parameters are listed in Table 4. In
the experiments, we embedded watermark into only one specified convolution layer and
compared its performance.

Table 4. Number of weight parameters involved in each selected layer.

(a) VGG16

Layer 2 4 6 8 10 12 14 16 18

#Param. 36,864 73,728 147,456 294,912 589,824 589,824 1,179,648 2,359,296 2,359,296

(b) ResNet50

Layer 12 36 72 96 114 132 144 150 168

#Param. 36,864 36,864 147,456 147,456 147,456 147,456 131,072 589,824 262,144

(c) XceptionNet

Layer 28 34 45 51 62 74 86 98 110

#Param. 32,768 65,536 186,368 529,984 529,984 529,984 529,984 529,984 529,984

Figure 5 displays the accuracy and loss when the watermark is independently em-
bedded in nine convolution layers in the three DNN models. Compared with the baseline
results, no clear difference was observed in performance when the watermark was embed-
ded into the convolution layers in these DNN models. For XceptionNet, a slight decrease in
the accuracy was observed when the early stages of the convolutional layers were changed.
Embedding a watermark in the first few layers should be avoided. Notably, the loss
function does not consider the effect of watermark embedding on the training process.

Next, we compared the performances by changing the CWC encoding parameters,
the results of which are displayed in Figure 6. The figure reveals that the accuracy was
close to that of the original model in all the cases, although the loss was slightly higher in
the case of ResNet50. The difference was within the margin of error when the length of the
code word was changed.



J. Imaging 2023, 9, 117 15 of 19

(a) Accuracy (VGG16)

(c) Accuracy (ResNet50)

(e) Accuracy (XceptionNet)

(b) Loss (VGG16)

(d) Loss (ResNet50)

(f) Loss (XceptionNet)

Figure 5. Comparison of accuracy and loss when watermark encoded by CWC(32, 3307) is embedded
into each layer, where “org” denotes the original fine-tuning model.

Because many candidates exist for the convolution layers, the selection of weight
parameters can be kept confidential. If the early convolution layers are frozen during fine-
tuning, the embedded watermark can be correctly extracted. As mentioned in Section 4.1.2,
the secrecy of the weight parameters to be watermarked is managed by appropriately
selecting threshold T1. Although we used T0 = T1/2 in the experiments, it can be flexibly
changed to control the secrecy and robustness of the watermark. With a decrease in T0,
the robustness against the addition of noise increases. Because the watermark weight
parameter corresponding to symbol 0 is less than T0, the noise amplitude should be greater
than T1 − T0 to cause a bit flip at the symbol position in the code word. By contrast,
the performance of DNN model may be degraded because most parameters have small
values, similar to pruning.

All code words embedded into DNN models were correctly extracted even if pruning
with a maximum rate of 99% was executed because of the effect of encoding by CWC at
a rate R. Even if the pruned models were retrained with a few epochs, the code words
still survived because the changes in the weight parameters owing to retention were
considerably smaller than the gap T1 − T0 in the experiments.
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(a) Accuracy (VGG16)

(c) Accuracy (ResNet50)

(e) Accuracy (XceptionNet)

(b) Loss (VGG16)

(d) Loss (ResNet50)

(f) Loss (XceptionNet)

Figure 6. Comparison of accuracy and loss when watermark is embedded into each layer, where the
red line denotes the case of original fine-tuning model.

5.3. Detection

The modified ˜MSE was measured for the fine-tuned model after training. When the
watermark was embedded in the model, ˜MSE = 0 in all cases. However, this model varied
for the layers in which the watermark was embedded. Figure 7 displays the experimental

˜MSE and theoretical values ẼGauss
C for each layer, where the standard derivation σ was

calculated from L selected weight parameters. The experimental values were slightly
lower than the theoretical values because the weight parameters were biased away from a
Gaussian distribution. However, the difference between the values of the weight parameters
with and without the watermark enables the detection of the presence of the watermark
according to theoretical values.
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(a) VGG16 (b) ResNet50

(c) XceptionNet

Figure 7. Comparison of ˜MSE in various convolution layers, where watermark is encoded by
CWC(32, 3307).

5.4. Comparison

We compared the proposed method with a white box DNN watermarking
method [8,9,11,14,31–33] Considering their robustness against transfer learning and fine-
tuning, FC layers should be avoided for embedding watermarks because they are replaced
by newly designed ones. With the exception of the method described in [14], conventional
methods use an embedding loss function to control the distortion of the watermarked
model. Therefore, more training epochs were required to converge the watermarked model
for the target task. To ensure robustness against pruning attacks, the proposed method
can manage a tolerable pruning rate R by selecting α and L for CWC. The summary of the
comparison is enumerated in Table 5.

If an attacker attempts to embed a new watermark, then it is likely to overwrite
and remove existing watermarks at these bit positions. Conventional methods consider
robustness against such attacks by rendering the extraction operation complex and guessing
the secret key difficult. Even if the original watermark remains after overwriting, originality
cannot be ensured because two individual watermarks are contained in the DNN model.
In the proposed method, by introducing NFT to generate the watermark, the time sequence
of the watermark and watermark models can be checked.

Similar to the other DNN watermarking methods, there is a trade-off among ro-
bustness, capacity, and transparency. If we increase the capacity with the same level of
robustness, the transparency is decreased. To increase the capacity, the number of symbols
“1” or its code length in a code word must be increased. This results in an increase in bias
in the weight parameters in a DNN model, and hence, it will sacrifice the transparency of
the hidden watermark.
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Table 5. Comparison with conventional methods.

Embedding Embedding Fine- Pruning Overwriting
Layer Loss Tuning

Uchida et al. [8] Conv. Need ◦ <65% ×
Li et al. [9] Conv. Need ◦ < 60% ×

Wang et al. [31] MLP/Conv. Need ◦ <90% ×
Liu et al. [32] Conv. Need ◦ <75% 4

Wang et al. [33] Conv. Need ◦ <95% 4
Tondi et al. [11] Conv. Need ◦ <90% ×
Yasui et al. [14] FC − ◦ <R 4

Proposed Conv. − ◦ <R ◦

6. Conclusions

In this study, we investigated the sensitivity of the performance of fine-tuning models
when watermarks were embedded in various convolutional layers and trained fine-tuned
models with the watermark-embedded layer frozen. Because of the differences in the
variance of weight parameters selected from each layer, the thresholds for embedding
the watermark were determined using statistical analyses. Even if the loss function did
not consider the effects of embedding the watermark, both the accuracy and loss of the
watermarked model converged, which is similar to the original model, and no significant
degradation in performance was observed in the experiments.

Assuming a Gaussian or uniform distribution of the weight parameters, we can
estimate the theoretical value of the measurement ˜MSE. By analyzing the statistical distri-
bution of selected weight parameters, the presence of a watermark can be detected using
the watermark model. From the theoretical value of ˜MSE, an appropriate threshold can be
determined to detect a watermark.
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