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Abstract: Autism spectrum disorder (ASD) represents an ongoing obstacle facing many researchers
to achieving early diagnosis with high accuracy. To advance developments in ASD detection, the cor-
roboration of findings presented in the existing body of autism-based literature is of high importance.
Previous works put forward theories of under- and over-connectivity deficits in the autistic brain.
An elimination approach based on methods that are theoretically comparable to the aforementioned
theories proved the existence of these deficits. Therefore, in this paper, we propose a framework
that takes into account the properties of under- and over-connectivity in the autistic brain using an
enhancement approach coupled with deep learning through convolutional neural networks (CNN).
In this approach, image-alike connectivity matrices are created, and then connections related to
connectivity alterations are enhanced. The overall objective is the facilitation of early diagnosis of this
disorder. After conducting tests using information from the large multi-site Autism Brain Imaging
Data Exchange (ABIDE I) dataset, the results show that this approach provides an accurate prediction
value reaching up to 96%.

Keywords: autism; deep learning; Rs-fMRI; connectivity

1. Introduction

Autism spectrum disorder is a neurodevelopmental disorder that has received signifi-
cant attention over the past five decades. It is among one of the neuropsychiatric syndromes
that affects children in the early years of childhood and continues throughout their lives [1],
impacting their development, language and social interactions.

ASD exhibits a range of genetic, pathophysiological, and environmental conditions [2].
It is associated with qualitative impairments in social interaction such as problems in
using non-verbal behaviors (facial expressions and body postures), failure to develop peer
relationships, lack of spontaneous seeking of others, and lack of emotional reciprocity.

Symptoms of ASD also include qualitative impairments in communication as diffi-
culty in language development, inability to initiate or sustain a conversation with others,
and stereotyped or idiosyncratic language.

Moreover, autistic children manifest restricted behavior patterns, such as highly fo-
cused interests, inflexible adherence to routines, repetitive motor mannerisms, and per-
sistent preoccupation with parts of objects [3]. Often, ASD co-occurs with intellectual
disability and other mental disorders including anxiety, depression, aggressive behaviors,
repetitive behaviors, inattention with hyperactivity, and sleep disorders [2,4].

Before the age of three years, many abnormalities in social interaction, language, sym-
bolic or imaginative play can be remarked. However, due to the lack of parental perception
of such symptoms and the cost or unavailability of diagnostic centers, the average age of
autism detection has reached five years old [5]. In addition, the significant heterogeneity
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of symptoms that co-occur with autism, makes it very challenging to comprehend and
diagnose [6]. Therefore, researchers are eager to propose new methods to assist doctors in
the early diagnosis of autism and thus to improve the livelihood of autistic children.

Investigation via brain imaging can present a good alternative to the classic behavioral
methods. However, structural images can not be completely trusted as the development
rate of children in the first years of childhood can vary widely. According to Hussain [7],
every child development process is characteristically unique. Therefore, all children do
not reach the same point of development at the same age. On the other hand, functional
resting-state networks start to emerge before birth and become evident at 26 weeks prenatal
age [8]. These networks capture neural interactions and have enabled the detection of
autism with an accuracy between 60 and 70% in a heterogeneous setting using machine
learning methods [9–11]. With the application of deep learning, the accuracy of detection
has been shown to further improve reaching 80% [12,13].

Through the achieved results, Epalle et al. [12] concluded that discordance in resting-
state network connectivity constitutes a major discriminatory feature between patients
with autism and healthy individuals. On the other hand, Kashef [13] declared that there is
an anti-correlation of brain function between anterior and posterior areas of the brain. In a
previous work, using methods that could be associated with autism deficits as well as a
mathematical strategy of elimination, evidence of long range under-connectivity deficit
was reported [9].

In this paper, we propose a two-phase system that processes resting-state functional
magnetic resonance images (rs-fMRI) [14] of autistic and non-autistic subjects with the
objective of correctly detecting autism. The first phase uses fMRI images to extract connec-
tivity maps that represent interactions between different parts of the brain. However, since
the brain is composed of billions of small units (synapses), atlases are used to reduce the
complexity of the maps as explained in Section 2.

In the second phase, deep learning is introduced to classify the connectivity matrices
with a 10-fold cross-validation. Usually, deep learning models present a huge drawback
related to the size of data since they require a large number of samples for training. This
problem can be solved by data augmentation, but at the cost of the processing time. The
use of transfer learning can be a better alternative. According to Kaya et al. [15], transfer
learning provides better outcomes when compared with end-to-end models. It also solves
the problem of the training phase by using the weights of models that have been trained on
known databases such as imageNet [16]. Transfer learning was largely used in the context
of brain anomaly detection as in the work of Talo et al., where it was used to detect brain
cancer [17]. It was also used in the same frame as our paper to detect autism based on
connectivity matrices [18].

The originality of the present paper stems from using a new approach of enhancement
based on a specific layering of the data of the CNN network. The proposed layering is
ASD tailored since it is inspired by previous autism theories. It highlights connectivity
patterns that were proved by Benabdellah et al. [9,10] to contain relevant autism biomarkers,
by feeding the CNN with layers representing the properties of over-connectivity and under-
connectivity. This paper also puts forward the importance of linking autism findings
together with new strategies to achieve better detection. The accuracy of 96% that was
reached proves the effectiveness of the proposed approach, especially when considering
the heterogeneity of the ABIDE database.

2. Material and Methods
2.1. Data

The base data of this work are resting-state functional magnetic resonance images
(rs-fMRI) proposed by ABIDE I [19]. The latter is a dataset of the Autism Brain Imaging
Data Exchange, a base dedicated to autism, that regroups brain images from different sites
around the world. Its main objective is to increase the availability of data to forward autism
research. In this paper, we use a resting-state context, where the correlation is computed
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between functionally related brain regions in the absence of any stimulus or task [20].
From the 1112 rs-fMRI images considered, we only select 871 images that were proven
free of damage according to Abraham et al. [11]. The actual used data is a component
representing the time series of the rs-fMRI images by the parcellation of specific atlases.
These parcels, called regions of interest (ROIs), permit reducing the complexity of analysis.
They also enhance the comprehensibility of the results, since the synapses of every region
have a criterion of similarity that renders comparing their interactions a lot easier. This is
supported by Zafar et al. [21] where they stated that parcellation lessens the complexity
of the brain analysis and helps in giving more meaning to the results as the clustering is
based on a common point that brings the synapses of the brain together into regions.

However, the choice of the parcellation that leads to the best understanding of the
brain is still unclear. Therefore, we use atlases that propose different numbers of regions of
interest without exceeding a maximum of 200 ROIs. The time series are available through
ABIDE preprocessed [22]. As the name suggests, the data is preprocessed using different
pipelines and strategies. In this paper, we extract the data preprocessed with C-PAC, which
is the most used pre-processing pipeline in the state of the art. We also use the time series
of the AAL, DosenBatch and CC200 atlases.

2.2. Proposed Approach

The proposed approach involves two important steps. In the first step, we mimic RGB
images by constructing three-dimensional connectivity maps that contain different interac-
tions of the brain regions. This step includes a novel enhancement method highlighting the
connectivity information crucial to autism detection.

In the second step, we feed the constructed 3D maps to different CNN models in order
to predict the existence of autism using a transfer learning approach.

2.2.1. Creation of the 3D Connectivity Matrices

To create the 3D (RGB images alike) connectivity matrices, we first compute time
series for every subject using three atlases, namely AAL, DosenBatch, and CC200 atlases.
These latter offer several and various sets of clusters of ROIs and permit the construction of
connectivity matrices of 116 × 116, 161 × 161, and 200 × 200 connections, respectively.

The connectivity matrices are then computed using three connectivity likelihood methods:

• The correlation method: calculates the likelihood of communication between ROIs
signals. This is done by comparing the activity detected from the time series and allo-
cating weight values between −1 and 1 that represent the strength of the connection
between these regions. With the value of 1 as highly correlated.

• The covariance method [23]: computes coefficients that reflect direct and indirect
connections between every two regions. It gives the covariance between each pair of
elements as well as the variances that reflect the covariance of each element with itself.

• The tangent space embedding [24]: permits to go one step further at a group level. It
couples the information from all interactions in a unique group connectome using a
geometrical framework. Hence, allowing to measure interactions in a common space
called the tangent space [25].

From the coupling of the three time series and the connectivity computing methods,
nine different connectivity matrices (CM) result for every subject. Each CM is then sepa-
rately divided by 3 to extract a third of its connectivity weights. The 3D connectivity matrix
of this CM is then achieved by transposing the extracted thirds as represented on the right
side of Figure 1.
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Figure 1. The 3D matrices construction process. MST and MaxST represent the minimum spanning
tree and the maximum spanning tree, respectively.

2.2.2. Enhanced 3D Matrices

The enhanced matrices present specific highlighted connections for the layers. They
are constructed using the same above dividing process but with information more related
to the autism theories. To this end, each connectivity matrix is first transformed into a
graph g = (V, E) where V is a finite set of vertices that represents the ROIs of the atlases,
and E ⊆ V × V is a finite set of weighted edges that are the connections between every
two ROIs.

Then, the enhanced matrices are extracted based on high-weight and low-weight
connections using the maximum spanning tree and the minimum spanning tree, respec-
tively, as shown on the left side of Figure 1. Therefore, the enhanced matrices represent the
theories of over-connectivity and under-connectivity, already proven to exist between the
brain regions [9,10].

A spanning tree is a subgraph that includes all the vertices of the graph it is applied
to and connects them without cycles. Both maximum and minimum spanning trees are
extracted using the Kruskal algorithm [26,27]:

• The Minimum spanning tree (MST): the Kruskal algorithm permits to extract the MST
using a greedy approach that selects the lowest weight edge that does not cause a
cycle in the MST. The algorithm sorts the edges before constructing the tree by adding
increasing arcs at each step, keeping the total weight of all the edges to the minimum.

• The maximum spanning tree (MaxST): uses the same reasoning but extracts connec-
tions that present the highest weights.

Figure 2 visualizes the steps followed to extract MST and MaxSt from the connectiv-
ity matrices.

Once both trees are extracted, we construct the enhanced 3D matrices for every subject
by interposing the original connectivity matrix on the first layer, the maximum spanning
tree on the second layer, and the minimum spanning tree on the third layer (Figure 1).

2.2.3. Classification with CNN

In the second stage, the 3D matrices are fed into CNN models. The convolutional
neural network is a deep neural network originally designed for image analysis. It is
based on two important operations, namely convolution and pooling. In convolution,
multiple filters extract features from the entry data. Then, the pooling operation, also called
sub-sampling, is used to reduce the dimensionality of the extracted features. As mentioned
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before, most models use transfer learning to solve the problem of the small size of the data.
To this end, Keras [28], an open-source neural-network library written in Python, provides
many trained CNNs with different combinations of convolution and pooling layers. It can
run on top of different machine-learning libraries, such as TensorFlow and Theano.

Figure 2. Steps to extract the Spanning Trees matrices from a connectivity matrix.

In this work, we use TensorFlow and train seven different models from Keras, namely,
ResNet152V2, Inception, ResNet50, InceptionResNet, Xception, VGG19 and VGG16, with the
weights of imageNet. Since we are using transfer Learning, the process stops before the fully
connected layer, in order to extract features. Then, on top of the last layer, we construct a
simple model that takes the previous model’s extracted features as entries. The new model
contains a dropout layer whose role is to prevent over-fitting. Then, we apply fine-tuning to
improve the classification results.

The main steps of this classification are represented in Figure 3.

Figure 3. The main steps of deep learning classification.

In more detail, we use a typical transfer learning workflow, where we instantiate a base
model and load pre-trained weights into it. Then, we freeze all layers in the base model to
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keep the weights as they are in the training process. Afterward, we create a new model on
top of the output of the base model. Once the model converges on the extracted features,
we unfreeze all the layers of the base model and re-train the whole model end-to-end with
a very low learning rate. The objective of this last step is to potentially improve the results.

Moreover, to enhance the reliability of the results, we use a 10-fold cross-validation
classification. We conduct ten tests by reserving, every time, one fold for test and keeping
the others for training and validation.

Then, we evaluate the classification performance using the accuracy metric that mea-
sures the ability of a test to differentiate ASD and control subjects correctly [29] and
represent the mean result of all the ten tests of the cross-validation.

The accuracy is defined as follows:

Accuracy = TP+TN
TP+TN+FP+FN (1)

With:
TP (True positive) is the number of cases correctly identified as autistics.
FP (False positive) is the number of cases incorrectly identified as autistics.
TN (True negative) is the number of cases correctly identified as controls.
FN (False negative) is the number of cases incorrectly identified as controls.

3. Results

Combining the time series of the three atlases with the three connectivity methods
produces nine different connectivity matrices for every subject. The number doubles after
applying the 3D creation, which results in nine basic 3D matrices and nine enhanced 3D
matrices. Hence, for every subject, we end up with 18 different connectivity matrices
to analyze.

Feeding these matrices separately to the seven deep learning models results in 128 groups
of features. The extracted features are of sizes that vary from 2 × 2 to 7 × 7 depending on the
depth of the model and the used atlas.

Then, for every atlas, by using a 10-fold cross-validation we ended up with 42 groups
of 10 accuracy values. The mean of these accuracy values are displayed in the tables below.
First, Table 1 contains the classification results of the AAL atlas.

Table 1. Accuracy of the classification of the AAL 3D matrices with and without enhancement. Values
over 90% are highlighted with red and ‘*’.

Correlation Covariance Tangent

3D
Matrices

Enhanced
3D Matrices

3D
Matrices

Enhanced
3D Matrices

3D
Matrices

Enhanced
3D Matrices

ResNet152 72.12% 90.01% * 76.14% 87.97% 87.77% 91.85% *
Inception 92.68% * 93.59% * 82.81% 85.80% 84.99% 94.39% *
ResNet50 46.26% 46.26% 85.44% 93.69% * 46.26% 46.27%
InResNet 92.22% * 93.70% * 47.75% 46.85% 85.58% 92.68% *
Xeption 89.93% 95.41% * 64.42% 78.09% 90.04% * 93.58% *
VGG16 82.35% 96.10% * 73.84% 91.51% * 61.91% 92.89% *
VGG19 80.39% 95.98% * 70.75% 90.48% * 68.57% 94.04% *

Matrices of the AAL atlas have a format of (116, 116, 3). Once fed to the model, these
later result in feature sizes of 2 × 2 for Inception and InceptionResNet models, 3 × 3 for
the VGG models, and 4 × 4 for the rest.

The first notable point of the results from Table 1 is the number of accuracy values
reaching over 90% which are highlighted in red font and tagged with a star. Most of
the values presented in this table exceed the state-of-the-art achievement in the case of
fMRI-based autism detection. Moreover, the use of the enhancement approach lead to
better classification results. Classification of the enhanced 3D matrices permitted to achieve
accuracy values of 96.10% and 95.98% using correlation matrices with VGG16 and VGG19,
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respectively. For the other models, the enhancement approach permitted to reach high
values with all the connectivity calculation methods (correlation, covariance, and tangent)
except for ResNet50 which achieved high accuracy only with the covariance method.
However, VGG16 and VGG19 remain the best choices for modeling the AAL atlas enhanced
matrices in general, with all the accuracy values reaching over 90%.

Regarding the DosenBatch atlas and its 161 × 161 × 3 matrices, features are of sizes
that vary between 3 × 3 for the Inception and InceptionResNet models, 5 × 5 for the VGG
models, and Xception and 6 × 6 for the ResNet Models.

However, when compared to the AAL atlas, the results of Table 2 generally show
low values. This implies poor performance of the deep learning models with the features
of this atlas. The VGG models that performed their best with the AAL atlas features
become the worst with all the strategies and all types of connectivity calculations. Although
the enhanced matrices were better classified, the only models to achieve an accuracy of over
90% were Inception and ResNet152, and only with the correlation and tangent methods,
respectively.

Since we work with connectivity features, if the deep learning model can not extract
decisive biomarkers to differentiate between autistics and non-autistics, the classifica-
tion will fail. Hence, these poor results could be due to the increase in number of ROIs,
and can also be related to the delimitation of the ROIs which may have lead to loss of
decisive information.

Table 2. Accuracy of the classification of the DosenBatch 3D matrices with and without enhancement.
Values over 90% are highlighted with red and ‘*’.

Correlation Covariance Tangent

3D
Matrices

Enhanced
3D Matrices

3D
Matrices

Enhanced
3D Matrices

3D
Matrices

Enhanced
3D Matrices

ResNet152 53.28% 88.42% 58.67% 66.95% 65.12% 91.63% *
Inception 70.07% 92.44% * 60.16% 64.08% 49.94% 48.22%
ResNet50 46.27% 46.27% 60.41% 77.98% 46.27% 46.27%
InResNet 57.41% 72.23% 49.25% 47.42% 60.41% 81.20%
Xeption 66.83% 79.94% 60.97% 67.18% 63.85% 76.82%
VGG16 46.27% 46.28% 50.07% 59.24% 46.27% 46.27%
VGG19 46.27% 47.07% 57.98% 58.80% 46.26% 46.26%

The CC200 classification results of Table 3 do not align with the theory that an increased
number of ROIs leads to poor accuracy results, since many accuracy values exceeded 90%.
Although it did not reach the results achieved with the AAL atlas, it still ranked second
position. The matrices are of size 200 × 200 × 3. It is worth noting that, in this case, feature
sizes vary between 4 × 4 for Inception and InceptionResNet models, 6 × 6 for VGG16
and VGG19 models, and 7 × 7 for all other models. In this Table 3, Xception leads by the
highest accuracy of 95.52%, followed by VGG16 with 95.30%. Here, again, the enhancement
approached veered the results into high values. However, the overall results were lower
than with the AAL atlas. Furthermore, the size of the CC200 matrices makes the execution
time the highest among all atlases. As the features sizes are the largest when compared to
the other atlases, they induce an extended time of analysis. Hence, the AAL atlas using
the enhanced 3D correlation matrices remains the best combination, considering accuracy
and time.

After comparing the results of the three tables, we remark that ResNet50 failed for
all the correlation and tangent matrices classification and only showed improvement with
the covariance. On the other hand, ResNet152 was consistent with the classification of the
tangent matrices of the three atlases decreasing by only a minute amount going from AAL
to CC200. Inception was also somewhat consistent when considering the atlases but only
when considered with the correlation method instead. However, the decrease in accuracy
was more notable again going from the AAL atlas to CC200. These results showcase that
the structure of the deep learning model is also of great importance. However, one structure
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can not work for all atlases and all connectivity calculation methods. Finally, Figure 4 shows
the results of classification before and after using fine-tuning. It can be clearly seen that
this later improves the classification accuracy. We can also remark that the enhancement
technique positively impacts the results even without fine-tuning, which supports the
results of Tables 1–3.

Table 3. Accuracy of the classification of the CC200 3D matrices with and without enhancement.
Values over 90% are highlighted with red and ‘*’.

Correlation Covariance Tangent

3D
Matrices

Enhanced
3D Matrices

3D
Matrices

Enhanced
3D Matrices

3D
Matrices

Enhanced
3D Matrices

ResNet152 86.72% 89.93% 61.56% 89.23% 78.90% 91.52% *
Inception 88.89% 88.55% 72.34% 87.39% 87.40% 92.78% *
ResNet50 46.27% 46.28% 84.99% 94.38% * 46.28% 46.27%
InResNet 88.56% 94.95% * 49.96% 52.93% 84.78% 93.70% *
Xeption 88.33% 95.52% * 73.27% 75.21% 87.86% 93.01% *
VGG16 53.86% 90.15% * 93.68% * 95.30% * 46.26% 51.67%
VGG19 69.60% 53.97% 73.85% 90.13% * 46.04% 46.27%

 

Classification results before and after fine tuning 
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Figure 4. Classification before and after tuning.

4. Discussion

The main goal of the classification task is to categorize the tested subjects into a specific
number of defined groups. However, it can also decide the efficiency of the approach used
in separating these subjects. Hence, in this paper, we used classification with the objective
of testing the efficiency of the enhancement approach in detecting autism. This approach
was based on two important steps. The first one consisted of preparing the data and
creating 3D matrices that are image alike. The second step was the deep-learning-based
classification of the newly created data.
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For the sake of comparison with the state-of-the-art, we used ABIDE I, since its pre-
processed version was vastly used in many recent works all concerned with early ASD
detection [9,30]. Moreover, we have also used this same database with other strategies
in previous works to detect autism [9,10]. We also tested different options for creating
the base data, creating nine combinations based on three atlases and three connectivity
computing methods. Then, we built 3D matrices using two strategies. The first was to keep
the information intact by dividing it by three and feeding it to a CNN model. The second
strategy introduced enhancement as a technique that considers the deficiency of autism
connectivity and enhances it to help deep learning models differentiate autistic subjects
from non-autistic subjects.

Using three atlases and three connectivity calculation methods with two 3D creations
and seven CNN models with a mix and match approach, resulted in 126 classification strate-
gies. Thus, 126 different accuracy values. Half of them (63) concerned the enhancement
strategy. From these, two-thirds were above 70% accurate. Furthermore, by transposing a
model with a dropout layer over the transfer learning models and using cross-validation,
we increased the reliability of the results and eliminated over-fitting. Then by applying
fine-tuning, we increased the accuracy of detection as Figure 4 shows.

Transfer learning permitted the use of deep learning models even with a dataset of
only 871 subjects. This made it possible to exploit the benefits other fields could attain
using deep learning, as the results show. Note that without deep learning, the best result
achieved in the literature of autism detection attained only 70% [9–11,24] with the whole
ABIDE I dataset. However, in the present paper, we were able to achieve 90% accuracy
using the RGB-mimicking to build the 3D matrices. Adding the enhancement strategy, our
results leaped to 96% as the highest accuracy.

Hence, from the results achieved with all combinations, we can say that the enhance-
ment strategy was very helpful in increasing the accuracy of detection for most models.
This is especially the case regarding the VGG models when coupled with all the connectiv-
ity matrices of the AAL atlas, including the correlation, the covariance and the tangent. It
is also important to point out that, thanks to the structure of the VGG models that do not
comprehend a lot of layers and the small number of ROIs of the AAL atlas, the execution
time was much faster compared to the other combinations.

Another interesting point is that there is no correlation between the number of ROIs in
an atlas and the classification accuracy. The CC200 (with the highest number of ROIs) and
the AAL atlas (with the smallest number of ROIs) permitted the extraction of high-accuracy
values with most deep-learning models. However, the Dosenbatch model that comes in
between when considering ROIs number did not achieve excellent results. This might
be due to the parcellation and the choice of the areas composing the ROIs, since when
studying the communication between the regions of the brain, a minimum change in the
border of these regions can lead to new findings or to skipping some decisive information.
The results also showed that ResNet152V2 permitted accuracy values of over 91% with the
tangent enhanced matrices with all atlases. Moreover, ResNet152V2 was the only model
that achieved good accuracy values in almost all the scenarios of the enhancement strategy.

Overall, the tangent gave good results in more than half of the models with all atlases
except for the DosenBatch, which provided good results only with three of the seven
models. Considering the correlation, over 70% of the results have been accurate (above 80%
of accuracy), especially with the AAL atlas, where the accuracy exceeded 90%.

Furthermore, the results of Figure 4 show that combining correlation and AAL at-
las achieves high-accuracy values even before fine-tuning. However, this combination
improves performances in most cases. From the various results achieved, we could also
conclude that there is no perfect model or method. Only by testing multiple combinations
can we extract the best combination to achieve better autism classification. In the present
work, we attained 96.10%, an accuracy never achieved before using the ABIDE dataset. This
dataset, known to be heterogeneous, makes it very difficult to detect anomalies accurately.
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However, in our work, the heterogeneity became an advantage that permitted the
creation of a detection system independent of age that could single out characteristics
common to the autistic population.

Furthermore, by focusing on functional rather than structural images, we limited
doubts regarding the growth pace difference known to induce different volume sizes of the
children’s brains. Moreover, it was reported that the size abnormality of autistic children
disappears, and the brain returns to a normal size when reaching adulthood [31]. Therefore,
investigating the functional abnormality is more decisive and adapted to any age group.

Furthermore, the use of a large database allowed us to avoid non-generalization of the
results usually associated with small data.

Our approach permitted enhancement of the connections likely to be deficient (over-
or under-connected) through the creation of 3D matrices in the RGB-mimicking step, which
produced high-accuracy values. This shows the importance of using previous findings
along with further investigation to achieve early diagnosis of this life-bound disorder and
reducing its impact, in the wait for a definitive cure.

5. Conclusions

In this paper, we proposed an enhancement strategy that improves autism fMRI-based
detection. The approach leverages the previous findings related to connectivity deficiencies
in autistic brains through CNN models designed using an RGB-mimicking of over and
connectivity matrices. The heterogeneous setting provided by ABIDE with data from
different locations and with different subject’s ages, IQ scores, and other criteria help
generalize the findings. We succeeded in reaching an accuracy of 96.10%, a very important
value demonstrating that we are on the right path to achieving early diagnosis in the
near future.
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CM Connectivity matrices
MST Minimum spanning tree
MaxST Maximum spanning tree
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