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Abstract: Video analysis has become an essential aspect of net sports, such as badminton. Accurately
predicting the future trajectory of balls and shuttlecocks can significantly benefit players by enhancing
their performance and enabling them to devise effective game strategies. This paper aims to analyze
data to provide players with an advantage in the fast-paced rallies of badminton matches. The paper
delves into the innovative task of predicting future shuttlecock trajectories in badminton match
videos and presents a method that takes into account both the shuttlecock position and the positions
and postures of the players. In the experiments, players were extracted from the match video, their
postures were analyzed, and a time-series model was trained. The results indicate that the proposed
method improved accuracy by 13% compared to methods that solely used shuttlecock position
information as input, and by 8.4% compared to methods that employed both shuttlecock and player
position information as input.

Keywords: trajectory prediction; sports analysis; time-series model

1. Introduction

Recently, computer vision technologies have been employed to automate the analysis
of video clips from net sports matches, such as tennis, volleyball, and badminton. These
technologies enable player pose detection [1] and ball detection/tracking [2], allowing for
the extraction of crucial information from match videos. This information can then be used
to determine the high-level context, such as the players’ actions, during the match.

Predicting the future movement of the ball, shuttlecock, and opponent is a critical
aspect of sports video analysis. The ability to forecast these movements during a rally
can give players a significant advantage over their competitors. Many players rely on
their experience to make these predictions, and in fast-paced sports such as badminton,
being able to anticipate the movement of the shuttlecock even a fraction of a second ahead
can mean the difference between winning and losing the match. Performance analysis of
players can also be considered so that players can understand strategies in matches. If a
player’s performance aligns with the prediction made by the proposed model, it implies
that the shuttlecock’s trajectory may be easily predicted by the competing player in the
match. Players aim to play unpredictably to win the match.

Most research focused on predicting future movements in net sports has centered
around predicting the landing point of the ball or shuttlecock [3–8]. However, in badminton,
the shuttlecock must be hit without bouncing and from a higher, faster forward position,
making the prediction of the landing point insufficient for gaining an advantage in the
game. To achieve this, it is necessary to predict the shuttlecock’s trajectory. Currently,
trajectory prediction studies are limited to short-term events, such as the serve in table
tennis or the toss in volleyball, and have not yet been applied to rallies in badminton.

This paper presents a method for predicting the future trajectory of the badminton
shuttlecock during a match. One of the simple methods utilizes sequential models, such as
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recurrent neural networks (RNNs) [9], to model the motion of the shuttlecock by inputting
previous shuttlecock trajectories and outputting future shuttlecock trajectories. To better
reflect a player’s decision-making process during a match, the proposed method also
considers the player’s position and posture information in addition to the shuttlecock’s
position information.

The proposed method was evaluated using the shuttlecock trajectory dataset [10]
and demonstrated improved accuracy compared to methods that utilized only shuttlecock
position information or methods that employed both shuttlecock and player position
information. The results of the study can be summarized as follows:

• This is a pioneering study on predicting the trajectory of the badminton shuttlecock
during a match.

• The proposed method predicts the shuttlecock’s trajectory by considering the player’s
position and posture information, in addition to the shuttlecock’s position information.

• The results of the experiments show that the proposed method outperforms previous
methods that use only shuttlecock position information as input or methods that use
both shuttlecock and player position information as input.

2. Materials and Methods
2.1. Related Work
2.1.1. Future Predictions in Net Sports

Recently, research on future prediction in various net sports, such as tennis, volleyball,
table tennis, and badminton, has been growing in popularity. This section introduces
previous research in the field and compares them with the current research. As shown in
Table 1, previous research on future prediction in net sports has focused on predicting shot
direction, landing point, stroke, and trajectory. A more detailed discussion of previous
research in each sport is presented below.

Table 1. Previous research of future predictions in net sports.

Year Author Sports Prediction Target

2019 Shimizu et al. [11] Tennis Shot direction
2016 Waghmare et al. [3] Badminton Shuttlecock landing point

2019, 2020 Wu et al. [4,5] Table tennis Serve landing point
2019 Sato et al. [6] Volleyball Ball landing point
2019 Fernando et al. [7] Tennis Stroke
2022 Wang et al. [8] Badminton Stroke
2019 Suda et al. [12] Volleyball Toss trajectory
2020 Lin et al. [13] Table tennis Serve trajectory
2022 Proposed Badminton Shuttlecock trajectory

In tennis, Shimizu et al. [11] were the first to predict the future shot direction in
three categories: right cross, left cross, and straight. They did so by using the player’s
continuous position and posture information up until the moment the ball was hit. They
also developed a new dataset with shot directions for their study. However, in badminton,
predicting only the direction is insufficient, as players have different movements for low
and high trajectories.

In table tennis, Wu et al. [4,5] predicted the landing point of the service by using
the player’s motion information up until the moment just before hitting the ping-pong
ball. This information was obtained through pose estimation. In volleyball, Sato et al. [6]
predicted the landing point of the ball by using its velocity and 3D position, with an
average error of about 0.3 m and about 1.5 s before the ball hit the floor. In badminton,
Waghmare et al. [3] calculated the speed and direction of the shuttlecock to predict its
landing point, using a two-dimensional laser scanner. While these methods help the player
reach the landing point more quickly, they are not enough to give the player an advantage
in the game by allowing them to hit the shuttlecock back faster and higher.
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Stroke prediction involves predicting both the shot type and landing point. In tennis,
Fernando et al. [7] predicted strokes by using a semi-supervised generative adversarial net-
work (SGAN) [14], which combined a memory model with the automatic feature learning
capabilities of a deep neural network. In badminton, Wang et al. [8] utilized a network
called shuttleNet to predict the next stroke based on the current stroke. This was the first
study to address stroke prediction in sports. While stroke prediction provides a better
prediction of the shuttlecock’s trajectory than landing point prediction, it still falls short
compared to trajectory prediction.

In volleyball, Suda et al. [12] predicted the trajectory of the toss 0.3 s before it actually
occurred, using the setter player’s 3D joint positions. In table tennis, Lin et al. [13] predicted
the trajectory of a subsequent serve by using a dual-network method. The method involved
learning two separate parabolic trajectories: one from the service point to the landing point
on the table (parabola 1) and one from the landing point to the hitting point (parabola 2).
While trajectory prediction has been studied in both volleyball and table tennis, it has not
yet been adequately studied in badminton.

All of the previous research has been conducted in recent years, and research on future
predictions in net sports is still in its developmental stage. While shot direction prediction
in tennis by Shimizu et al. [11] and stroke prediction in badminton by Wang et al. [8] have
been explored, trajectory prediction has not been thoroughly studied, particularly in the
case of badminton. Therefore, the aim of the current study is to predict the shuttlecock’s
trajectory in badminton.

2.1.2. Object Detection

Object detection is the task of identifying objects with specific attributes within an
image or video and determining their location and extent by surrounding them with a
bounding box.

There are two types of deep learning-based object detection methods: one-stage
methods [15–17] that directly detect the target object from the input image, and two-stage
methods [18–20] that first identify candidate regions in the input image and then perform
detailed detection for each region. One-stage methods, such as YOLOv4 [17], prioritize
processing speed and are suitable for real-time applications. Two-stage methods, such as
Region-CNN (R-CNN) [18], Fast R-CNN [19], and Faster R-CNN [20], may have a slower
processing speed compared to one-stage methods, but they offer higher detection accuracy.
For this study, Faster R-CNN is used, as it is one of the highest-performing two-stage
methods and provides more accurate information about the player’s position and posture.

2.1.3. Pose Estimation

Pose estimation is the task of identifying information about a person’s posture (eyes,
nose, limbs, etc.) from an image or video showing a person. The joint points of a person
are obtained as keypoints.

There are two types of deep learning-based pose estimation methods: the top-down
method [1,21–27], which performs pose estimation for each object identified after object
detection in the image, and the bottom-up method [28–33], which first performs pose
estimation for all objects in the image by connecting each keypoint to other objects of the
same type. The former method tends to be more accurate because it estimates the posture
of each object one by one, while the latter method is less accurate because it is challenging
to learn to connect keypoints between the same objects. In this method, object detection
and pose estimation are independent of each other in the top-down method, and HRNet [1]
is applied to pose estimation after object detection.
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2.2. Method
2.2.1. Overview

This paper proposes a method for predicting the trajectory of a shuttlecock over the
next (future) n f frames, based on the shuttlecock position, the positions, and postures of
the two competing players detected during the previous (past) np frames. The proposed
method consists of two modules: a detection and pose estimation module for past frames,
and a time series model module for future prediction, as illustrated in Figure 1.

Shuttlecock
Position

Past frames

TrackNet

Faster
R-CNN

Time-series models 
for future prediction

HRNet

FC

FC

LSTMPlayers’
Positions

Shuttlecock Trajectory

frames

Future frames

frames

Detection and pose estimation from past frames

Joint 
Positions

Figure 1. Overview of the proposed method.

The first module takes a sequence of past frames from badminton match videos as
input and performs shuttlecock detection, player detection, and player pose estimation for
each image.

In the second module, the dimensions of the shuttlecock position, player position,
and player posture information are each aligned in two dimensions. The six-dimensional
information is then combined and used as input for trajectory prediction.

2.2.2. Detection and Pose Estimation from Past Frames

The shuttlecock position information is obtained from a shuttlecock detector, such as
TrackNet [34]. These are two-dimensional coordinates xs and ys on the image.

For player detection and pose estimation, the MMPose framework [35] is utilized,
which includes several pose estimation models and pre-trained models. An object detec-
tion model detects players and records their positions as bounding boxes, while a pose
estimation model estimates the posture of the players and records their keypoints.

To detect humans, an object detector is utilized; we employ Faster R-CNN [20] trained
on the Microsoft Common Objects in Context (MS COCO) dataset [36]. The detector
provides bounding boxes and confidence scores as detection results. Bounding boxes are
represented by four two-dimensional coordinate points on the image when a human is
enclosed by a rectangle. The confidence score ranges from 0 to 1 and indicates the likelihood
that the object within the detected bounding box is a human. By using the confidence
score, only players, not referees or spectators, are detected. Referees and spectators that
are detected alongside players have a lower confidence score, as they may be sitting, have
only their faces in the image, be facing sideways, or appear small. Thus, the person with
the highest confidence score is identified as the player, and the player’s bounding box is
obtained, as shown in Figure 2.
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(a) All human detection (b) Player-only detection

Figure 2. Player detection.

The player position information is obtained by calculating the normalized center
coordinates (xplayer, yplayer) of the player with each coordinate in Figure 3 as follows:

(xplayer, yplayer) =

(
(bboxle f t + bboxright)/2

imgwidth
,
(bboxtop + bboxbottom)/2

imgheight

)
. (1)

Bounding box

(𝑖𝑚𝑔𝑤𝑖𝑑𝑡ℎ , 0)

(𝑖𝑚𝑔𝑤𝑖𝑑𝑡ℎ, 𝑖𝑚𝑔ℎ𝑒𝑖𝑔ℎ𝑡)(0, 𝑖𝑚𝑔ℎ𝑒𝑖𝑔ℎ𝑡)

(0, 0)

(𝑏𝑏𝑜𝑥𝑙𝑒𝑓𝑡, 𝑏𝑏𝑜𝑥𝑏𝑜𝑡𝑡𝑜𝑚)

(𝑏𝑏𝑜𝑥𝑙𝑒𝑓𝑡, 𝑏𝑏𝑜𝑥𝑡𝑜𝑝) (𝑏𝑏𝑜𝑥𝑟𝑖𝑔ℎ𝑡, 𝑏𝑏𝑜𝑥𝑡𝑜𝑝)

(𝑏𝑏𝑜𝑥𝑟𝑖𝑔ℎ𝑡, 𝑏𝑏𝑜𝑥𝑏𝑜𝑡𝑡𝑜𝑚)

Figure 3. Coordinates of image and bounding box.

The players are distinguished by assigning a number to each of them in the image,
starting with the player on the lower side. The player position information is represented
as four-dimensional coordinates (xp1, yp1, xp2, yp2), where xp1 represents the x coordinate
of the player who is shown on the lower side of the image.

After the player detection, HRNet [1], which has been trained by MS COCO, is used
as the pose estimator. As shown in Figure 4, 17 joints (eyes, ears, nose, shoulders, elbows,
wrists, hips, knees, and ankles) are detected as keypoints in the bounding box obtained
from player detection.

The coordinate values are expressed as absolute coordinates on the image. For ex-
ample, if the coordinates of a keypoint are (xk, yk) on the image, the normalized absolute
coordinates (axk, ayk) of the keypoint are calculated using the values in Figure 3 as follows:

(axk, ayk) =
( xk

w
,

yk
h

)
, (2)

where w, and h are the width and height of the input image, respectively. The pos-
ture information of the two players is represented as a 68-dimensional feature vector
(xp1k1, yp1k1, . . . , xp2k17, yp2k17), where xpikj represents the x coordinate of the first keypoint
of the player who is shown on the lower side of the image.
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(a) Estimation in all players (b) Estimation in player 1 cropped by bounding box

Figure 4. Pose estimation.

2.2.3. Time Series Model for Future Prediction

The proposed method predicts the trajectory by inputting three types of information:
the shuttlecock position information obtained by the shuttlecock detector, the player po-
sition information obtained by the object detector, and the player posture information
obtained by the pose estimation.

At this point, the shuttlecock position information is 2-dimensional, the player position
information is 4-dimensional, and the player posture information is 68-dimensional. In
order to make three types of information into a feature vector of the same space, each of
them is embedded into two dimensions by a fully connected layer as shown in Table 2.
The shuttlecock position information and the player position information and the player
posture information are combined to form a 6-dimensional feature vector.

Table 2. Number of dimensions.

Target Original After Embedding

Shuttlecock position 2 2
Player position 4 2
Player posture 68 2

All 74 6

The combined information is fed into a long short-term memory (LSTM) network [37],
which is the second module used for predicting the shuttlecock trajectory. The LSTM
network uses multiple past inputs stacked together as its input, and its output is then
forwarded to the fully connected layer for further processing.

2.3. Experiment
2.3.1. Dataset

The shuttlecock trajectory dataset [10] was utilized, which was created for training
and testing the TrackNet [34] and TrackNetV2 [38] models for badminton applications. This
dataset comprises 26 match videos for training and 3 match videos for testing. The match
videos have a resolution of 1280 × 720 and a frame rate of 30 fps, and are separated by
rallies, which refer to recordings that start with a serve and end with a score.

Each frame in the dataset provides information about the shuttlecock’s position and
the moment it hits the racket. Twenty-three matches were used for training, excluding
amateur matches, while three matches were used for testing. The professional matches
used in this study were singles matches held in international tournaments between 2018
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and 2021. The 23 match rally videos for training were randomly split into an 80% training
set and a 20% validation set. The three-match rally videos for testing were used as the
test set.

Data cleansing was carried out on the dataset to enhance prediction accuracy. The
position coordinates of the shuttlecock in the dataset were set to (0, 0) whenever it was
hidden by a person or not visible, which could negatively affect learning since the shuttle-
cock would appear to move unnaturally in the frames before and after it. Frames with such
issues were removed from the dataset to ensure that consecutive frames with unnatural
shuttlecock movements were not used for learning.

Data augmentation was also carried out to increase the diversity of the training data.
Since flipping a badminton match video upside down would no longer be appropriate for
the sport, only left–right flipping and translations were performed. The original image was
flipped left and right with a probability of 50% and then translated to the right or bottom
in a range of 0 to 50 pixels relative to the width and height of the image. Figure 5 shows the
results of the data augmentation.

(a) (b) (c)

Figure 5. Data augmentation. (a) Original image, (b) image after left–right flipping, and (c) image
with 100 translations to the right and 100 translations to the bottom.

2.3.2. Evaluation Metrics

Two types of displacement errors, namely the average displacement error (ADE) and
final displacement error (FDE), were used as evaluation metrics in this experiment. ADE is
the average of errors across all output frames, while FDE is the error at the final point of
the output trajectory. The Euclidean distance was calculated using the two-dimensional
coordinates in a 1280 × 720 pixel image, and the unit of measurement is pixels. ADE is
more important in this task since it predicts the trajectory for multiple frames rather than
just the landing point.

2.3.3. Network Training

We implemented the proposed method in PyTorch [39] (1.12.1+cu102, with Python3.7.13)
and ran it on the NVIDIA TITAN RTX processing unit using CUDA 11.4. For LSTM, the
number of layers was set to 3, the hidden layer to 128 dimensions, and the network was
optimized using Adam [40], with a weight decay of 10−4, the momentums β1 = 0.5 and
β2 = 0.999, and a learning rate of 0.02. The model was trained for 400 epochs with four
input frames and 12 output frames for all cases.

The mean squared error (MSE) was employed as the loss function:

Loss =
1
D

D

∑
i=1

(F(x)i − gti)
2, (3)

where F is the time-series model LSTM of the proposed method, x is its input data and gt
is the ground-truth data of the output shuttlecock position. F(x) and gt are D-dimensional
vectors and F(x)i is the value of F(x) on the i dimension. The output results were compared
with the ground-truth data to calculate the error. Then, the parameters were updated to
reduce the error using backpropagation.
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2.3.4. Other Models
Baseline Models

To verify the effectiveness of the proposed method, two baseline models were set up.
One is to input only the shuttlecock position information without any player information,
and the other is to input the shuttlecock and player position information without any player
posture information.

Other Time-Series Models

LSTM was used as the model for trajectory prediction, but four other time-series
models were also examined: an RNN [9], gated recurrent unit (GRU) [41], Transformer [42]
and sequence-to-sequence learning with neural networks (Seq2Seq) [43]. The network
parameters were set the same as in the proposed method model for all time-series models,
except for the learning rate. Only the learning rate was set as shown in Table 3.

Table 3. Learning rate for each time-series model.

Models Learning Rate

RNN 0.005
GRU 0.01

Transformer 0.001
Seq2Seq 0.02

Other Representations of Posture Information

In addition to the absolute coordinate values on the image used in this method, we
also examined other ways of representing the posture of the players: the relative joint
positions in the bounding box and the heat map generated for the pose estimation.

If the coordinates of a keypoint are (xk, yk) on the image, the normalized relative
coordinates (rxk, ryk) to the bounding box are calculated using the values in Figure 3
as follows:

(rxk, ryk) =

(
xk − bboxle f t

bboxright − bboxle f t
,

yk − bboxtop

bboxbottom − bboxtop

)
. (4)

The accuracy of three inputs to the time-series model was compared: absolute coor-
dinate values on the image, relative coordinate values to the bounding box, and heatmap
generated by pose estimation, respectively.

When using absolute coordinates on the image, the spatial coordinates are the same as
the position information of the shuttlecock and players. When using relative coordinates to
the bounding box, the spatial coordinates are different from the position information of
the shuttlecock and players. Relative coordinates have a more significant influence on the
posture information than absolute coordinates because the change in posture is greater with
relative coordinates. Figure 6a shows the overview in the case of using the joint positions
to represent the postures of the players.

When using the heatmap, a heatmap was first generated for each of the two players
in the pose estimation part and superimposed, as shown in Figure 7. Then, the heatmap
including the posture information for the two players was sent to ResNet-18 [44] to extract
a 512-dimensional feature vector, which was input to the time-series model together with
the shuttlecock position and the players’ positions. Figure 6b shows the overview in the
case of using the heatmap to represent the postures of the players.
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Shuttlecock
Position

Past frames

TrackNet

Faster
R-CNN

Time-series models 
for future prediction

HRNet

FC
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LSTMPlayers’
Positions

RNN

GRU

Transformer

Seq2Seq
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Future frames
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(a) Using the joint positions for representing the postures of the players

Shuttlecock
Position

Past frames

TrackNet

Faster
R-CNN

Time-series models 
for future prediction

HRNet

LSTMPlayers’
Positions

RNN

GRU

Transformer

Seq2Seq

Shuttlecock Trajectory

frames

Players’ Postures
Heat Map Future frames

frames

Detection and pose estimation from past frames

Resnet

(b) Using the heatmap for representing the postures of the players

Figure 6. Other time-series models and other way of representing the players’ posture.

(a) Player 1 (b) Player 2 (c) Player 1 and player 2

Figure 7. Heatmap. (c) is a heat map for two players superimposed on (a,b).

2.3.5. Data Augmentation Values

Experiments were conducted for data augmentation with different probabilities of
left–right flipping and ranges of parallel shifts. The probability of left–right reversal was
set to 0%, 25%, 50%, or 75%, where 0% means that the image is not flipped. The range of
translation was set to 0 pixels, 50 pixels, or 100 pixels, where 0 means no translation.

2.3.6. The Number of Frames of Past/Future

Experiments were conducted with the number of past and future frames fixed at 4
and 12, respectively. For the results shown in Section 3.3, five different combinations of the



J. Imaging 2023, 9, 99 10 of 18

number of past and future frames were tested by increasing the number of past frames
from 4 to 12, while keeping the total number of past and future frames at 16.

3. Results
3.1. Comparison with Other Models

As for the quantitative evaluation, the results of comparing this method with the base-
line methods and the methods using other time-series models are shown in
Tables 4 and 5. As a qualitative evaluation, the results of comparing this method with the
two baseline methods are shown in Figure 8, and the results of comparing this method
with methods using other time-series models are shown in Figure 9.

The proposed method shows the best results for ADE and FDE. It also qualitatively
predicts the trajectories closest to the ground truth.

Compared to the method with the baseline methods, the proposed method improves
ADE by about 13% compared to the method using only the shuttlecock position information
as input, and by about 8.4% compared to the method using the shuttlecock and player
position information as input. This shows that the proposed method effectively uses all the
information on the shuttlecock position, player position, and player posture. Compared to
the method with the highest accuracy for each time-series model, the proposed method
using LSTM improves ADE by about 9.8%, 5.0%, 20%, and 12% compared to the methods
using RNN, GRU, Transformer, and Seq2Seq, respectively. Therefore, it is shown that the
proposed method using LSTM is the best model among the time-series models considered.

(a) Match A of the proposed method (b) Match B of the proposed method (c) Match C of the proposed method

(d) Match A of the baseline 1 (e) Match B of the baseline 1 (f) Match C of the baseline 1

(g) Match A of the baseline 2 (h) Match B of the baseline 2 (i) Match C of the baseline 2

Figure 8. Future predictions of shuttlecock trajectories compared to baseline 1 and baseline 2.



J. Imaging 2023, 9, 99 11 of 18

(a) Match A of the proposed method (b) Match B of the proposed method (c) Match C of the proposed method

(d) Match A of the RNN (e) Match B of the RNN (f) Match C of the RNN

(g) Match A of the GRU (h) Match B of the GRU (i) Match C of the GRU

(j) Match A of the Transformer (k) Match B of the Transformer (l) Match C of the Transformer

(m) Match A of the Seq2Seq (n) Match B of the Seq2Seq (o) Match C of the Seq2Seq

Figure 9. Future predictions of shuttlecock trajectories compared to other models.
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Table 4. ADE results. The last row shows the result of the proposed method. The alphabet of the
player posture represents the input method to the time-series model: A is the absolute coordinates
on the image, R is the relative coordinates in the bounding box, and H is the heat map. Bold font
indicates the best (the minimum) ADE.

Input Data
Models

ADE (Pixel)

Shuttlecock
Position

Player
Position

Player
Posture Match A Match B Match C Average

◦ - - LSTM 54.1 40.7 45.8 47.6
◦ ◦ - LSTM 51.6 36.5 43.9 45.2
◦ ◦ R RNN 52.0 38.9 44.9 45.9
◦ ◦ H RNN 63.4 46.0 60.2 58.4
◦ ◦ A RNN 55.4 38.0 49.8 48.8
◦ ◦ R GRU 48.9 36.1 42.9 43.6
◦ ◦ H GRU 59.8 42.8 52.9 51.1
◦ ◦ A GRU 53.4 37.0 43.5 45.4
◦ ◦ R Transformer 59.3 44.5 49.0 51.5
◦ ◦ H Transformer 81.0 65.7 73.4 74.3
◦ ◦ A Transformer 60.3 44.2 47.4 51.6
◦ ◦ R Seq2Seq 40.4 53.8 45.8 47.3
◦ ◦ H Seq2Seq 53.8 40.7 45.9 47.7
◦ ◦ A Seq2Seq 56.7 46.6 43.0 48.9
◦ ◦ R LSTM 46.5 34.4 41.0 41.4
◦ ◦ H LSTM 56.4 44.4 51.9 51.3

◦ ◦ A LSTM 48.3 33.0 39.1 41.4

Table 5. FDE results. The last row shows the result of the proposed method. The alphabet of the
player posture represents the input method to the time-series model: A is the absolute coordinates
on the image, R is the relative coordinates in the bounding box, and H is the heat map. Bold font
indicates the best (the minimum) FDE.

Input Data
Models

FDE (Pixel)

Shuttlecock
Position

Player
Position

Player
Posture Match A Match B Match C Average

◦ - - LSTM 94.1 74.1 75.0 81.5
◦ ◦ - LSTM 88.0 63.4 70.9 76.1
◦ ◦ R RNN 90.1 66.7 74.5 78.0
◦ ◦ H RNN 108.7 77.2 101.1 98.7
◦ ◦ A RNN 94.0 64.1 74.5 79.1
◦ ◦ R GRU 87.4 67.6 69.8 76.2
◦ ◦ H GRU 109.3 76.7 96.0 92.9
◦ ◦ A GRU 95.8 70.0 73.5 80.3
◦ ◦ R Transformer 97.1 74.2 77.1 84.0
◦ ◦ H Transformer 128.6 95.7 109.0 113.8
◦ ◦ A Transformer 99.0 71.9 75.2 83.7
◦ ◦ R Seq2Seq 64.3 91.3 73.5 77.9
◦ ◦ H Seq2Seq 93.7 72.3 78.6 83.1
◦ ◦ A Seq2Seq 92.0 73.2 64.9 78.1
◦ ◦ R LSTM 81.5 61.6 68.0 71.7
◦ ◦ H LSTM 97.5 79.1 86.7 88.4

◦ ◦ A LSTM 83.1 59.0 63.3 70.4

3.2. Comparison by Data Augmentation Values

The results of the experiments with different probabilities of left–right flipping and
different ranges of translation are shown in Tables 6 and 7. The proposed method shows
the best results for ADE and FDE. This indicates that a 50% probability of left–right flipping
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and a 50-pixel range of translation are appropriate among those considered in this study,
and that the data augmentation is effective.

Table 6. ADE results from changing the probability of left–right flipping and the range of translation
in augmentation.

Augmentation ADE (Pixel)

Shift Range (Pixel) Probability of Flip (%) Match A Match B Match C Average

0 0 50.0 36.8 40.2 43.2
0 25 48.8 34.5 39.2 42.0
0 50 51.4 37.9 41.2 44.3
0 75 48.8 34.5 41.3 43.2

50 0 51.7 38.0 40.7 44.3
50 25 49.0 35.1 39.7 42.6
50 50 48.3 33.0 39.1 41.4
50 75 48.0 36.4 41.7 42.5
100 0 50.6 39.4 41.8 44.6
100 25 49.1 36.0 41.7 42.8
100 50 51.8 38.3 43.6 46.6
100 75 51.8 38.2 43.0 44.9

Table 7. FDE results from changing the probability of left–right flipping and the range of translation
in augmentation.

Augmentation FDE (Pixel)

Shift Range (Pixel) Probability of Flip (%) Match A Match B Match C Average

0 0 85.7 66.7 68.1 74.7
0 25 85.2 62.5 65.9 72.8
0 50 86.8 67.2 69.0 74.7
0 75 83.7 61.1 68.3 73.4

50 0 86.7 66.8 68.0 75.0
50 25 84.1 64.5 65.9 73.3
50 50 83.1 59.0 63.3 70.4
50 75 81.7 63.6 66.5 71.3
100 0 87.6 65.6 68.1 75.0
100 25 83.2 63.3 68.6 72.2
100 50 85.7 62.8 68.5 75.3
100 75 89.0 68.2 70.1 76.3

3.3. Comparison of the Number of Frames of Past/Future

The accuracy improves as the number of input frames increases and the number of
frames to be predicted decreases as shown in Figure 10, Tables 8 and 9.

Table 8. ADE results when input/output frames are changed.

Input Frames Output Frames
ADE (Pixel)

Match A Match B Match C Average

4 12 48.3 33.0 39.1 41.4
6 10 42.7 31.5 35.1 37.2
8 8 31.9 25.9 29.0 29.5

10 6 22.4 22.4 25.3 23.5
12 4 19.0 19.2 18.7 18.9
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Table 9. FDE results when input/output frames are changed.

Input Frames Output Frames
FDE (Pixel)

Match A Match B Match C Average

4 12 83.1 59.0 63.3 70.4
6 10 70.8 51.5 56.7 61.0
8 8 52.0 43.9 47.2 48.0

10 6 36.1 35.8 37.8 36.7
12 4 28.5 29.8 26.9 28.1

(a) Input: 4, Output: 12 (b) Input: 6, Output: 10 (c) Input: 8, Output: 8

(d) Input: 10, Output: 6 (e) Input: 12, Output: 4

Figure 10. Comparison according to the number of frames of input/output.

4. Discussion and Conclusions
4.1. Limitation

This study proposed a method for predicting future trajectories in badminton match
videos. However, several limitations exist in the framework.

The first limitation is the position of the cameras. The dataset used in this study
includes high-level tournaments, such as the World Championships, all of which were
recorded from a distance so that the entire court could be seen. This makes it easy to obtain
information on shuttlecocks and players. However, recording from a distance requires
equipment, such as a tripod and a photographer, making it difficult to set up a camera
when attending a match alone or when there is no access to a suitable recording location.
In addition, since the camera is recording from a distance, it is likely that people may pass
in front of the camera. If there are many frames where the shuttlecock is not in the angle of
view and cannot be tracked, it would be difficult to predict.

Second is the adaptation to sudden changes in trajectory. As shown in Figure 11, if the
trajectory changes at the moment of hitting back or the moment the shuttlecock touches the
floor, it is quite difficult to predict. Even if it could be predicted that the trajectory would
change after bouncing back, the direction of the change could be wrong. In this method, the
position and posture information of the player was input in addition to the shuttlecock’s
position information, which enabled some frames to adapt to changes in trajectory, but
there were still many frames that were difficult to predict.
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(a) Successes (b) Mostly successful (c) Direction failures

(d) Failure predicted not to bounce (e) Failure predicted to bounce (f) Failure when shuttlecock is on the floor

Figure 11. The adaptation to sudden changes in trajectory.

4.2. Future Work

There are two things that need to be worked on in the future to make this research
work with in-the-wild data.

The first is to improve the generalization performance of the model. For the practical
scenario, it is necessary to confirm that the model is general enough by testing the proposed
model on multiple data sets in badminton (e.g., those with different camera locations and
those containing matches of amateur players) and other net sports, such as tennis and
table tennis. For this purpose, it would also be useful to be able to automate the rally
segmentation and shuttlecock position detection in match videos.

The second is to perform trajectory prediction in 3D space. Since this research is based
on the novel task of performing trajectory prediction in badminton, we performed the
prediction in 2D space as a first step. If we can further develop this task to predict in
3D space and project the predicted trajectory into real space, it can be used for training
to predict the trajectory of a shuttlecock hit by an opponent or to prevent an opponent
from predicting the trajectory of a shuttlecock hit by oneself. This can further help players
improve their skills.

4.3. Conclusions

This paper approached the novel task of predicting the trajectory of the shuttlecock in
a badminton match video and proposed a trajectory prediction method that uses informa-
tion about the shuttlecock’s position and the players’ positions and the players’ postures.
Experiments comparing the proposed method with the baseline method were conducted to
confirm the effectiveness of the proposed method. Furthermore, experiments with different
time-series models show that the LSTM used in this method achieves the highest accuracy.
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