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Abstract: The accurate localization of facial landmarks is essential for several tasks, including
face recognition, head pose estimation, facial region extraction, and emotion detection. Although
the number of required landmarks is task-specific, models are typically trained on all available
landmarks in the datasets, limiting efficiency. Furthermore, model performance is strongly influenced
by scale-dependent local appearance information around landmarks and the global shape information
generated by them. To account for this, we propose a lightweight hybrid model for facial landmark
detection designed specifically for pupil region extraction. Our design combines a convolutional
neural network (CNN) with a Markov random field (MRF)-like process trained on only 17 carefully
selected landmarks. The advantage of our model is the ability to run different image scales on the
same convolutional layers, resulting in a significant reduction in model size. In addition, we employ
an approximation of the MRF that is run on a subset of landmarks to validate the spatial consistency of
the generated shape. This validation process is performed against a learned conditional distribution,
expressing the location of one landmark relative to its neighbor. Experimental results on popular
facial landmark localization datasets such as 300 w, WFLW, and HELEN demonstrate the accuracy of
our proposed model. Furthermore, our model achieves state-of-the-art performance on a well-defined
robustness metric. In conclusion, the results demonstrate the ability of our lightweight model to filter
out spatially inconsistent predictions, even with significantly fewer training landmarks.

Keywords: facial landmark detection; convolutional neural networks; Markov random field

1. Introduction

Facial landmark detection is commonly used as a preprocessing step for tasks such
as face recognition, head pose estimation, emotion detection, and facial region extraction,
with a specific interest in pupil region extraction (our case of study) for investigating
inherited retinal diseases via pupillometry [1]. However, accurately recognizing predefined
key points on the human face remains an unsolved problem, although significant progress
has been made since its beginning in the 1990s by [2]. This is mainly due to different
sources of variability, such as unconstrained illumination, extreme head poses, exaggerated
expressions, occlusions, and out-of-plane configurations observed in the data. To address
this issue, generative models, discriminative models, and hybrid models are typically
employed, as described below. Facial landmark detection can be attempted using generative
models, such as the active appearance models (AAM) introduced by [3], which were later
adopted by [4], or using the active shape model (ASM) introduced by [5], which was later
adopted by [6].

A second category of models used to address this problem involves exploiting discrim-
inative models. This can be achieved through direct regression, as in [7], using heatmap-
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based CNNs, as proposed by [8], or through pixel-wise classification, as in [9]. Cascade
shape regressions, another variant of discriminative modeling, can also substitute for dis-
crete landmark estimation, where a set of regressors is learned to approximate the mapping
between an initial shape and the ground truth, as proposed by [10,11]. it is worth stressing
that recurrent neural networks can be exploited for facial landmark detection, as in [Recur-
rent neural network for facial landmark detection], but are usually outperformed by CNNs;
however, RNN performance can be considerably enhanced via bifurication techniques;
see [12–16].

Hybrid algorithms, as a third category, combine generative and discriminative ap-
proaches. For example, Ref. [17] exploits a CNN as a feature extractor to learn the input for
the optimization process of an ASM to ultimately detect landmarks. In [10], the authors
advocate face detection using the deformable parts model (PDM) combined with a cascade
shape regression using multiscale histogram of oriented gradients (HOG) features (also
utilized for registration techniques, as in [18]), by incorporating a local refinement for the
least accurate landmarks. In [19], a CNN combined with a conditional random field (CRF)
were jointly trained to capture the variations due to pose and deformation in order to
generate a structured probabilistic prediction of landmark locations.

Finally, Ref. [20], which was originally designed for human pose estimation, conducted
a joint training of a CNN and a Markov random field (MRF). The MRF validates the pairwise
relationships between the already-estimated landmarks by the CNN based on the so-called
learned conditional distribution of the location of one body part relative to another. In
their work, they restricted the success of adopting these learned conditional distributions
to the degree of their spatial constraint. More concretely, the set of potential positions
of one landmark relative to its neighbor must be spatially consistent with its contextual
limitations. As in their study case, spatial constraints can be majorly altered by back-facing
poses, where, for instance, the left shoulder is no longer in the southwest direction of the
nose. Moreover, extreme body poses are problematic, since they could lead to overlaps
between landmarks.

In our study, we utilized learned conditional distributions to confirm the spatial
consistency of pre-estimated landmark locations, motivated by three reasons. Firstly, unlike
human pose estimation, back-facing images in facial landmark datasets are considered
invalid and excluded. Secondly, extreme head poses are expected to result in fewer spatial
inconsistencies compared to extreme body poses. Lastly, upside-down frames are rare
in the training datasets we employed, and therefore not relevant to our inference case.
This confirmation process is referred to as the spatial model (SpatialModel). The initial
landmarks estimation is achieved via a multiscale heatmap-based CNN, referred to as
the landmark detector (LandmarkDetector). Our aim in combining these elements is to
enhance the ability to handle both the local appearance information around landmarks and
the global shape information they generate.

The next challenge that needs to be addressed is complexity. As we have seen, various
strategies can be employed to tackle facial landmark detection; however, the underlying task
is often overlooked, and models are constructed and trained without explicitly considering
it. In our opinion, designing a landmark estimator based on the underlying task could
drastically alleviate the model complexity.

Therefore, the computational complexity was reduced by taking three measures, as
explained above:

(i) The model was trained exclusively on 17 carefully selected landmarks preserving
the global shape of the face. Additionally, these landmarks placed more emphasis
on the pupil region, with 12 landmarks specifically positioned on the eyebrows and
eyes, as demonstrated in Figure 3.

(ii) Different image scales were run through the same layers instead of assigning a new
convolution layer for each scale.

(iii) SpatialModel runs only a subset of the available landmarks to validate their spatial
consistency, instead of running the full set of them.



J. Imaging 2023, 9, 104 3 of 17

Our combination of LandmarkDetector and SpatialModel serves as a means of elimi-
nating false positives, thereby increasing the certainty of LandmarkDetector with regard
to landmark locations. This is explained in detail in Section 4.3.1. To ensure that the
landmarks’ locations and their relative pose consistency are learned jointly, we introduce
a customized loss function that directly influences the CNN, as presented in Section 3.3.
In the following section, we explore the significance of CNN models, MRF-based models,
and their combinations for facial landmark detection. We introduce the model components
and their combination via a customized loss function in Section 3. Finally, in Section 4, we
present our model’s performance metrics, and show that we achieve a normalized mean
error (NME) of 3.3% and 4.1% for the 300w and WFLW datasets, respectively. In addition
to high accuracy, we achieve a state-of-the-art robustness performance, as evidenced by a
robustness metric by investigating NME for 90% of the predictions, and we report 4.0% for
the 300 w dataset.

2. Related Work

A successful facial landmark detection needs to address two main challenges: local
context distinguishability, which should be obtained from the surrounding area of the
subject landmark; and global compatibility, which should adhere to contextual spatial
constraints. To solve both problems, we propose a hybrid model that combines a CNN
with a generative model.

Although CNNs are effective in distinguishing local features due to the small size of
their low-order kernels compared to the input image, high-order kernels are not efficient in
learning global context due to the low resolution of the receptive fields they process.

Yue et al. (2015) in [21] demonstrated that feature quality gradually increases from
low to intermediary layers, then drops again when progressing towards the last layers.

In contrast, statistical models can effectively learn the higher-level constraints of
landmark configurations, which enables them to enforce global spatial consistency on a
given set of pre-estimated landmarks. To determine the characteristics of our model, we
briefly investigate a range of CNN-based approaches for facial landmark detection. We
then introduce our choice of the generative model.

2.1. CNN Characteristics

In this section, we provide a brief overview of CNN-based methods that have been
used to determine the characteristics that our proposed network should possess. Early at-
tempts by [22], and later by [23], involved performing cascade regression of facial landmark
locations using a multilevel convolutional network model. In their work, a multistage,
multi-input CNN was simultaneously executed on different subregions of a face-bounding
box, also known as patches. As the patches progressed to the next convolution stage, they
became narrower around the target landmark, resulting in progressively refined estima-
tions.

However, this coarse-to-fine prediction approach heavily relies on the accuracy of the
initial face detector and the cropping process around the subject set of landmarks, which
can lead to inaccurate results if the input image presents moderate-to-extreme head poses
or an out-of-frame part of the face. Hence, our proposed model does not rely on initial face
detection procedures to perform its task.

Our model’s next desirable feature is flexibility towards ablation, which refers to the
ability to handle inputs with missing landmarks. To better understand this feature and its
impact on the overall performance of landmark detection, we begin by exploring direct
regression-based CNNs. These models attempt to learn direct mapping from the input
image space to the landmark coordinates. However, in papers such as [22,24], the output
dimensionality of the network is fixed, which limits their ability to handle ablated frames
that may contain a variable number of landmarks. Additionally, ablated frames cannot
be integrated into the training phase of these models because the optimization criteria
require fixed-length ground-truth coordinates. Furthermore, highly nonlinear mappings
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are prone to poor performance compared to heatmap-based mapping, where the complexity
is reduced due to the proportional similarity between input and output spaces. In fact,
the performance of direct regression-based methods, such as the one proposed in [25],
was evaluated in Table 9 of [26], where it was outperformed by all mentioned heatmap-
based methods.

Furthermore, it is common for direct mapping CNNs to terminate with a flattening
layer, followed by a series of fully connected layers to downsample the data to meet the
landmark dimensionality in their 2D coordinate space, as in [22]. However, recent works
tend to substitute such heterogeneous networks with fully convolutional networks (FCNs),
where special convolution layers are adopted to achieve end-to-end convolutional learning
and inference, as extensively argued in [27]. The importance of adopting FCNs lies in their
ability to preserve the spatial structure of the input signal, opposite to flattening layers,
resulting in less complex mapping. Moreover, the 1D flattening of the signal necessitates
more parameters, making them more prone to overfitting. Finally, FCNs enable arbitrary-
sized input images, which provides another type of flexibility. For the aforementioned
reasons, we conclude that our chased CNN must belong to the FCN category.

It is worth noting that [28] was able to overcome the complexity of the learned map-
ping by using a CNN-FC network for facial landmark detection. This was achieved by
sequentially reducing the input space via splitting regions around the sought landmarks.
However, this approach expects a fixed number of landmarks, and therefore cannot effi-
ciently cope with ablation.

The following is a quick overview of FCN, which is the type of CNN we have chosen
to use.

In 2015, Ref. [29] successfully demonstrated the efficiency of FCN by transforming
the classification network into a classification and segmentation task, which was inter-
preted from an output heatmap. Since then, various approaches have derived different
varieties of FCN, which can be split into two main categories: encoder–decoder (such as
U-Net, introduced by [30], and Hourglass networks, introduced by [31]) and decoder-only
networks, which are also known as heatmap regression networks, as introduced by [32].
Encoder–decoder FCNs, originally introduced by [29], are usually adopted to generate
heatmaps with the same size as the input, which are generally used for pixelwise classi-
fication (PWC). However, for our purposes, we have chosen the decoder-only network,
which produces lower-size heatmaps that we interpret as a probabilistic indicator of the
locations of the facial landmarks. Therefore, heatmap regression is our adopted FCN
type among CNN-based regressions. Compared to direct regression, heatmap regression
commonly requires even fewer trainable parameters, since the target mapping is usually
less complex due to the same input and output image dimensionality. In addition, unlike
direct regression, heatmap regression can naturally handle amputated frames, which is
a source of variability that can be expected in real-life data and free-head pose tracking
experiments due to their flexibility toward input and output dimensionality.

2.2. Postprocessing by Generative Models

Generative models have been found to be useful for deep learning, as shown by [33].
They are employed to refine the initial estimates of the CNN and ensure the global consis-
tency of their final output. Spatial consistency constraints are modeled by incorporating
information about the interconnectivity of the facial landmarks in the learning process.
Graphical models, including MRF or CRF, are popular approaches for integrating interac-
tions between landmarks. These models capture geometric properties such as shape, spatial
relationships, and connectivity among landmarks. Specifically, they estimate conditional
probabilities of one landmark given the rest of the predicted landmarks, and the degree of
compliance of the estimated probability with the implicit conditional probabilities from the
training data is a measure of the spatial consistency. However, integrating graph-based
models with CNN to build an end-to-end system for learning and inference has been chal-
lenging, and the implementation details must be carefully studied. One issue is deciding
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whether to adopt an approximation, as in [19], or to integrate the exact formulation of the
probabilistic graphical model, as in [20].

In this work, we adopt an MRF-like process to maintain a low complexity level of this
postprocessing step. We propose a simplified approach for conditional probability learning,
leveraging the Gaussian mixture model tool. Furthermore, we suggest our approach for
integrating the statistical model into the training framework via a customized loss function.

3. Materials and Methods

Our proposed method for facial landmark detection exhibits two major components:
the landmark detector (see Section 3.1), which estimates the location of landmarks based
on heatmaps that represent the probability of their occurrence at a specific position; and the
spatial model (see Section 3.2), which verifies the pose consistency of a landmark relative to
the other ones in accordance with a Markov random field-like graph in the postprocessing
step. Finally, we introduce the loss function, which enables simultaneous training of both
components in Section 3.3. As studied by [34], a useful feature map is a representation
that includes the following:

(i) High-level features generated from a sufficiently deep network to encode high-level
object knowledge;

(ii) Fine spatial details around the object in order to learn its discriminativeness;
(iii) An explicit internal representation of entities and their relationship to associate

components with one another.

Our hybrid model should therefore handle the aforementioned requirement through
its components. More concretely, the landmark detector is designed to handle (i) and (ii),
whereas the spatial model is responsible for (iii).

3.1. Landmark Detector

The CNN-based landmark detector, as presented in Figure 1, is designed to generate
heatmaps (one for each predefined landmark) reflecting the probability distribution of a
specific landmark being located at a specific position.

64

128

256 512

64

128
256 512

64

128
256 512

.

512 512

Conv Layer

Batch Normalization

ReLU

Max Pooling

Softmax

Figure 1. The proposed CNN: transparent effect means no new layer; the average is computed at the
green circle level (best viewed in color).

Our depicted network exhibits two subparts (S1) and (S2):

(S1) Each image is processed on three different scales by four consecutive convolutional
blocks, which essentially extract low-order features.

(S2) Subsequently, the average of the results of the previous subpart represents the input
for the remaining convolution layers, which extract the higher-order features to
ultimately generate LandmarkDetector’s output.

This architecture, via its two subparts, is designed to equip our LandmarkDetector
with discriminative local features simultaneously with enough high-level knowledge, as
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explained in Section 3.1.2. Moreover, the distributed design of (S1) tends to explicitly learn
scale invariance to efficiently deal with variations in the sizes of the objects, as explained in
the forthcoming subsection.

3.1.1. Scale Variance Handling

According to [35], scale invariance cannot be considered an intrinsic feature of CNNs,
and is strongly affected by image resolution. Therefore, if we want to pursue this feature,
we must explicitly teach our model to learn scale-variant information. This can be achieved
by exposing the model to this type of information at different scales.

The first and most straightforward method to achieve this is by augmenting the
training data using scale jittering. This technique partially and arbitrarily zooms images
within a predefined scale range. While this approach can be seen as a way to expose the
model to more data and reduce overfitting, Ref. [36] showed that it leads to the model
requiring more scale-variant versions of the same learned feature instead of learning a
scale-invariant feature. This increases the model size, especially when many scale levels
are introduced, and results in overfitting.

The second approach is to train separate CNNs at different scales and average their
estimations for the final output. However, this approach suffers from redundancy, particu-
larly for scale-invariant or high-level features, and cannot scale up if a large scale range
is expected.

To overcome these limitations, we designed (S1) to systematically incorporate each
data point at three different scales through the same layers. This technique aims to push
the first convolutional blocks of the network to build scale-invariant representations out
of scale-variant features. By exposing our model to each data point at different scales, we
can avoid introducing new convolutional layers and build more efficient and effective
scale-invariant representations.

3.1.2. Low-/High-order Feature Compromise

While low-order features have a limited interpretation of objects, high-order features
offer a more generalized understanding due to their larger receptive field. However, in-
creasing the receptive field by using size reduction layers in the CNN leads to deteriorated
spatial resolution due to multiple subsampling steps, resulting in failure to provide lo-
cal context variation. This is particularly challenging for very deep networks, as they
struggle with local distinguishability. To address this issue, we widen our network in-
spired by [37], to promote the depth of the learned feature and distinction of the local
context simultaneously.

To achieve a fine-spatial, sufficiently deep, multi-scale handling feature map, we
adopt a CNN with a distributed architecture that runs the Gaussian pyramid of every
image, as illustrated in Figure 1. We note that the shallow scale-distributed architecture of
subpart (S1) of our LandmarkDetector preserves spatial affinity, enabling us to maintain
local discriminativeness. We equip the second subpart (S2) of our network with high-
dimensional convolutions, essential for learning high-order features.

Finally, our network generates heatmaps that present landmark-specific unary distributions,
indicating the probability of the presence of a subject landmark at each pixel’s coordinates.

We demonstrate in the following section, Section 3.2, how these heatmaps are fed to
SpatialModel to perform a spatial consistency check of each detected landmark relative to
a predefined set of other landmarks.

3.2. Spatial Model

Given the initial landmark’s unary distributions estimated by LandmarkDetector,
and revealing their locations, we postprocess them via an MRF-like process to validate
their relative spatial consistency.

For this purpose, we treat every landmark i via a landmark-specific graph model Gi,
built out over a predefined set of its neighbors. Thereafter, we run the MRF-like process
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over the vertices of Gi to catch spatially correlated features characterizing their mutual
influences. In this process, we exploit the learned conditional distributions from the training
data, as presented by [38] and detailed in the next section:

3.2.1. Learned Conditional Distribution

The learned conditional distribution for a pair of landmarks (i, condi), noted pi|condi
,

is determined offline before starting any model training procedures. For each image, we
translate the landmark i with the same amount that would shift its conditional landmark
condi, located at (ucondi

, vcondi
) to the frame center. We quantify this translation amount by

Ti|condi
= center of frame− (ucondi

, vcondi
) (1)

After landmark coordinates are transformed, conditional probabilities were built for every
i|condi combination via Gaussian mixture model (GMM). Usually used as a classification
technique, as in [39], we exploited GMM to fit the data points to a mixture of a finite number
of Gaussian distributions, which is also called the order, with unknown parameters. Order
determination was achieved via an exhaustive investigation of the fitting performance
based on predefined scores. For each combination i|condi, the GMM order was established
as the mean of the minimum AIC and BIC scores. Typically, the GMM order ranged from 7
to 9.

Note that the resolution of the learned conditional probabilities was twice the resolu-
tion of the estimated heatmaps. Figure 2 illustrates the conditional probability plmouth|nose,
revealing the locations of occurrence of the left extremity of the mouth when the nose tip
was located on the frame center center120×180.

0 

20 

40 

60 

80 

100

0 20 40 60 80 100 120 140 160 

Figure 2. plmouth|nose: The left mouth extremity spatial distribution when nose landmark occupies the
heatmap center (+) (Best viewed in color).

In [38], the pre-estimated heatmap of a landmark was filtered by the learned con-
ditional distributions of its direct neighbor according to an approach analogous to the
sum–product belief propagation algorithm introduced by [40]. In our case, we explore a
broader neighborhood space for validating the spatial consistency of the subject landmark.

3.2.2. Neighborhood Space Definition

To define neighborhood systems for the MRF as a neighborhood-based graph model,
we proceed as follows: Let S = {1, 2, ..., n} be the set of n landmarks and i ∈ S a specific
landmark. Then, the associated local neighborhood Ni(r) for the landmark i given a
radius r > 0 reads as

Ni(r) = {i′ ∈ S : dist(i, i′) ≤ r, i′ 6= i}, (2)

where dist(i, i′) is the Euclidean distance between i and i′. In addition to the local neighbor-
hood, we consider the fixed set of global reference landmarks Ng ⊂ S, which encompass
distinct particularly conspicuous facial landmarks.
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Finally, our customized neighborhood Nu(i) is the union of Ni(r) with Ng, such that
Nu(i) = Ni(r) ∪ Ng as detailed in Figure 3 (Image by Vincent Angler (CC BY-2.0), https://
commons.wikimedia.org/wiki/File:Croydon_facelift_2012.jpg (accessed on 1 May 2023)).

It is worth noting that the choice of conditional landmarks obeys the following rules:

• Ni(r) presents the local consistency challenge that prioritizes the nearest neighbors
over farther ones and provides an image of the local state around the subject landmark.

• Ng presents the global structure of the human face that prioritizes some landmarks,
which we call central landmarks, over others. Ng roughly indicates the smallest set
that describes most of the face structure.

Figure 3. MRF Graph Gi for a specific landmark (red) linked to its local neighborhood Ni(r) (green)
and to the global one Ng (yellow); the rest of the landmarks are discarded for this case (blue) (best
viewed in color).

The landmark-specific neighborhood sets now present our structure elements of the
graph model, over which we run our MRF-like process.

3.2.3. Landmark-Specific Graph Definition

Every landmark i is treated in SpatialModel via a graph Gi built over the subject
landmark and its neighbor set Nu(i), and executed by the MRF-like process.

The vertices of each landmark-specific graph are confounded with the set of landmarks
{i ∪ Nu(i)}. The edges of the graphs, however, are restricted in order to link the subject
landmark vertex to its neighbors’ vertices and discard every interneighbor relationship.
Note that this measure drastically alleviates SpatialModel’s complexity, as it runs an it-
erative process proportionally dependent on the degree of the treated graph (number of
edges). Based on our graphs’ definitions, fully connected subgraphs, also called cliques,
over which the MRF-like process should be executed, are restricted to bivertex graphs (i, j)
where j ∈ Nu(i)

Now that we have defined our landmark-specific graphs Gis over the landmark-
specific neighborhood Nu(i), in the following, we will discover the adopted process and its
approximation for inferring the marginal probabilities of landmarks’ locations given the
locations of a subset of other landmarks.

https://commons.wikimedia.org/wiki/File:Croydon_facelift_2012.jpg
https://commons.wikimedia.org/wiki/File:Croydon_facelift_2012.jpg
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3.2.4. SpatialModel Implementation

For a landmark i ∈ S, we denote by xi = (ui, vi) ∈ R2 the random variable associated
with its spatial coordinates. We also denote by p(xi) the unary marginal probability, indi-
cating that a landmark i is located at the site xi. For simplicity, we write pi to indicate p(xi),
and p̂i is its approximation by SpatialModel. Ref. [20] adopted the following potential-
like function, where the unary marginal probability of a landmark i is inferred given the
position of all other landmarks:

p̂i =
1
Z ∏

j∈Nu(i)
pi|j ∗ pj + bj→i (3)

where pi|j is the learned conditional prior of the pairs of landmarks (i, j), bj→i is a bias term
used to describe the background probability for the message passing from a landmark j
to i, ∗ presents the convolution operation, and Z is a normalization function that will be
later discarded in the model approximation presented in (4). Similarly to [20], we adopt
Equation (3) and run it over every clique (i, j) /j ∈ Nu(i) in Gi.

The SpatialModel task can be summarized as an incremental filtering process of
LandmarkDetector’s assumption against its predefined neighbors to consolidate or inhibit
this assumption, as detailed below.

First, we define lsp as the log of the Softplus equation, where Softplus(x, β) = 1
β ln(1+

eβx). lsp is applied to pi to convert it into an initial marginal energy mei = lsp(pi + ε), such
that ε > 0.

Then, for every predefined conditional landmark (also called neighbor) in Nu(i),
we convolve pi|condi

with pcondi
after being Softplus-transformed, and before being log-

transformed. The acquired quantity is iteratively added to the initial quantity mei. The
final quantity is exponentially transformed to return back from the initially applied log-
transformed space.

The described process can be summarized by the following equation:

p̂i = exp
(

mei + ∑
condi∈Nu(i)

ln[Softplus(pi|condi
)So f tplus(pcondi

) + bias + ε]
)

(4)

Note that (4) does not quantify a probability anymore due to the bench of approximations
that were applied to (3). For simplicity, we rather preserve the p̂i notation to indicate
SpatialModel’s output. The outer multiplication in (3) is substituted with the log-space
addition, which controls the scale of the resulting quantities, and hence improves the
numerical stability. In addition, the Softplus function is introduced to maintain a strictly
greater-than-zero convolution output, avoiding numerical issues for input quantities of
the log stage. The 2D convolution in (4) can be perceived as an incremental update of a
landmark’s position by its neighbors. The update’s level is relative to the degree of agree-
ment between the intensity at the estimated landmark location in pi to their corresponding
pi|j. In other words, SpatialModel searches for the best landmark’s location that agrees
simultaneously with LandmarkDetector’s estimation, as well as with its neighbors based
on their relative conditional probability pi|j.

For a better adaptation to the LandmarkDetector model, SpatialModel was imple-
mented as convolutionally as possible. In fact, we leveraged the grouped convolution
function provided by PyTorch to simultaneously convolve each learned conditional distri-
bution to their corresponding estimated one.

Similarly to LandmarkDetector, it is worth stressing that SpatialModel also produces
landmark-specific heatmaps, revealing their locations. However, we only introduced the
coordinate of their maximum to the learning process combined with LandmarkDetector’s
output to build a heterogeneous loss function, introduced in Section 3.3. Therefore,
the heatmaps positions and their spatial validity were simultaneously evaluated after
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being provided by LandmarkDetector’s predicted heatmaps and the Cartesian coordinates
of SpatialModel, respectively.

3.3. Loss Function

As proposed earlier, the adopted loss function is a combination of two terms. The first
one evaluates the accuracy of LandmarkDetector in estimating the positions of the facial
landmarks. The second term penalizes the detected landmarks’ deviation from the anatom-
ical constraints learned by SpatialModel. Therefore, the combination of LandmarkDetector
and SpatialModel is evident at the loss function level.

To evaluate the accuracy of LandmarkDetector, we employed the adaptive wing loss
function proposed by [41]. While the mean-square error (MSE) is commonly used to
compare two heatmaps, it fails to distinguish between foreground and background pixels.
In fact, MSE, as a distance-based loss function, will produce low error values whenever the
mass background pixels, i.e., pixels far from the landmarks, are satisfactorily estimated,
and therefore tends to dominate the loss value and results in fuzzy heatmaps around the
ground-truth locations. Our adopted function, however, is specifically designed to handle
this issue. It gives more importance to the foreground pixels’ error in the early stages of
training, where the overall error is high, then rapidly decreases when the model is close to
convergence, i.e., the error is within the predefined tolerances. Meanwhile, the influence of
the background pixels is linearly proportional to the overall error. The AWing loss between
two pixel values, y and ŷ, is defined as follows:

AWing(y, ŷ) =

{
ω ln(1 + |y− ŷ|α−y), if |y− ŷ| < θ

A|y− ŷ| − C, otherwise
(5)

where y and ŷ are the pixel values of the ground-truth heatmap and the predicted heatmap,
respectively. α, ω, ε, and θ are positive values, to which we assign the values suggested in
the original paper, i.e., 2.1, 14, 1, 0.5, respectively.

A = ω
1

1 + θ
ε

(α−y)
(α− y)

(
θ

ε

)(α−y−1) 1
ε

C = θA−ω ln

(
1 +

(
θ

ε

)α−y
)

The previous parameters were carefully defined to make the loss function continuous and
smooth at |y− ŷ| = θ. Note that the exponential term α− y adapts the shape of the loss
function to y and smooths the function a 0.

Without loss of generality, we redefine the AWing loss between two heatmaps, each
containing N pixels, as the mean of all their pixel errors, as follows:

AWing(hm1, hm2) =
1
N ∑

(y1,y2)∈hm1×hm2

AWing(y1, y2) (6)

Coming to the second part of the loss function, we run the mean square error (MSE) between
the SpatialModel prediction and the ground-truth landmark coordinates. Even though,
as argued above, MSE is by no means the optimal loss function for heatmap regression, it is
worth stressing that the calculated error reveals the consistency metric rather than accuracy.
In this case, the gradient linearity of MSE enables treating inconsistencies according to
their magnitude. While this linearity is disapproved for accuracy evaluation as it leads
to convergence, even when many pixels still have small errors, small inconsistencies,
on the other hand, should not cause the same effect on the overall performance of the
model. Based on the validation error of the LandmarkDetector model vs. the mentioned
combination, one could claim that enforcing facial parts constraints incites the model to
enhance its prediction. The aim behind SpatialModel integration is not about seeking higher
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accuracy (which should be guaranteed by the CNN alone), but rather, about detecting
and penalizing false positives. The joint learning of the consistency and the accuracy is
translated by the following heterogeneous loss function, which combines the provided
metric of SpatialModel with the LandmarkDetector estimations.

The final loss quantity of a predicted landmark and its ground truth is summarized
as follows:

Loss = (1− β)AWing(hm, hmld) + β|x− xsm|22 (7)

where β is set to 0.1. The previous equation presents a weighted sum between the AWing’s
output, comparing the ground-truth heatmap hm to the predicted one by LandmarkDetector,
hmld, on one side, and the square of the L2 distance between the ground-truth landmark
coordinates x and the predicted coordinates by SpatialModel, xsm, on the other side.

4. Results and Analysis

In this section, we present the training experiments and their resulting outcomes on the
adopted datasets. Two different experiments were carried out with the aim of investigat-
ing the impact of the model’s two components (LandmarkDetector and SpatialModel)
on the overall accuracy in three different datasets. We started by training only the
LandmarkDetector; then, we launched a second training experiment combining both mod-
els’ components. Our data enhancement procedure is extensively addressed in Section 4.1.
In Section 4.2, we present the training details in terms of the adopted hyperparameters
such as the input size, the batch size, the learning rate, the number of epochs, and the
data augmentation details. Finally, the model’s performance was qualitatively tested, in
addition to a quantitative evaluation based on well-defined metrics, as can be consulted
in Section 4.3.

4.1. Data Enhancement

Common facial landmark databases provide a significant number of annotations (e.g.,
98 landmarks for WFLW; 68 for 300w and LFPW), which is generally useful for tasks such
as facial recognition or facial expression analysis. On the other hand, tasks such as facial
parts localization (our study case) or head pose estimation would obviously require fewer
annotations. Driven by the overall complexity alleviation of the process, we decide to train
our model with a limited yet sufficient amount of landmarks, annotating well-defined
points, and preserving the global facial shape. In other words, the number of landmarks
should be defined by a lower limit, below which the global facial outline will be drastically
affected. The significance of this lower bound emerges from the “Sufficient Landmark
Density” concept, where studies analyze the dependency between the optimization quality
and the number of landmarks constituting an active shape mode. In fact, Refs. [42,43]
showed that ASM must be modeled with a sufficient landmark density to reach some fitting
accuracy level.

Our initial thoughts were to simply select a subset from the provided landmarks that
fulfilled our needs.

However, after investigating the exploited datasets, we found out that the landmarks
form contours around facial parts, rather than annotating well-defined points. In Figure 4
(Image from the HELEN dataset, http://www.ifp.illinois.edu/~vuongle2/helen) (accessed
on 1 May 2023), one can notice how the labeling process is meant to annotate the upper and
lower lip contours, which do not necessarily result in clear mouth extremity landmarks. In
addition, nose tipsn as well as the pupils’ centers, were absent among annotations.

Consequently, we enhanced the annotation of the training datasets with five additional
well-defined landmarks: the two pupil centers, the nose tip, and the two mouth extremities.
This process generated 17 fully defined facial landmarks, as illustrated in Figure 3.

http://www.ifp.illinois.edu/~vuongle2/helen
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Figure 4. Examples of inconsistent labeling, where the same color should present the same facial land-
mark. However, the mouth extremity is presented in pink ((left) image) and in yellow ((right) image).
A zoom of the region is presented in the second row (best viewed in color).

4.2. Model Training

Our network was evaluated on standard benchmarks for facial landmark estimation,
namely the 300w dataset presented by [44], HELEN by [45], and the WLFW by [46]. The
model was trained from scratch without any transfer learning procedures and with a
learning rate of 10−4, which was reduced to 10−5 in the 25th epoch and further reduced to
10−6 in the 40th epoch. We used a batch size of 16 images and adopted the Adam algorithm
from [47] as the optimizer, with β1 = 0.9 and β2 = 0.999. The ground-truth heatmaps were
created by inserting a 3× 3 Gaussian kernel around the annotated joint coordinates. For
comparison purposes, LandmarkDetector and then the LandmarkDetector–SpatialModel
combination were trained for 120 epochs separately. The stopping criterion for the training
process was 10 successive epochs without any enhancement of the training loss. Our data
augmentation protocol consisted of an affine transform to each image of the current input
batch. A uniform distribution was adopted to randomly set a scaling parameter between
[1.05, 1.5], a translation parameter between 0% and 10% of the image’s width and height,
and a rotation parameter between [−20, 20] degrees. Horizontal flipping was applied, with
a probability of 0.5 at each image individually.

4.3. Model Evaluation

The model performance is first investigated qualitatively in Section 4.3.1. Thereafter,
we propose our quantitative evaluation of the model’s performance in Section 4.3.2.

4.3.1. Effect of Filtering on LandmarkDetector

To better illustrate the impact of the spatial model mechanism on the initial heatmap
estimations, we introduced a strong false positive signal by adding a stain located some
pixels away and having the same intensity as the absolute maximum (the estimated land-
mark’s location) of the heatmap, as presented in Figure 5: One could notice that the spatial
model SpatialModel not only suppressed the introduced outlier, but also generated a less
blurry and less dilated blob around the landmark’s location. Such filtered signals should
enhance the training performance once introduced to the backpropagation algorithm for
LandmarkDetector training.
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Figure 5. (a) LandmarkDetector’s output, (b) outlier introduction, (c) SpatialModel’s output (best
viewed in color).

4.3.2. Quantitative Evaluation

For accuracy evaluation, and based on the percentage of correct keypoints (PCK),
defined by [48], and inspired by its adaptation, as in [49], we denoted by PCKp the PCK
relative to the distance between two pupils’ centers: the left pupil center (LPc) and right
pupil center (RPc) landmarks. We defined the threshold for the estimation success of a
landmark as 10% of the current interpupillary distance.

The PCK for landmark i at frame t is calculated as follows:

PCKpi(r) =
100
N

N

∑
t=1
‖xt∗

i − xt
i‖2 ≤ 0.1r2

t (8)

where rt = ‖xt
lpc − xt

rpc‖ and xt∗
i , xt

i are the estimated and the ground-truth landmarks
locations, respectively, and N is the number of the adopted frames.

In Table 1, we present the PCKp metric for five different landmarks, namely the left
pupil center LPc; right pupil center, RPc; nose tip, NT; left mouth extremity, LMe; and right
mouth extremity, RMe, for the above-mentioned datasets.

Table 1. Percentage of correct keypoints, PCKp, for the 5 main landmarks for different datasets.

LPc RPc NT LMe RMe

300 w 98.1 99.03 94.3 97.1 97.6
HELEN 99.0 99.4 98.4 96.4 98.7
WLFW 95.31 96.5 93.3 92.8 91.6

Similarly to PCK, we calculated the median of the normalized mean error (NME),
which is normalized by the interpupillary distance, performed for the 300 w and WFLW
datasets, and presented on the second row in Table 2. Even though our model’s perfor-
mance outperformed some approaches, we were slightly under the state-of-the-art accuracy
reported by [50] by 2.96%.

In order to allow a more exhaustive investigation of our model’s performance, in Figure 6,
we present the cumulative point-to-point error distribution normalized by the interpupil-
lary distance for the five above-mentioned landmarks for the 300 w and WFLW datasets. By
comparing Figure 6 to the reported cumulative distributions by the references mentioned in
Table 2, we can again identify the effect of the SpatialModel in dealing with false positives.
In fact, for the 300 w dataset, we can spot that on average, 90% of the detected landmarks
fall within 4% error. By extracting this same parameter, whenever available, from every
reference in Table 2, we can report that we overcame all of them, as summarized in the
third column from Table 2, and we achieved state-of-the-art performance for this parameter.
Accordingly, we can again affirm that the postprocessing procedure helped to decrease the
false positive occurrence.
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Table 2. Median of NME for (300w+WFLW) datasets and NME for the first 90% of (300 w).

Method NME (300 w, WFLW) NME < 90% (300 w)

LAB [46] 5.8, 5.27 6.5

MERGET [8] 5.29 (IBUG) 4.5, 7 (IBUG)

DVLN [51] 4.45, - 5.5

MTAAE [52] 4.3, 5.18 -

ODN [53] 3.56, - 9

HG-HSLE [54] 3.28, - 4.7

PIPNET [55] 3.19, 4.31 -

CE-CLM [56] 3.15, - 4.5

DTLD [50] 2.96, 4.05 -

OURS 3.3, 4.1 4.0

Figure 6. The cumulative point-to-point error distribution normalized by the interpupillary distance
for LP center RP center, NT, LM extremity, and RM extremity, respectively (best viewed in color).

5. Conclusions

In this work, it was demonstrated that integrating conditional probabilities from train-
ing data into a spatial model significantly improves the performance of the convolutional
facial landmark detector. The consistency check performed by this spatial model enabled
the training of the CNN on only 17 landmarks, leading to a lightweight model. Due to the
carefully selected landmarks specifically focusing on the pupil region, this model allows
for pupil region extraction for a further pupil size estimation from an unconstrained head
pose. Training and inference of our model use ordinary hardware at almost real-time fps,
allowing for its use in real-time pupil size estimation.
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