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Abstract: Histopathology image analysis is considered as a gold standard for the early diagnosis
of serious diseases such as cancer. The advancements in the field of computer-aided diagnosis
(CAD) have led to the development of several algorithms for accurately segmenting histopathology
images. However, the application of swarm intelligence for segmenting histopathology images is
less explored. In this study, we introduce a Multilevel Multiobjective Particle Swarm Optimization
guided Superpixel algorithm (MMPSO-S) for the effective detection and segmentation of various
regions of interest (ROIs) from Hematoxylin and Eosin (H&E)-stained histopathology images. Several
experiments are conducted on four different datasets such as TNBC, MoNuSeg, MoNuSAC, and LD
to ascertain the performance of the proposed algorithm. For the TNBC dataset, the algorithm achieves
a Jaccard coefficient of 0.49, a Dice coefficient of 0.65, and an F-measure of 0.65. For the MoNuSeg
dataset, the algorithm achieves a Jaccard coefficient of 0.56, a Dice coefficient of 0.72, and an F-measure
of 0.72. Finally, for the LD dataset, the algorithm achieves a precision of 0.96, a recall of 0.99, and
an F-measure of 0.98. The comparative results demonstrate the superiority of the proposed method
over the simple Particle Swarm Optimization (PSO) algorithm, its variants (Darwinian particle
swarm optimization (DPSO), fractional order Darwinian particle swarm optimization (FODPSO)),
Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D), non-dominated sorting
genetic algorithm 2 (NSGA2), and other state-of-the-art traditional image processing methods.

Keywords: nature-inspired algorithms; particle swarm optimization; multiobjective algorithms;
image segmentation; thresholding; histopathology

1. Introduction

Histopathology is a branch of biology which deals with the examination of diseased
tissues under a microscope to diagnose diseases [1]. Histopathology is useful in diagnosing
cancerous conditions, identifying the stage of cancer and other inflammatory diseases.
Though histopathology image analysis by pathologists plays a critical role in the early
diagnosis of cancer, analysing a huge amount of tissue images under a microscope is a
tedious and time-consuming task. This could further be hindered due to ambiguous regions
in the histopathology images, inaccuracies in the devices, and human error. In recent times,
digital pathology coupled with advancements in computer-aided diagnosis (CAD) systems
is revolutionizing the area of histopathology. CAD systems are automated image analysis
systems that can assist medical practitioners. Detection and segmentation of regions of
interest (ROIs) from whole-slide images (WSIs) are some of the core operations of CAD
systems in histopathology image analysis.

The literature contains a variety of histopathology image segmentation techniques,
including traditional methods as well as deep learning methods used in CAD systems [2].

J. Imaging 2023, 9, 78. https://doi.org/10.3390/jimaging9040078 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging9040078
https://doi.org/10.3390/jimaging9040078
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-1773-8779
https://orcid.org/0000-0001-6897-6243
https://doi.org/10.3390/jimaging9040078
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging9040078?type=check_update&version=2


J. Imaging 2023, 9, 78 2 of 26

Traditional image processing methods, such as thresholding, region growing, clustering,
watershed, active contour models, neural networks, and wavelet transforms, have been
widely used for histopathology image segmentation [3–5]. Recently, deep learning al-
gorithms have exhibited their capacity to capture essential features for efficient image
segmentation; however, the performance of deep learning models is heavily dependent
on the quality and quantity of training data and the amount of training time. The lack of
huge annotated histopathology image data is a major challenge in applying deep learning
models for histopathology image segmentation [4].

Thresholding is a simple and effective traditional image segmentation technique. In
thresholding, an input image is divided into multiple images containing various regions
based on threshold values. In multilevel thresholding, k threshold values are used to divide
the image into k + 1 images with several distinct regions. The optimal threshold is the best
intensity value that segments the ROIs from the image accurately. Traditionally, the optimal
threshold is identified by applying each intensity value of the image as a threshold value
and then comparing the segmentation result. Thus, identifying the optimal threshold value
is a complex and time-intensive task.

Another effective method widely used in the literature is to treat the problem of find-
ing the optimal thresholds as an optimization problem and solve it using nature-inspired
optimization algorithms. If the optimization problem uses single objective function it
is called as a single-objective optimization problem (SOP). An optimization problem
with more than one objective function is called a multiobjective optimization problem
(MOP) [6–8]. The particle swarm optimization (PSO) algorithm is a nature-inspired opti-
mization algorithm. It was developed by Kennedy and Eberhart (1995) [9], inspired from
the natural behaviour of flocks of birds and schools of fish. PSO is a population-based
stochastic algorithm used to solve SOPs based on the intelligent, coordinated movement of
a swarm of particles. Multiobjective particle swarm optimization (MOPSO) is a variant of
the PSO algorithm which is used to solve MOPs [10,11]. MOPSO has several advantages
over PSO, including its ability to optimize multiple objectives, maintain diversity in the
population, achieve better convergence to the true Pareto-optimal front, provide a range of
solutions that represent the trade-off between the conflicting objectives, and being easy to
implement. Moreover, the optimization accuracy of MOPSO is comparatively higher than
a single-objective PSO.

Hence, this work adopts a simple, traditional approach to develop a CAD system for
histopathology image detection and segmentation by combining the results from multilevel
image thresholding and the superpixel algorithm. The optimal thresholds for multilevel
histopathology image thresholding are obtained by modelling the thresholding problem as
a MOP and solving the MOP using MOPSO. The reasons behind resorting to traditional
approaches, such as thresholding and superpixel algorithms, for histopathology image
segmentation are the following: (a) they are simple yet efficient, (b) they perform reasonably
well even on small-to-medium-sized datasets, (c) the segmentation results produced by
these algorithms are also comparable with several state-of-the-art methods, and (d) unlike
deep learning models they do not require special hardware and also consume less time.
Though thresholding is sensitive to grayscale inhomogeneities in the image, augmenting it
with the result of the superpixel algorithm helps to achieve accurate segmentation. The
superpixel algorithm is a simple, linear, iterative, clustering algorithm [12]. Superpixel
algorithms are used in computer vision and image processing to group adjacent pixels
into perceptually meaningful atomic regions. The resulting regions are typically more
compact and uniform in colour and texture than individual pixels. Moreover, the superpixel
algorithm is guided by the threshold value output by the multilevel thresholding algorithm
to identify the correct ROIs. Thus, it could be seen that both the algorithms complement
each other.

The proposed CAD system uses the multilevel multiobjective particle swarm opti-
mization guided superpixel (MMPSO-S) algorithm. It consists of the following stages:
pre-processing, segmentation, and post-processing. Initially, the RGB Hematoxylin and
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Eosin (H&E)-stained digital images from the histopathology image datasets are given as
input to the system. In the pre-processing stage, the input images are first converted to
grayscale and the contrast of the images is enhanced. The pre-processed images are then
fed to the segmentation stage. This stage comprises two algorithms: (a) a multilevel thresh-
olding algorithm called multilevel multiobjective particle swarm optimization (MMPSO),
which uses the MOPSO algorithm and (b) a superpixel clustering algorithm which uses
one of the thresholds obtained from the MMPSO algorithm to refine its output. The output
segmentation maps from both the algorithms are combined together to provide the seg-
mented ROIs. The final segmentation maps are then passed to the post-processing stage,
which generates the final segmented image by eliminating the artifacts.

Stated below are the contributions of this work:

• The MMPSO algorithm with three different objective functions is used to identify the
optimal threshold values for multilevel image thresholding. The MOPSO algorithm
is applied for the first time in the field of histopathology image segmentation for
multilevel image thresholding. This framework opens a new avenue for researchers to
propose segmentation models which include more than one segmentation criterion. It
should be noted that in the past, only the PSO algorithm with a single objective func-
tion has been used for the segmentation of nuclei regions from histopathology images;

• The proposed MMPSO-S algorithm combines the segmentation output of the MMPSO
algorithm and the superpixel clustering algorithm; specifically, the threshold values
obtained from the MMPSO algorithm are used to refine the output of the superpixel
algorithm. This combined algorithm helps to improve the segmentation results;

• The proposed algorithm is applied to four different H&E-stained histopathology
datasets for the detection and segmentation of various ROIs;

• The performance of the proposed method is compared with other single and multiob-
jective algorithms and also with the existing work performed on the datasets.

The rest of this paper is organized as follows. Section 2 describes the related works.
Section 3 describes the datasets used for this work. The various stages of the proposed
method are explained in Section 4. Section 5 discusses the experimental results obtained.
The paper is concluded in the final segment Section 6.

2. Related Works

This section describes the related works in the field of image segmentation using PSO,
multiobjective algorithms and superpixel algorithm.

2.1. Image Segmentation Using PSO and Its Variants

PSO is a population-based stochastic optimization algorithm that has been widely used
for solving various optimization problems. In the context of image segmentation, PSO has
been applied to find the optimal threshold values for segmentation. Various modifications
to PSO have been proposed to improve its performance for image segmentation, such as
Darwinian particle swarm optimization (DPSO) and fractional order Darwinian particle
swarm optimization (FODPSO).

Jothi and Rajam [13] proposed a PSO-based Otsu’s multilevel thresholding method
for the automatic segmentation of nuclei from the UCSB bio-segmentation dataset. Otsu’s
thresholding was considered as an optimization problem. Precision, recall, and F-measure
were used as the evaluation metrics, all of which had high values for the dataset. Liu
et al. [14] proposed a PSO-based image clustering approach with intra-cluster distance as
an optimization function. Breast cancer histopathology images with magnification levels
40×, 100×, 200×, and 400× were used for checking the effectiveness of the proposed
approach. The experimental analysis showed that PSO performed better than the genetic
algorithm (GA) and K-means.

A number of studies have been carried out using PSO for the segmentation of images
in other fields. Chakraborty et al. [15] developed an improved PSO-based multilevel thresh-
olding to identify the optimal thresholds. This algorithm was tested on some grayscale
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images and medical images other than histopathology images. It was found to provide
better fitness value and lesser CPU time when compared to existing algorithms, such as
modified artificial bee colony, cuckoo search, firefly, PSO, and GA. Another improved
image segmentation method based on dynamic particle swarm optimization was proposed
by Li et al. [16]. This algorithm was applied to a large set of real crystal growth images.
The experimental results showed that the proposed algorithm can successfully separate
the texture of crystal growth images and provide high robustness. A PSO-based multilevel
thresholding using Kapur’s and Tsallis entropy was explored by Saini et al. [17]. This
method was applied to normal brain magnetic resonance imaging (MRI). From the analysis,
it was observed that Tsallis entropy worked more efficiently for the segmentation of cerebro
spinal fluid and white matter regions when compared to Kapur’s entropy. Peng et al. [18]
proposed an improved PSO-Fuzzy C-means (PSO-FCM) algorithm for the segmentation
of images obtained from a standard image dataset. Experimental results showed that this
clustering segmentation algorithm provides better accuracy and noise resistance.

DPSO and FODPSO are two variants of the PSO algorithm which have been used in
the following studies for image segmentation. Suresh and Lal [19] proposed an improved
variant of the DPSO algorithm based on chaotic functions to improve the convergence
rate of DPSO and the segmentation quality of satellite images. The effectiveness of the
model was compared with other optimization algorithms, such as cuckoo search, harmony
search, differential evolution, and PSO. It was found that the algorithm suffered from
higher computational complexity than the other algorithms. Tang et al. [20] applied the
FODPSO algorithm for infrared image segmentation and defective edge recognition. The
FODPSO algorithm helped to overcome the problem of high noise and fuzzy edges of
the acquired infrared images. Guo et al. [21] developed a FODPSO algorithm for optic
disc localisation and segmentation. The objective function used by the FODPSO algorithm
was the between-class variance. The effectiveness of the algorithm was computed by
experimenting on the retinal images from DRION, MESSIDOR, ORIGA, and other public
databases.

2.2. Image Segmentation Using Multiobjective Algorithms

In recent years, researchers have explored the use of multiobjective optimization al-
gorithms for image segmentation. Multiobjective optimization involves simultaneously
optimizing multiple objectives, which in the context of image segmentation can correspond
to different measures of segmentation quality, such as boundary adherence, region homo-
geneity, and compactness. By optimizing multiple objectives, multiobjective algorithms can
produce diverse sets of solutions that can capture different trade-offs between segmentation
criteria. Several multiobjective algorithms have been proposed for image segmentation,
such as NSGA-II, MOEA/D, and MOGWO.

Zhe Liu [22] proposed an unsupervised image segmentation method using multi-
objective PSO (UISMOPC) with two objective functions. This method was tested on the
data obtained from the Berkeley segmentation dataset. From the experiments conducted, it
was concluded that the UISMOPC algorithm is superior to the traditional K-means, FCM,
and other clustering algorithms based on single objective functions. Maryam et al. [23]
developed a MOPSO algorithm with two objective functions based on the entropy calcu-
lation of the image. This method provided good segmentation results when applied to
some standard images. Hinojosa et al. [24] proposed a multiobjective colour thresholding
method to reduce the overlapping effect on segmented images. This method was evaluated
on the Berkeley image dataset and results showed that the multiobjective colour thresh-
olding method provided better segmentation over traditional single-objective approaches
by reducing overlapped areas on the image. A method for segmentation of human brain
MRI using a multiobjective optimization approach based on fuzzy entropy clustering and
region-based active contour was proposed by Pham et al. [25]. This algorithm was tested
on simulated MRI and real MRI from the McConnell Brain Imaging Center (BrainWeb) and
Internet Brain Segmentation Repository (IBSR). The proposed technique achieved superior
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segmentation performance in terms of accuracy and robustness. Elaziz et al. [26] proposed
a multiobjective multiverse optimization algorithm for the segmentation of grayscale im-
ages. Kapur and Otsu were the two objective functions used. This method was tested on
11 natural grayscale images and was found to provide a better pareto optimal front than
other algorithms in terms of hypervolume and spacing. Multiobjective grey wolf optimiza-
tion (MOGWO), an extension of the grey wolf optimization algorithm was introduced by
Oliva et al. [27]. Experiments were conducted using this algorithm on a set of popular
natural grayscale images by calculating performance metrics such as PSNR, SSIM, fitness
function, and CPU time. The MOGWO based on Kapur and Otsu functions achieved better
segmentation results compared to other existing algorithms. Another image segmentation
method based on multiobjective artificial bee colony optimization was introduced by Sag
and Cunkas [28]. This method was applied to several natural images obtained from the
Berkeley segmentation database. The segmentation results obtained from this method were
found to be better than FCM.

2.3. Image Segmentation Using Superpixel Algorithm

Superpixels are a group of pixels that share similar properties, such as colour or
texture. Superpixel-based segmentation has become increasingly popular in recent years
due to its ability to provide a more compact representation of an image and improve the
accuracy of segmentation. In most of the studies, a superpixel algorithm combined with
other segmentation algorithms was found to improve segmentation accuracy.

Albayrak Abdulkadir [29] proposed a simple linear iterative clustering (SLIC) super-
pixel segmentation method and convolutional neural network (CNN) method to segment
cells from histopathology images. This method had two stages: firstly, a pre-segmentation
was performed using a SLIC superpixel method and then a CNN-based deep learning
method was used to classify those superpixels to obtain the final segmentation. The perfor-
mance of the method was tested on kidney renal cell carcinoma histopathological images
of The Cancer Genome Atlas (TCGA) data portal. An overall accuracy of 0.98 was obtained.
Albayrak and Bilgin [30] proposed a two-staged superpixel algorithm for the segmentation
of cells from histopathology images. In the first stage, the images were segmented using the
SLIC method and then the superpixels were clustered using clustering-based segmentation
algorithms. The performance of this algorithm was tested on high-resolution histopatho-
logical images of renal cell carcinoma, selected from the TCGA data portal. Ding et al. [31]
proposed an image segmentation algorithm based on superpixel clustering. In the first step,
the images were divided into a set of superpixels using superpixel pre-processing tech-
niques. Next, a spectral clustering algorithm was applied to cluster the superpixel regions
and to obtain the final segmented image. This algorithm was tested on the satellite images
from the UC Merced Land Use Dataset and the experimental results showed that this
algorithm gave a better performance over other traditional spectral clustering algorithms.
Zhang et al. [32] proposed a method based on the superpixel and expectation maximization
(EM) algorithms for the segmentation of leaves with plant diseases. Firstly, the superpixel
algorithm divided the images into several superpixels, and then the EM algorithm was
applied to segment the lesion pixels from the image. Experimental results showed that the
proposed method was appropriate for plant disease leaf image segmentation.

Table 1 gives a summary of the related works in image segmentation using PSO,
multiobjective algorithms, and superpixel algorithm. From the table, it is clear that PSO
and its variants are used for image segmentation, but very little work has been carried out
on PSO and its variants on histopathology segmentation. It can be noted that MOPSO has
never been applied to histopathology image segmentation. The superpixel algorithm is
found to improve the segmentation accuracy of other segmentation algorithms. In this
paper, we propose a multilevel multiobjective PSO-guided superpixel algorithm to segment
ROIs from histopathology images.
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Table 1. The summary of the related works in image segmentation.

Algorithms Method Images

PSO and its variants

PSO-based Otsu’s multilevel thresholding [13] Histopathology images
PSO-based clustering method [14] Histopathology images
PSO-based multilevel thresholding [15] Grayscale images and medical images
Dynamic PSO [16] Real crystal growth images
PSO using Kapur’s and Tsallis entropy [17] Normal brain MRI
PSO-FCM algorithm [18] Ultrasonic teeth images
DPSO [19] Satellite images
FODPSO [20] Infrared images
FODPSO [21] Retinal images

Multiobjective algorithms

UISMOPC [22] Standard images
MOPSO [23] Standard images
Multiobjective colour thresholding [24] Standard images
Multiobjective optimization [25] Simulated MRI and MRI
Multiobjective multiverse optimization [26] Natural grayscale images
Multiobjective grey wolf optimization [27] Natural grayscale images
Multiobjective artificial bee colony [28] Standard images

Superpixel algorithm
SLIC and CNN [29] Histopathology images
SLIC and clustering algorithm [30] Histopathology images
Superpixel algorithm and clustering algorithm [31] Satellite images
superpixel and EM [32] Plant disease leaves images

3. Dataset Description

The effectiveness of the proposed algorithm was tested on four different histopathol-
ogy image datasets used for the segmentation and detection task. Table 2 gives the summary
of the datasets used in this work. Sample images from the datasets along with their corre-
sponding masks are given in Figure 1. A detailed explanation of the datasets is given below:

Table 2. Details of the datasets used in the work.

Dataset Task Total Images Image Format

TNBC [33] Segmentation of nuclei cells 50 .png
MoNuSeg [34,35] Nuclei segmentation from multiple organs 44 .tif
MoNuSAC [36] Segmentation of lymphocytes 146 .tif

Segmentation of macrophages 58 .tif
Segmentation of neutrophils 94 .tif
Segmentation of epithelial cells 96 .tif

LD [37] Detection of lymphocyte cells 100 .tif

(a) (b) (c) (d)

(e) (f) (g)

Figure 1. Sample images and their corresponding masks from the datasets: (a) TNBC. (b) MoNuSeg.
(c) MoNuSAC-L. (d) MoNuSAC-M. (e) MoNuSAC-N. (f) MoNuSAC-E. (g) LD.
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3.1. Triple-Negative Breast Cancer Dataset

The triple-negative breast cancer (TNBC) dataset contains 50 H&E-stained breast
histopathology images and their corresponding masks, each of dimension 512 × 512. All
images are in .png format. There are 4022 annotated cell nuclei in the dataset. Segmentation
of nuclei cells is the task to be performed [33].

3.2. Multi-Organ Nuclei Segmentation Dataset

The multi-organ nuclei segmentation (MoNuSeg) dataset contains H&E-stained
histopathology images from 30 patients with tumours of liver, kidney, prostate, blad-
der, breast, colon, and stomach organs, captured at 40×magnification [34,35]. The dataset
has 44 images containing 29,000 nuclear boundary annotations. Each image is of size
1000 × 1000. Segmentation of nuclei cells is the task to be performed on the dataset.

3.3. Multi-Organ Nuclei Segmentation and Classification Dataset

The multi-organ nuclei segmentation and classification (MoNuSAC) dataset contains
H&E-stained tissue images of four organs: lungs, prostate, kidney, and breast. The images
have lymphocytes, macrophages, epithelial cells, and neutrophils. All images are of type
.tif containing 31,000 nuclear boundaries. The task for this dataset is the segmentation
of lymphocytes (L), macrophages (M), neutrophils (N), and epithelial cells (E). From the
MoNuSAC dataset, four sub-datasets are created for each task denoted as MoNuSAC-L,
MoNuSAC-M, MoNuSAC-N, and MoNuSAC-E [36].

3.4. Lymphocyte Detection Dataset

The lymphocyte detection (LD) dataset consists of 100 H&E-stained ER + BCa images
scanned at 20× magnification. Each image has a dimension of 100 × 100 and is in .tif
format. The centres of 3064 lymphocytes were identified by an expert pathologist. The task
is the detection of lymphocyte centres in the images [37].

4. The Proposed Method

The proposed CAD system uses a multilevel multiobjective particle swarm optimiza-
tion guided superpixel algorithm (MMPSO-S) for the efficient detection and segmentation
of ROIs from histopathology images. Figure 2 shows the steps involved in the proposed
system. It consists of two different pipelines for processing the input image.

The first pipeline is the MMPSO algorithm, where the RGB histopathology image is
pre-processed and then passed to the MOPSO algorithm to generate optimal threshold
values. The optimal thresholds generated by the MOPSO algorithm are applied to the input
image, which generates three segmentation maps. The segmentation map containing the
ROIs is selected for further processing. This is the output of the MMPSO algorithm.

In the second pipeline, the RGB histopathology image is passed to the superpixel
algorithm to generate superpixels. The superpixel algorithm helps to identify the ROIs
with the proper boundary. Optimal thresholds generated by the MMPSO algorithm are
used to refine the output obtained from the superpixel algorithm.

The output images from the superpixel algorithm and the MMPSO algorithm are
combined to generate the final output image. Finally, post-processing of the image is
performed to improve the quality of segmentation. A detailed explanation of each step is
given in the following subsections.
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Figure 2. General representation of the proposed CAD system.

4.1. Pre-Processing

The pre-processing stage prepares the acquired histopathology image for segmentation.
Histopathology images undergo different stages of slide preparation and may be affected
by noise, blur, and poor contrast, which can lead to inaccurate diagnosis. It is essential to
eliminate the noise and artifacts and enhance the image quality to obtain accurate ROIs. Pre-
processing of images helps to increase the quality of the image and reduce the complexity
of further processing [38].

In this work, the RGB images were first converted to grayscale images. The contrast
of the grayscale images was then enhanced by applying the contrast-limited adaptive
histogram equalization (CLAHE) method [39]. Figure 3 shows sample images from each
dataset before and after pre-processing.

(a) (b) (c) (d)

(e) (f) (g)

Figure 3. Sample images and corresponding pre-processed images from the datasets: (a) TNBC.
(b) MoNuSeg. (c) MoNuSAC-L. (d) MoNuSAC-M. (e) MoNuSAC-N. (f) MoNuSAC-E. (g) LD.
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4.2. MMPSO-S Algorithm for Detection and Extraction of ROIs

This section explains the process of separating the ROIs from histopathology images
using the MMPSO-S algorithm. A pre-processed histopathology image Ipre is given as the
input to the MMPSO-S algorithm, and a segmented image Imerge is obtained as the output.
The working of the MMPSO-S algorithm is explained in the following subsections.

4.2.1. MMPSO for Multilevel Image Thresholding

The MMPSO algorithm uses the MOPSO algorithm, which is a population-based
algorithm to solve MOPs. The MOPSO algorithm uses an external memory and a geograph-
ically based approach to maintain diversity. It has an initialization phase and an iterative
phase. This section provides the MMPSO algorithm for multilevel image thresholding.

KeyTerms of MOPSO Algorithm

• Decision space: Decision space/search space is the vector space of all decision vari-
ables. The search space varies depending on the problem domain.

• Objective space: Objective space is the vector space of all solutions obtained from the
evaluation of the decision variables.

• Particles and swarm: Swarm is a collection of particles. Particles are individuals, such
as birds or fishes, in the swarm. Let i represent a particle in the swarm and i = 1, 2, . . . ,
Npar, where Npar is the population size.

• Position: Each particle i in the search space has two properties, i.e., position and
velocity. The position of a particle i is denoted as Xi and is considered as the feasible
solution to the optimization problem. It has upper and lower limits, which are the
boundary of the search space denoted as [Xmin, Xmax].

• Velocity: Velocity of a particle Vi defines its ability to move in the search space, which
allows the particle to update its position. The upper and the lower limits of the velocity
are denoted as [Vmin, Vmax].

• Objective function: It is also known as the fitness function/cost function. The objective
function maps an element from the decision space to the objective space. The objective
function is evaluated using the position Xi and the outcome is a real number known as
the cost value or the fitness value. In the case of MOPSO, the outcome of all objective
functions form a vector.

• Local best: The local best value for a particle is the position value which gives the best
fitness value in the whole history of its movement. It is denoted by pBesti.

• Feasible solution set: A solution that satisfies all the constraints of an MOP is called a
feasible solution. A set of all feasible solutions is called the feasible solution set.

• Non-dominated solution: A feasible solution is non-dominated if there does not exist
another feasible solution better than the current one in some objective function without
worsening another objective function.

• External repository: It is a storage space to store all the best particles (non-dominated
solutions) [10]. This repository is often known as an external archive and is denoted by
A. External repository has a maximum size (Amax). To avoid the high computational
cost of searching and updating the external repository, its size is limited.

• Leader: From the external repository, one solution (L) is selected as the leader for the
entire swarm and its position is taken as the pBestL value.

Initialization Phase of MOPSO Algorithm

The swarm, its particles, and other parameters of the MOPSO algorithm are initialized
according to the image segmentation problem. The intensity range of the histopathology
grayscale image [0, 255] is treated as the search space. The position of each particle i in
the swarm is represented as Xi = (x1, x2), where initially x1 and x2 are the two random
intensity values within the range of [0, 255]. The velocity range is set to [−5, 5]. Initially,
the velocity Vi of all particles is set to zero. In this work, the number of particles (Npar),
the number of iterations (Nite), and the number of thresholds (k) are set to 150, 150, and 2,
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respectively, after experimental analysis. The external archive is initially empty and its size
is fixed to 30. The initial parameters of the MOPSO algorithm used in this work are shown
in Table 3.

Table 3. MMPSO parameter settings.

Parameters Variable Values

Population size Npar 150
Maximum no. of iterations Nite 150
No. of thresholds k 2
Position range [Xmin, Xmax] [0, 255]
Velocity range [Vmin, Vmax] [−5, 5]
Repository size Amax 30

After initializing the parameters of the MOPSO algorithm, the fitness values of each
particle are calculated for all the fitness functions. In this work, three different objective
functions, Otsu’s method [40], Kapur’s entropy [41], and Renyi’s entropy [42], were used
to find the optimal threshold values. The personal best of each particle (pBesti) is initially
equal to the position of the particle (Xi). The non-dominated solutions are then identified
and stored in the external repository.

Objective Functions

This section details the three objective functions used in this work. Let ni be the
number of pixels in the intensity level i and np be the total number of pixels in the image,
then the probability of intensity level i can be defined as Pi = ni

np . The k thresholds,
t1, t2, . . . , tk, divide the image into k + 1 regions denoted as R1, R2, . . . , Rk+1 . µT is the
mean intensity of the whole image and is given by Equation (1). µi is the mean intensity of
the region i and is given by Equation (2). ωi is the probability distribution of the region i
and is given by Equation (3).

µT =
255

∑
i=0

iPi (1)

µ1 =
t1−1

∑
i=0

iPi
ω0

, µ2 =
t2−1

∑
i=t1

iPi
ω1

, . . . , µk+1 =
255

∑
i=tk

iPi
ωk

(2)

ω1 =
t1−1

∑
i=0

Pi, ω2 =
t2−1

∑
i=t1

Pi, . . . , ωk+1 =
255

∑
i=tk

Pi (3)

(a) Otsu’s multilevel thresholding: Otsu’s method is an unsupervised and non-parametric
threshold selection method [40]. In Otsu’s method, the threshold is selected by the dis-
criminant criterion, that is to maximize the between-class variance among segmented
regions/classes [43]. Otsu’s objective function ( f1) for the multilevel grayscale image
segmentation is given by Equation (4).

f1(t1, t2, . . . , tk) =
k+1

∑
i=1

ωi(µi − µT)
2 (4)

(b) Kapur’s multilevel thresholding: Kapur’s entropy is a generalization of Shannon’s
entropy. In Kapur’s method, the threshold is selected by the discriminant criterion,
that is to maximize the between-class entropy [41,44]. Kapur’s objective function ( f2)
for the multilevel segmentation of grayscale images is given by Equation (5).

f2(t1, t2, . . . , tk) = KH1 + KH2 + . . . + KHk+1, (5)

where KHi is the Kapur’s entropy of the region i and is given by Equation (6).
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KH1 = −
t1−1

∑
i=0

Pi
ω0

ln
Pi
ω0

, KH2 = −
t2−1

∑
i=t1

Pi
ω1

ln
Pi
ω1

, ..., KHk+1 = −
255

∑
i=tk

Pi
ωk

ln
Pi
ωk

(6)

(c) Renyi’s multilevel thresholding: Renyi’s entropy is a generalized form of Shannon’s
entropy with a parameter α used to evaluate the randomness of a system. When α = 1,
Renyi’s entropy is equal to Shannon’s entropy [42]. Renyi’s objective function ( f3) for
the multilevel segmentation of grayscale images is given by Equation (7).

f3(t1, t2, . . . , tk) = RH1 + RH2 + . . . + RHk+1, (7)

where RHi is the Renyi’s entropy of the region i and is given by Equation (8).

RH1 =
1

1− α
ln

t1−1

∑
i=0

(
Pi
ω0

)α

, . . . , RHk+1 =
1

1− α
ln

255

∑
i=tk

(
Pi
ωk

)α

(8)

For better segmented output, the above objective functions must be maximized.

Iterative Phase of MOPSO Algorithm

After the initialization phase, the iterative phase is executed for a specified number
of iterations (Nite). During each iteration, particles in the swarm and external archive are
updated. The steps involved in the iterative phase are given below:

1. Leader selection from the external archive:
The repository with the non-dominated solutions is mapped to an adaptive grid with
a grid size Gsize comprising hypercubes [10]. Each non-dominated solution from the
archive is placed in the hypercube by considering its fitness values as the coordinates.
A hypercube can hold ns number of non-dominated solutions where ns > 1. The
following steps are used to select a leader from the non-dominated solutions:

(a) The fitness value of a hypercube is calculated by dividing any number x (x > 1)
by the number of particles in that hypercube.

(b) A roulette wheel algorithm is used to select a hypercube using the fitness values.
(c) If the selected hypercube has one particle, then the particle is set as the leader

of the swarm. Otherwise, if the number of particles in the selected hypercube
is greater than 1 (i.e., ns > 1), then one particle is chosen randomly and is set
as the leader of the swarm.

2. Update position and velocity of each particle:
Once the leader is selected, the velocity and position of all the particles in the swarm
are updated using Equations (9) and (10).

Vi(t + 1) = ωVi(t) + c1r1(Xi(t)− pBesti(t)) + c2r2(Xi(t)− pBestL(t)) (9)

Xi(t + 1) = Xi(t) + Vi(t + 1), (10)

where ω is known as the inertia parameter, Xi(t) is the position of the particle i at
time t and Vi(t) is the velocity of the particle i at time t, Xi(t + 1) is the position
of the particle i at time t + 1, and Vi(t + 1) is the velocity of the particle i at time
t + 1. c1, c2 are the positive constants known as acceleration coefficients. r1, r2 are the
random numbers in the range (0, 1). In this work, ω, c1, c2 are set to 1.3, 0.5, and 0.5,
respectively.

3. Compute fitness values for each particle:
Once the position value of each particle i in the swarm is updated, the fitness values
of each particle are calculated for all the fitness functions.

4. Update the local best value of each particle:
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If the current pBesti value of a particle i is dominated by the new position value
Xi(t + 1) of the particle, then the current pBesti value of the particle is replaced with
the Xi(t + 1) value. Otherwise, the current pBesti value of the particle i is kept as
it is. If neither the current pBesti value nor the new position value of a particle are
dominating each other, then one of the values is randomly selected as the pBesti.

5. Update the external repository:
The non-dominated particles are identified based on the pareto dominance condi-
tion [10]. The non-dominated particles are compared with the particles already exist-
ing in the external archive in order to decide their inclusion to the external archive.
The MOPSO algorithm follows four rules to add a non-dominated particle to the
archive:

(a) If the archive is empty, then the new particle is added to the archive.
(b) If the particle is dominated by any of the particles in the archive, then the new

particle is discarded.
(c) If none of the particles in the archive dominate the new particle, and if the

archive has enough space, then the new particle is added to the archive. During
the entry, any particle in the archive dominated by the new particle is deleted
from the archive.

(d) If none of the particles in the archive dominate the new particle and the
archive does not have enough space, then the particle from the most crowded
hypercube is removed and the new particle is inserted in the archive. During
the time of entry, any particle in the archive that is dominated by the new
particle is removed from the archive.

6. Apply mutation operator to the particles:
The relevance of the mutation operator in the MOPSO algorithm is to allow the
algorithm to explore the search space with a high exploratory capability. During the
initial iterations of the algorithm, the mutation operator affects all the particles in the
search space; however, the number of particles affected by the operator decreases as
the number of iterations increases. In this work, the mutation rate (µ) is set to 0.1.

At the end of the algorithm’s execution, the external repository contains the best/non-
dominated particles from the swarm.

Obtaining the Optimal Threshold Values

To obtain the optimal threshold values, the best particle is selected from the external
archive A based on the euclidean distance measure [45]. The euclidean distance method is
one of the most simple and straightforward method that works well on low-dimensional
data. At first, the euclidean distance of every particle in A from the origin of the ob-
jective space is calculated. The particle having the highest euclidean distance (denoted
as BestParticle) is then selected for further processing. Let i be a particle having three
fitness values f1, f2, and f3, and O(0, 0, 0) denote the origin of the objective space, then
the euclidean distance between the origin and particle i, denoted as d(O, i), is given by
Equation (11).

d(O, i) =
√
( f1)

2 + ( f2)
2 + ( f3)

2 (11)

The position (x1, x2) of the BestParticle having the highest euclidean distance is taken
as the optimal threshold values t1 and t2 (i.e., t1 = x1 and t2 = x2). x1 and x2 are the best
intensity values of the corresponding input image for multilevel thresholding.

Generating segmentation maps:

The two threshold values obtained from the MOPSO algorithm are used to partition
the pre-processed image, Ipre, into three binary images. The first image (I1) contains pixels
whose intensity values fall in the range of [0, t1 − 1], the second image (I2) contains pixels
having intensity values in the range of [t1, t2 − 1], and the third (I3) image contains pixels
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whose intensity values fall in the range of [t2, 255]. From the three images, image I1
containing the ROIs is chosen for post-processing. The other two images I2 and I3 do not
include the ROIs and hence are not considered. Figure 4 shows the sample images along
with their corresponding ground truth and segmentation maps I1, I2, I3 after applying
threshold values t1 and t2.
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4.2.2. Segmentation by Superpixel Algorithm

The superpixel algorithm is a simple, linear, iterative, clustering algorithm [12]. A
group of pixels having common characteristics is called a superpixel/cluster. In this work,
the RGB colour histopathology image Icolor is passed to the superpixel algorithm as input.
The output is a label matrix representing superpixels C1, C2, . . . , Cnc

′ where nc
′

is the actual
number of superpixels generated [46,47].

Let the input image to the superpixel algorithm have np number of pixels, and nc be
the expected number of superpixels to be generated. Then, the total number of pixels in
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each superpixel is np/nc. A pixel in the input image can be denoted as [Ri, Gi, Bi, Xi, Yi]
and 1 < i < np. Ri, Gi, Bi, Xi, and Yi denote the RGB colour component and X and Y
coordinates of the i-th pixel [46]. The centre of a superpixel is defined as the mean value of
all the pixels in the superpixel. The average distance (S) between the centres of two nearby
superpixels is

√
np/nc.

The algorithm works as follows: a grid with distance between the grid lines as S is
initially placed over the image. The intersection points of the grid lines denote the initial
cluster centres C1, C2, . . . , Cnc. Then, for each pixel in the image, the dissimilarity between
the pixel and the cluster centres in its 2S× 2S neighbourhood is found according to the
distance measure given by Equation (12).

dRGB =
√(

Ri − Rj
)2

+
(
Gi − Gj

)2
+
(

Bi − Bj
)2

dXY =
√(

Xi − Xj
)2

+
(
Yi −Yj

)2

Dm = dRGB +
p
S

dXY,

(12)

where dRGB represents the distance of colour values of the pixel i and cluster centre j,
dXY represents the Euclidean distance or spatial distance between the pixel i and cluster
centre j, Dm is the final distance. A variable p is used while computing Dm to control the
compactness of a cluster. Higher compactness is obtained for higher values of p. A pixel is
assigned to the cluster centre with the least distance.

After processing all pixels in the image, the new cluster centres are identified. The
residual error E is computed as the sum of the differences between the new cluster centre
and the previous cluster centre. The algorithm is repeated until the residual error E falls
below a threshold value. The final output image is Isuper with nc

′
number of clusters, where

nc
′ ≤ nc. For this work, we choose nc as 1000 because a WSI contains more pixels than

normal images, and the ROIs in a WSI are very small.

Refining the clusters:

The clusters output by the superpixel algorithm sometimes may not be the desired
ROIs. Hence, in order to improve the segmentation output by the superpixel algorithm, the
clusters are refined using the threshold obtained from the MMPSO algorithm. Since the
ROIs in the images have a pixel intensity value that is less than t1 (obtained from MMPSO),
we use this threshold value to further refine the clusters obtained from the superpixel
algorithm. For this, we use an empty image Ithresh with the same dimensions as Isuper,
initially consisting of all zeros. Clusters in Isuper whose average pixel intensity value is less
than the threshold value t1 are identified, and the pixels corresponding to those clusters
are added to Ithresh. Thus, Ithresh contains all clusters in Isuper, whose pixel intensity value is
less than t1.

4.3. Combining Segmentation Maps and Post-Processing

The segmentation map I1 from the MMPSO algorithm and output from the superpixel
algorithm Ithresh are combined to form a single image Imerge. This combination of images
reduces the ROIs’ border irregularities and helps to find the exact area of the ROIs. The
Imerge is given as an input to the post-processing phase. The post-processing stage improves
the segmented image by eliminating the artifacts in it.

In this work, the post-processing methods, such as hole filling, edge smoothing, and
removing small ROIs, are applied to the segmented image to increase the segmentation
accuracy. Figure 5 shows a sample image before and after post-processing. Histopathology
image segmentation using the MMPSO-S algorithm is given in Algorithms 1 and 2.
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Imerge I f ill1 Ismooth I f ill2 Ioutput

Figure 5. Post-processing of a sample image from dataset.

Algorithm 1 MMPSO algorithm.
Input: Pre-processed image Ipre
Output: Segmentation map I1
Parameters: MMPSO parameters, i.e., Npar, Nite, k, Xmin, Xmax, Vmin, Vmax and Amax

initialize all MMPSO parameters with the values presented in Table 3
for each particle i = 1 to Npar do

randomly assign position Xi within the permissible range
initialize velocity, Vi = 0
compute fitness values of the particle
initialize local best, pBesti = Xi

end for
identify non-dominated solutions
store all non-dominated solutions in external repository, A
initialize variable t = 1
while t < Nite do

for each particle i = 1 to Npar do
select a leader from A
compute velocity Vi using Equation (9)
compute position Xi using Equation (10)
compute fitness values of the particle
update pBesti

end for
update repository A with new non-dominated solutions
apply mutation operator

end while
initialize variable max = 0
for each particle i ∈ A do

temp← d(O, i)
if temp > max then

max ← temp
BestParticle← i

end if
end for
[t1, t2]← BestParticle(x1, x2)
initialize images I1, I2, I3 with the same size as Ipre and all pixel values as zero
for each pixel i ∈ Ipre do

Inteni ← intensity of pixel i
if (0 ≤ Inteni < t1) then

I1(i)← 1, I2(i)← 0, I3(i)← 0
else if (t1 ≤ Inteni < t2) then

I1(i)← 0, I2(i)← 1, I3(i)← 0
else (t2 ≤ Inteni < 255)

I1(i)← 0, I2(i)← 0, I3(i)← 1
end if

end for
return I1
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Algorithm 2 Superpixel algorithm, cluster refinement, output merging, and
post-processing.
Input: Histopathology colour image, Icolor and output image from MOPSO algorithm I1
Output: Image after post-processing Ioutput
Parameters: Expected number of superpixels to be generated nc, Cluster centres
C1, C2, ..., Cnc

initialize cluster centres C1, C2, ..., Cnc
do

for each pixel do
find the distance of the pixel with the cluster centres in its 2S× 2S neighbourhood

according to the distance measure using Equation (12)
assign the pixel to the centre with which it has least distance

end for
compute new cluster centres
compute the error E as the difference between new cluster centre and previous

centre
while E > threshold
Isuper ← output of superpixel algorithm
for each cluster do

AvgC← Average pixel intensity of the cluster
if AvgC < t1 then

Ithresh ← Ithresh∪ cluster
else

Discard the cluster
end if

end for
Imerge ←merge I1 and Ithresh
for each image Imerge in the dataset do

I f ill ← fill holes in the ROIs from Imerge
Ismooth ← smooth the edges of ROIs from I f ill
Ioutput ← remove small ROIs from Ismooth

end for
Return Ioutput

5. Results and Discussion

In this section, we investigate the applicability of the proposed MMPSO-S algorithm
in histopathology image detection and segmentation. The experimental analysis of the
proposed MMPSO-S algorithm has been studied in three subsections. Section 5.1 gives
the tuning of the MMPSO-S algorithm parameters. Section 5.2 presents the segmentation
performance of the proposed algorithm over other single objective and multiobjective
algorithms. The normalised execution time per 1 megapixel of the segmentation algorithms
are given in Section 5.3.

5.1. Parameter Tuning

The values of the parameters for the MMPSO-S algorithms were determined through
empirical analysis. The parameters are population size (Npar), number of iterations (Nite),
external repository size (Amax), and grid size (Gsize). A grid search was conducted to
find the best values for the parameters. The grid search was conducted by varying the
population size as 50, 75, 100, 125, 150, and 175, the number of iterations as 50, 75, 100, 125,
150, and 175, the external archive size as 30, 60, and 100, and the adaptive grid size as 7,
20, 30, and 40. A total of 10 images from each dataset (TNBC, MoNuSeg, MoNuSAC-L,
MoNuSAC-M, MoNuSAC-N, MoNuSAC-E, and LD) were randomly selected and a total of
70 images were obtained. The fitness values for each image were calculated by varying the
parameter values within certain intervals. The parameter values that give the best fitness
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values were chosen. From the experimental results, it is noted that high fitness values for
f1, f2 and f3 are observed; Npar is 150, Nite is 150, Amax is 30, and Gsize is 7.

Another experiment was conducted for setting the value of the number of thresholds
(k) by varying k as 2, 3, 4, and 5. Figure 6 given below shows the output image of the
MMPSO segmentation algorithm when the number of thresholds is varied as 1, 2, 3, 4, and 5.
From the experiments, it is observed that when the number of thresholds increased, the size
of the ROIs (nuclei regions) was reduced in the segmented output. Conversely, when the
number of thresholds decreased, the size of the nuclei regions increased beyond their actual
size in the segmented image. For example, if the threshold is set to 5, the output will consist
of six segmented images, each containing different regions of the original image, none of
which will contain nuclei regions with perfect size. If the threshold is 1 then, we obtain two
segmented images. These nuclei regions in the images have sizes larger than the actual
size of the nuclei. If the threshold is 2, then we obtain three segmented images containing
different regions. From these three images, we observed that the first image always contains
nuclei regions of approximately the same size as the actual nuclei. So, we chose 2 as the
proper number of thresholds. Additionally, we used the best parameter values for the
multiobjective evolutionary algorithm based on decomposition (MOEA/D) [48] and the
non-dominated sorting genetic algorithm 2 (NSGA-2) [49].

Figure 6. The output images of the MMPSO segmentation algorithm when the number of thresholds
is varied as 1, 2, 3, 4, and 5.

5.2. Segmentation Performance

To establish the superiority of the proposed method, it was compared with single-
objective and multiobjective optimization algorithms. The single-objective algorithms
are the PSO algorithm, the DPSO algorithm [50], and the FODPSO [51] algorithm. The
multiobjective algorithms are the multiobjective PSO algorithm (MOPSO), MOEA/D [48],
and NSGA-2 [49].

For the single-objective PSO, DPSO, and FODPSO algorithms, the objective function
used is the Otsu’s discriminant criterion. For the MOPSO algorithm, we experimented
with the combination of two and three objective functions. The objective functions used
were Otsu’s discriminant criterion, Kapur’s entropy, and Renyi’s entropy. The various
multiobjective experiments conducted by us are denoted as follows: MOPSO(Kapur + Otsu)
is the multiobjective PSO algorithm with Kapur’s entropy and Otsu’s discriminant criterion
as the objective functions. MOPSO(Kapur + Renyi) indicates the multiobjective PSO algo-
rithm with Kapur’s entropy and Renyi’s entropy as the objective functions. MOPSO(Otsu +
Renyi) is the multiobjective PSO algorithm with Otsu’s discriminant criterion and Renyi’s
entropy as the objective functions. MOPSO(Otsu + Renyi + Kapur) is a multiobjective PSO



J. Imaging 2023, 9, 78 18 of 26

algorithm with Otsu’s discriminant criterion, Renyi’s entropy, and Kapur’s entropy as the
objective functions.

The proposed algorithm, MMPSO-S, is a combination of MMPSO with all three ob-
jective functions and the superpixel algorithm. The MOEA/D and NSGA-2 algorithms
are implemented using three objective functions: Otsu’s discriminant criterion, Renyi’s
entropy, and Kapur’s entropy. The final segmentation outputs of a sample image from each
dataset are given in Figure 7. The evaluation metrics used for segmentation performance
are F-measure, dice coefficient, and Jaccard coefficient. The evaluation metrics used for de-
tection performance are recall, precision, and F-measure. The description of the evaluation
metrics used in this work is given in Appendix A. Segmentation results obtained for all
these algorithms are given in Tables 5–7.

Segmentation Performance on the MoNuSeg Dataset:

Table 4 shows the segmentation results of algorithms applied on the MoNuSeg dataset.
The table also shows the results of the previous works on the MoNuSeg datasets using
traditional segmentation methods. To the best of our knowledge, the previous studies
carried out on the MoNuSeg dataset using traditional segmentation methods used Otsu
threshold, watershed transform, Fiji, region growing, and active contour methods [52,53].
The table shows that the proposed MMPSO-S algorithm gives a high Jaccard value of 0.56,
dice value of 0.72, and an F-measure of 0.72. The MOEA/D algorithm and other traditional
segmentation methods give a very low Jaccard value. The NSGA2 algorithm provides a
Jaccard value of 0.43 and a dice value of 0.58.

Table 4. Segmentation results of MoNuSeg dataset.

Algorithm F-Measure Dice Value Jaccard Value

PSO 0.59 0.59 0.44
DPSO 0.62 0.62 0.45
FODPSO 0.62 0.62 0.46
MOPSO(Kapur + Otsu) 0.69 0.69 0.54
MOPSO(Renyi + Otsu) 0.61 0.61 0.45
MOPSO(Kapur + Renyi) 0.69 0.69 0.54
MOPSO(Kapur + Otsu + Renyi) 0.71 0.71 0.55
Superpixel algorithm 0.59 0.59 0.43
MOEA/D 0.38 0.38 0.24
NSGA2 0.58 0.58 0.43
Otsu threshold [52] 0.03 - 0.05
Watershed transform [52] 0.09 - 0.08
The ImageJ2-Fiji package [52] 0.18 - 0.34
Region growing [53] - 0.37 0.16
Active contour [53] - 0.58 0.28
MMPSO-S 0.72 0.72 0.56
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Dataset Image Mask PSO DPSO FODPSO MOPSO (K + O) MOPSO (O + R) MOPSO (K + R) MOPSO (K + O + R) MMPSO-S
TNBC

MoNuSeg

MoNuSAC-L

MoNuSAC-M

MoNuSAC-N

MoNuSAC-E

LD

Figure 7. Final segmentation map of one sample image from datasets.
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Segmentation Performance on the TNBC Dataset:

Table 5 shows the segmentation results of algorithms applied on the TNBC dataset.
From the table, it is observed that the proposed MMPSO-S algorithm gives a high Jaccard
value of 0.49, a dice value of 0.65, and an F-measure value of 0.65. The segmentation results
given by the MOEA/D algorithm are comparatively very low. The NSGA2 algorithm gives
a Jaccard value of 0.42 and a dice value of 0.58.

Table 5. Segmentation results of TNBC dataset.

Algorithm F-Measure Dice Value Jaccard Value

PSO 0.61 0.61 0.46
DPSO 0.61 0.61 0.46
FODPSO 0.61 0.61 0.46
MOPSO(Kapur + Otsu) 0.57 0.57 0.42
MOPSO(Renyi + Otsu) 0.63 0.63 0.46
MOPSO(Kapur + Renyi) 0.60 0.60 0.44
MOPSO(Kapur + Otsu + Renyi) 0.64 0.64 0.47
Superpixel algorithm 0.54 0.54 0.38
MOEA/D 0.24 0.24 0.14
NSGA2 0.58 0.58 0.42
MMPSO-S 0.65 0.65 0.49

Segmentation performance on the MoNuSAC dataset:

Segmentation results of the MoNuSAC dataset are given in Table 6. For the lymphocyte
segmentation dataset, the MMPSO-S algorithm gives a high Jaccard value of 0.55, a dice
value of 0.70, and an F-measure value of 0.70. For this dataset, the MOPSO algorithm with
three objective functions also performs well with a high F-measure value of 0.70 and a
dice value of 0.70. For the macrophages segmentation dataset, the proposed algorithm
gives F-measure, dice, and Jaccard values of 0.65, 0.65, and 0.48, respectively, which are the
highest when compared to other algorithms. The MMPSO-S algorithm performs better than
other algorithms for the neutrophils segmentation dataset. It gives F-measure, dice, and
Jaccard values of 0.53, 0.53, and 0.38, respectively, which are the best values for this dataset.
For the epithelial segmentation dataset, the MMPSO-S algorithm gives an F-measure, dice
value, and Jaccard value of 0.63, 0.63, and 0.47, respectively, which are the highest values
among all the other algorithms.

Detection performance on the LD dataset:

The lymphocyte detection results are given in Table 7. For this dataset, the MMPSO-S
algorithm gives a precision value of 0.96, a recall value of 0.99, and an F-measure value
of 0.98, which are higher than the other algorithms. The DPSO and FODPSO algorithms
also exhibit a recall value of 0.99. The MOEA/D algorithm gives the lowest recall and
F-measure values of 0.71 and 0.74.

Discussion:

The following inferences can be drawn by analysing the results from Tables 5–7. Firstly,
it is observed that there is a significant difference in the Jaccard value, dice value, and
F-measure value when comparing single-objective and multiobjective PSO algorithms. This
shows that adding one or more suitable objective function to the PSO algorithm improves
the histopathology image segmentation and detection performance.
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Table 6. Segmentation results of MoNuSAC dataset.

Dataset Algorithm F-Measure Dice Value Jaccard Value

MoNuSAC-L

PSO 0.68 0.68 0.53
DPSO 0.66 0.66 0.50
FODPSO 0.67 0.67 0.52
MOPSO(Kapur + Otsu) 0.68 0.68 0.52
MOPSO(Renyi + Otsu) 0.67 0.67 0.51
MOPSO(Renyi + Kapur) 0.67 0.67 0.51
MOPSO(Kapur + Renyi + Otsu) 0.70 0.70 0.54
Superpixel algorithm 0.47 0.47 0.32
MOEA/D 0.42 0.42 0.27
NSGA2 0.40 0.40 0.31
MMPSO-S 0.70 0.70 0.55

MoNuSAC-M

PSO 0.55 0.55 0.38
DPSO 0.56 0.56 0.40
FODPSO 0.58 0.58 0.41
MOPSO(Kapur + Otsu) 0.59 0.59 0.43
MOPSO(Renyi + Otsu) 0.57 0.57 0.40
MOPSO(Renyi + Kapur) 0.57 0.57 0.41
MOPSO(Kapur + Renyi + Otsu) 0.63 0.63 0.47
Superpixel algorithm 0.34 0.34 0.23
MOEA/D 0.31 0.31 0.20
NSGA2 0.62 0.62 0.48
MMPSO-S 0.65 0.65 0.48

MoNuSAC-N

PSO 0.44 0.44 0.29
DPSO 0.45 0.45 0.30
FODPSO 0.47 0.47 0.31
MOPSO(Kapur + Otsu) 0.50 0.50 0.35
MOPSO(Renyi + Otsu) 0.51 0.51 0.36
MOPSO(Renyi + Kapur) 0.46 0.46 0.31
MOPSO(Kapur + Renyi + Otsu) 0.50 0.50 0.34
Superpixel algorithm 0.44 0.44 0.29
MOEA/D 0.12 0.12 0.07
NSGA2 0.35 0.35 0.23
MMPSO-S 0.53 0.53 0.38

MoNuSAC-E

PSO 0.52 0.52 0.35
DPSO 0.57 0.57 0.40
FODPSO 0.59 0.59 0.42
MOPSO(Kapur + Otsu) 0.61 0.61 0.44
MOPSO(Renyi + Otsu) 0.58 0.58 0.41
MOPSO(Renyi + Kapur) 0.59 0.59 0.42
MOPSO(Kapur + Renyi + Otsu) 0.62 0.62 0.46
Superpixel algorithm 0.37 0.37 0.25
MOEA/D 0.18 0.18 0.11
NSGA2 0.50 0.50 0.34
MMPSO-S 0.63 0.63 0.47

The segmentation results given by the MOEA/D algorithm are comparatively very low
for all the datasets. The F-measure and Jaccard values range from 0.03 to 0.4. The NSGA2
algorithm gives better dice, Jaccard, and F-measure values than the MOEA/D algorithm for
the MONUSAC-L, MONUSAC-M, MONUSAC-N, and MONUSAC-E datasets; however,
NSGA2’s performance is lower than the proposed MMPSO-S algorithm.
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Table 7. Detection results of LD dataset.

Algorithm Precision Recall F-Measure

PSO 0.84 0.96 0.90
DPSO 0.85 0.99 0.92
FODPSO 0.86 0.99 0.92
MOPSO(Kapur + Otsu) 0.87 0.96 0.91
MOPSO(Kapur + Renyi) 0.88 0.94 0.91
MOPSO(Renyi + Otsu) 0.87 0.96 0.91
MOPSO(Kapur + Otsu + Renyi) 0.93 0.99 0.96
Superpixel algorithm 0.78 0.83 0.80
NSGA2 0.86 0.94 0.90
MOEA/D 0.78 0.71 0.74
MMPSO-S 0.96 0.99 0.98

Secondly, it can be seen that the DPSO and FODPSO algorithms give slightly better re-
sults than the PSO algorithm for the MoNuSeg, LD, and MoNuSAC datasets. For the TNBC
dataset, the PSO, the DPSO, and the FODPSO algorithms exhibit similar segmentation
performance.

Thirdly, while comparing the performance of PSO variants (DPSO and FODPSO)
with the multiobjective PSO algorithms, it is evident that the multiobjective algorithms
provide better dice, Jaccard, and F-measure values. Among the multiobjective algorithms,
MOPSO with three objective functions (Kapur + Otsu + Renyi) gives better segmentation
and detection results; however, the performance of the MOPSO(Kapur + Otsu + Renyi)
algorithm is slightly lower than the proposed MMPSO-S algorithm. This is because the
proposed algorithm also includes the superpixel algorithm to provide better results.

Fourthly, from Tables 5–7, it is visible that the superpixel algorithm gives very low dice,
Jaccard, and F-measure values as compared with single-objective PSO, DPSO, FODPSO,
and multiobjective PSO algorithms. Furthermore, the superpixel technique in combina-
tion with the MMPSO-S algorithm helps in the precise refinement of ROIs and improves
segmentation results.

Finally, among the other multiobjective algorithms (NSGA2 and MOEA/D), the
MOEA/D algorithm gives the lowest dice, Jaccard, and F-measure values for all the four
datasets (TNBC, MoNuSeg, MoNuSAC, and LD). The NSGA2 algorithm gives compara-
tively higher values than the MOEA/D. The proposed MMPSO-S algorithm outperforms
the NSGA2 and MOEA/D algorithms for all the datasets.

From Tables 5–7, it is clear that the proposed MMPSO-S algorithm yields higher
segmentation and detection performance than other algorithms. The performance of
the MMPSO-S algorithm is not compared with previous works on the TNBC, LD, and
MoNuSAC datasets because, to the best of our knowledge, there are no recent and relevant
studies using traditional image-processing methods on these datasets.

5.3. Normalised Execution Time

The experiments were performed on a desktop computer with an Intel(R) Xeon(R)
W-2123 CPU, 16 GB of RAM, and a 1 TB hard drive, running the Windows 10 operating
system. MATLAB R2019b was used to implement algorithms. The normalised execution
time per 1 megapixel of the segmentation algorithms is presented in Table 8. From the
table, it is clear that the superpixel algorithm has the lowest execution time compared to
the other algorithms. The second best algorithm in terms of normalised execution time
is the PSO algorithm with a single objective function. We know that the execution time
increases as the number of objective functions increases. Hence, the proposed MMPSO-S
algorithm provides a high execution time when compared with the single-objective PSO
algorithm and other MOPSO variants, as it uses three objective functions along with the
superpixel algorithm. On the other hand, the execution time of the MMPSO-S algorithm is
lower than the DPSO and FODPSO algorithms. Considering the fact that accuracy is more
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important than the execution time in the histopathology image segmentation, the execution
time exhibited by the proposed MMPSO-S algorithm may be acceptable.

Table 8. Comparison of algorithms in terms of normalised execution time (in seconds) per megapixel.

Algorithm TNBC MoNuSeg MoNuSAC- L MoNuSAC- M MoNuSAC- N MoNuSAC- E LD

PSO 0.021 0.036 0.022 0.021 0.021 0.038 0.011
DPSO 0.186 0.203 0.203 0.196 0.192 0.200 0.207

FODPSO 0.241 0.238 0.276 0.246 0.265 0.255 0.280
MOPSO(Kapur + Otsu) 0.102 0.098 0.104 0.102 0.092 0.091 0.098
MOPSO(Renyi + Otsu) 0.100 0.094 0.098 0.096 0.098 0.085 0.092

MOPSO(Kapur + Renyi) 0.096 0.072 0.093 0.089 0.091 0.087 0.086
MOPSO(Kapur + Otsu + Renyi) 0.112 0.103 0.084 0.110 0.095 0.097 0.101

Superpixel algorithm 0.015 0.031 0.020 0.014 0.018 0.031 0.016
MMPSO-S 0.126 0.125 0.100 0.126 0.128 0.116 0.109

6. Conclusions

This research work proposes a CAD system to detect and segment ROIs from H&E-
stained histopathology images. The work demonstrates a multilevel multiobjective particle
swarm optimization guided superpixel algorithm for the segmentation task. The proposed
algorithm is a combination of two algorithms: (1) MMPSO algorithm with three objective
functions and (2) a superpixel clustering algorithm. The MMPSO-S algorithm was tested
on four different histopathology datasets. A set of experiments were conducted to evaluate
the performance of the proposed algorithm in terms of segmentation results, number of
thresholds, and normalised execution time. Experimental results reveal that the MMPSO-
guided superpixel algorithm gives a better segmentation performance when compared to
other single- and multiobjective algorithms.
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Appendix A. Evaluation Metrics

This section details the evaluation metrics used for evaluating the performance of the
proposed method for the detection and segmentation of ROIs from histopathology images.
The evaluation metrics used to measure the segmentation performance in this work are
F-measure, dice coefficient, and Jaccard coefficient, which are calculated using true positive
(TP), true negative (TN), false positive (FP), and false negative (FN) values. TP refers
to the number of ROI pixels that are correctly predicted as ROI pixels. TN refers to the
number of pixels that are correctly predicted as pixels not belonging to ROI. FP refers to
the number of non ROI pixels that are incorrectly predicted as ROI pixels. FN refers to the
number of ROI pixels that are incorrectly predicted as non ROI pixels.

The percentage of ROI pixels accurately identified is called sensitivity/recall and is
given by Equation (A1). Precision is the ratio between ROI pixels accurately identified and
the total number of pixels predicted as ROI pixels. Precision is given by Equation (A2).



J. Imaging 2023, 9, 78 24 of 26

F-measure is defined as the harmonic mean of precision and recall measures. F-measure is
given by Equation (A3).

Recall =
TP

TP + FN
(A1)

Precision =
TP

TP + FP
(A2)

F−measure = 2× Precision× Recall
Precision + Recall

(A3)

Jaccard coefficient compares segmented images with ground truth images by calcu-
lating the similarity between them. Jaccard value ranges between 0 and 1. A high Jaccard
value indicates that the segmented result is similar to the mask. It is also known as intersec-
tion over union measure. Let A be the ground truth mask image, B be the segmented result
obtained from the algorithm, |A ∩ B| denote the number of pixels that are common in A
and B, and |A∪ B| denote the number of pixels in A and B. Then, the Jaccard coefficient of
A and B is given by Equation (A4).

Jaccard Coefficient =
Area of intersection

Area of union
=
| A∩ B |
| A∪ B | (A4)

Dice similarity coefficient is widely used for measuring the performance of segmen-
tation algorithms. The value of the dice similarity coefficient ranges from 0 to 1. A Dice
similarity value of 1 implies a perfect segmentation while a Dice similarity value of 0
implies that there is no overlap. Let |A| be the total number of pixels in segmented image
A and |B| be the total number of pixels in ground truth image B. Dice similarity coefficient
for A and B is given by Equation (A5).

Dice Coefficient =
2× |A ∩ B|
|A|+ |B| (A5)

The evaluation metrics used to measure the detection performance in this work are
recall, precision, and F-measure, which are calculated using true positive (TPD), false
positive (FPD), and false negative (FND) values. TPD refers to the number of correctly
detected lymphocytes. FPD refers to the number of incorrectly detected lymphocytes. FND
refers to the number of lymphocytes that are not detected. High precision and high recall
imply that most lymphocytes are detected correctly. Recall, precision, and F-measure with
respect to the detection are given by Equations (A6)–(A8), respectively.

RecallD =
TPD

TPD + FND
(A6)

PrecisionD =
TPD

TPD + FPD
(A7)

F−measureD = 2× PrecisionD × RecallD
PrecisionD + RecallD

(A8)
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