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Abstract

:

The process of image segmentation is partitioning an image into its constituent parts and is a significant approach for extracting interesting features from images. Over a couple of decades, many efficient image segmentation approaches have been formulated for various applications. Still, it is a challenging and complex issue, especially for color image segmentation. To moderate this difficulty, a novel multilevel thresholding approach is proposed in this paper based on the electromagnetism optimization (EMO) technique with an energy curve, named multilevel thresholding based on EMO and energy curve (MTEMOE). To compute the optimized threshold values, Otsu’s variance and Kapur’s entropy are deployed as fitness functions; both values should be maximized to locate optimal threshold values. In both Kapur’s and Otsu’s methods, the pixels of an image are classified into different classes based on the threshold level selected on the histogram. Optimal threshold levels give higher efficiency of segmentation; the EMO technique is used to find optimal thresholds in this research. The methods based on an image’s histograms do not possess the spatial contextual information for finding the optimal threshold levels. To abolish this deficiency an energy curve is used instead of the histogram and this curve can establish the spatial relationship of pixels with their neighbor pixels. To study the experimental results of the proposed scheme, several color benchmark images are considered at various threshold levels and compared with other meta-heuristic algorithms: multi-verse optimization, whale optimization algorithm, and so on. The investigational results are illustrated in terms of mean square error, peak signal-to-noise ratio, the mean value of fitness reach, feature similarity, structural similarity, variation of information, and probability rand index. The results reveal that the proposed MTEMOE approach overtops other state-of-the-art algorithms to solve engineering problems in various fields.
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1. Introduction


Digital image segmentation is a technique of partitioning the image into regions to extract information about features of an image with homogeneous features in terms of intensity level, texture structure, color information, etc. The image segmentation schemes available from the literature, multi-level thresholding [1] of grayscale on the histogram of an image is a highly established method and is used in various applications from satellite image segmentation [2,3,4] to medical images. The important multilevel thresholding-based segmentation techniques are Kapur’s and Otsu’s methods [5,6]. Segmentation can often be used as a preprocessing step in object recognition, computer vision, image analysis, and so on in different applications such as medical [7], agricultural, industrial, fault detection, weather forecasting, etc. In general, the majority of segmentation techniques are based on discontinuity and similarity; among abundant methods available thresholding is the most important technique for both grayscale and color images.



Image segmentation is a significant step in image processing. Major advances in image segmentation are in the area of biomedical imaging to investigate the function, structure, and pathology of the human body, and in other industrial applications from robotics to satellite image segmentation.



In the multilevel thresholding method of segmentation, the pixels are grouped into different classes or groups (two or more) based on the gray-levels and multiple threshold values. The quality level of segmentation is affected by the technique used to compute threshold values. The use of a classical or traditional method of selecting the thresholds is computationally expensive as the technique needs to search in a huge range of sample space to identify the optimized levels using the objective function; at this stage, optimization techniques can be applicable and then there is a scope of research computing the optimized threshold levels.



The various significant multilevel thresholding approaches are based on image histograms. The techniques based on histograms have two major disadvantages, which are (i) spatial contextual information (relationships among the pixels in an image) not considered for finding the histogram, which leads to less efficiency in computing the optimized threshold levels on the histogram, and (ii) methods based on the histogram are incompetent for applications of segmentation with thresholding levels greater than two (MT).



Techniques with histogram plots are incapable of owning spatial contextual information to compute optimized thresholds. To conquer the drawbacks of the histogram of an image, a novel methodology is proposed: multilevel thresholding based on EMO and energy curve (MTEMOE). A curve that has similar characteristics to the histogram and the spatial contextual information of image pixels is named an “energy curve” and can be used in place of the histogram; an electro-magnetism optimization algorithm is used to select and optimize gray levels; an Energy Curve characteristics are similar to a histogram. For each value in an image, energy is computed in the grayscale range of that image. The threshold levels can be computed based on valleys and peak points on the energy curve.



In general, to find out the optimized threshold values, there are two types of computational techniques, called parametric and nonparametric [8]. In the case of parametric techniques, statistical parameters are used, depending on initial conditions, and hence are inflexible to be applied. In the case of nonparametric techniques, thresholds are computed based on some criteria such as Otsu’s inter-class variance and Kapurs’s entropy functions [9,10,11]. The thresholding method holds properties such as simplicity [12,13], accuracy, and robustness, which can be classified into two major categories: bi-level and multilevel [11]; the pixels of an image are classified into different classes based on the threshold level selected on the histogram. All the pixels are grouped into two classes based on threshold level in the case of bi-level thresholding. In the second category of multilevel thresholding, pixels are categorized into more than two classes. Nevertheless, the primary constraints in multilevel thresholding are accuracy, stability, time for execution, and so on.



In the case of color images [14], each pixel consists of three components (red, green, and blue) [15]; due to this heavy load, the segmentation of color images might be more exigent and intricate. Accordingly, it is essential to find the optimal thresholds by using optimization algorithms by maximizing the inter-class variance in Otsu’s method and the histogram entropy in the case of Kapur’s method on a histogram of an image. As per the no-free-lunch (NFL) principle [16], no algorithm can solve all types of optimization problems [17]; one optimization algorithm may be very useful in one type of application and not succeed in solving other kinds of applications; thus, it is indispensable to devise and transform new algorithms.



Techniques with histogram plots are incapable of owning spatial contextual information to compute optimized thresholds. To conquer the drawbacks of the histogram of an image, a novel methodology is presented in this chapter; a curve that has similar characteristics to that of the histogram and considers spatial contextual information of image pixels named an “energy curve” [6] can be used in place of the histogram; the harmony search algorithm [5] is used to select optimized gray levels; energy curve characteristics are similar to a histogram. For each value in an image, energy is computed in the grayscale range of that image. The threshold levels can be computed based on valleys and peak points on the Energy Curve. In the literature, numerous optimization techniques along with the efficiencies and applications in particular fields are available, to mention a few, PSO [18], ACO [19], BFO [20], ABC [21], GWO [22], MFO [23], SSA [24], FA [25], WOA [26], SCA [27], KHO [28], BA [29], FPA [30], and MVO [31]. Moreover, several modified algorithms have been used in the multilevel thresholding field. For example, Chen et al. [32] proposed an improvised algorithm (IFA) to segment compared with PSO [33] and other methods [15,34].



From the above discussion, the techniques mentioned above mainly spotlight gray-scale images and extend to color images to some scale. Additionally, color satellite images have the features of complex backgrounds and poor resolution [35]; in this situation, it is very difficult to segment such color images. In this article, a new approach is projected for color image segmentation [36,37] and it aims at satellite images from experimental results. The proposed method is based on Kapur’s and Otsu’s methods with EMO on the energy curve to find optimal threshold levels. In a clearer way, the proposed model uses the energy curve instead of the histogram of an image. Multilevel thresholding [38,39] with EMO on energy curve, named MTEMOE, for color image segmentation, improves spotless performance in many aspects. The proposed segmentation approach is experienced on color images including satellite images and natural images and compared with competitive algorithms: MFO, WOA, FPA, MVO, SCA, ACO, ABC, and PSO. The segmented images are evaluated concerning seven metrics, which validate the dominance of MTEMOE.




2. Multilevel Thresholding


2.1. Otsu Method


This technique [5,9] is used for multi-level thresholding   ( M T )  , in which gray levels will be partitioned into different regions or classes; in this process thresholding   ( t h )   levels are selected; the set of rules to be followed for bi-level thresholding are


  C 1 ← p   i f   0 ≤ p < t h , C 2 ← p   i f   t h ≤ p < L − 1  



(1)




where   C 1   and   C 2   are two classes,   p   indicates the pixel value for the gray levels     1 , 2 , 3 , … , L − 1     in an image and   L − 1   indicates the maximum gray level. If the gray level is below the threshold   t h   then that pixel is grouped into class   C 1  , else it is grouped into class   C 2  . The set of rules for multi-level thresholding   ( M T )   are


   C 1 ← p   i f   0 ≤ p < t h 1    C 2 ← p   i f   t h 1 ≤ p < t h 2    C i ← p   i f   t h i ≤ p < t h i + 1    C n ← p   i f   t h n ≤ p < t h n + 1   



(2)







From Equation (2),   C 1 , C 2 , … , C n   indicates different classes, and threshold levels to find objects represented by     t h 1 , t h 2 , . . . , t h i , t h i + 1 , t h n    ; these thresholds can be computed based on either a histogram or an energy curve. By use of these threshold levels, all the pixels will be classified into different classes or exclusive regions. The significant methods of segmentation of images based on threshold levels are Otsu’s and Kapur’s methods and, in both cases, threshold levels can be computed by maximizing the cost function (inter-class variance). In this work, optimized threshold levels are used by Otsu’s method   t h   values [23]. In this method, inter-class variance is considered the objective function, also called a cost function. For experimentation, grayscale images are considered. The below expression gives the probability distribution for each gray level


    P h   c   i   =     h   c   i     N P   ,   ∑  i = 1   N P      P h   c   i     = 1  



(3)







From Equation (3), the pixel value is denoted by   i  , with the range of grayscale is   ( 0 ≤ i ≤ L − 1 )  , where   c = 1 , 2 , 3   for RGB and   c = 1   for a grayscale image, and total image pixels are represented by NP; the histogram of considered images is represented by     h   c   i    . In bi-level thresholding, the total pixels in the image are grouped into two classes


  C 1 =     P h   1   c       w   0   c   ( t h )   , . . .     P h   t h   c       w   0   c   ( t h )   , C 2 =     P h   t h + 1   c       w   1   c   ( t h )   , . . .     P h   L   c       w   1   c   ( t h )    



(4)




whereas     w   0     t h     and     w   1     t h     are the probabilities distributions for   C 1   and   C 2  , as is shown below as


    w   0   c     t h   =   ∑  j = 1   t h      P h   i   c       , w   1   c     t h   =   ∑  j = t h + 1   t h      P h   i   c      



(5)







The means of two classes     μ   0   c     and     μ   1   c     are computed by Equation (6), and the variance between classes     σ     2   c       being given by Equation (7).


    μ   0   c   =   ∑  i = 1   t h        i P h   i   c       w   0   c   ( t h )   ,     μ   1   c   =   ∑  i = t h + 1   L        i P h   i   c       w   1   c   ( t h )      



(6)






    σ     2   c     =   σ   1   c   +   σ   2   c    



(7)







Notice that, for both Equations (6) and (7),   c   is determined by the type of image, where     σ   1   c     and     σ   2   c     in Equation (5) are the variances of classes C1 and C2 which are given in Equation (8).


    σ   1   c   =   w   0   c         μ   0   c   +   μ   T   c       2   ,   σ   2   c   =   w   1   c         μ   1   c   +   μ   T   c       2    



(8)




where     μ   T   c   =   w   0   c     μ   0   c   +   w   1   c     μ   1   c     and     w   0   c   +   w   1   c   = 1 .   Based on the values     σ   1   c     and     σ   2   c    , Equation (9) presents the objective function:


  J   t h   =   max  ⁡      σ     2   c       t h       , 0 ≤ t h ≤ L − 1  



(9)







From Equation (9),     σ     2   c       t h     is the total variance between two various regions after segmentation by Otsu’s scheme [40,41] for given   t h  ; the optimization techniques required to find the threshold level   ( t h )   by maximizing the fitness function are as shown in Equation (8). Similarly for multi-level thresholding (MT), the objective (or fitness) function   J ( t h )  , shown in Equation (11) to segment an image into   k   classes, requires   k   variances.


  J   T H   =   max  ⁡      σ     2   c         t h   i         , 0 ≤   t h   i   ≤ L − 1 ,   w h e r e   i = 1,2 … , k  



(10)




where TH is a vector,   T H =     t h   1   ,   t h   2   ,   t h   3   … …   t h   k − 1       for multi-level thresholding, and the variances between classes can be computed from Equation (12).


    σ     2   c     =   ∑  i = 1   k      σ   i   c     =   ∑  i = 1   k      w   i   c         μ   i   c   −   μ   T   c       2      



(11)




where   i  th represents   i   class,     w   i   c     indicates probability of     i   t h     classes and     μ   j   c     is the mean of the ith class. For MT segmentation, these parameters are anticipated as below:


    w   0   c     t h   =   ∑  i = 1     t h   1        P h   i   c       , w   1   c     t h   =   ∑  i =   t h   1   + 1     t h   1        P h   i   c     ⋯   w   k − 1   c     t h   =   ∑  i =   t h   k   + 1     t h   1        P h   i   c      



(12)







Furthermore, the averages of each class can be computed as


    μ   0   c   =   ∑  i = 1     t h   1          i P h   i   c       w   0   c   (   t h   1   )     ,   μ   1   c   =   ∑  i =   t h   1   + 1     t h   2          i P h   i   c       w   0   c   (   t h   2   )     ⋯   μ   k − 1   c   =   ∑  i =   t h   k   + 1   L        i P h   i   c       w   1   c   (   t h   k   )      



(13)








2.2. Multilevel Thresholding with Kapur’s Method


One more important nonparametric technique that is used to compute the optimal threshold values is Kapur’s method, entropy as an objective function. This method focuses on finding the optimal thresholds by maximizing the overall entropy. The entropy measures the compactness and separability between classes. For the multilevel, the objective function of Kapur’s method is defined as,


  J   T H   =   max  ⁡      ∑  i = 1   k      H   i   C         , 0 ≤   t h   i   ≤ L − 1 ,   w h e r e   i = 1,2 … k  



(14)




where TH is a vector,   T H =     t h   1   ,   t h   2   ,   t h   3   … …   t h   k − 1      . Each entropy is calculated separately with its th value, given for k entropies


    H   1   c   =   ∑  i = 1     t h   1          P h   i   c       w   0   c       ln  ⁡        P h   i   c       w   0   c             H   2   c   =   ∑  i = 1     t h   1          P h   i   c       w   1   c       ln  ⁡        P h   i   c       w   1   c           ⋯   H   k   c   =   ∑  i =   t h   k   + 1     t h   1          P h   i   c       w   k − 1   c       ln  ⁡        P h   i   c       w   k − 1   c            



(15)







    P h   i   c     is the probability distribution of the particular intensity levels and it is obtained using (5). The values of the probability occurrence (    w   0   c    ,     w   1   c    ,     w   2   c    , …,    w   k − 1   c    ) of the 𝑘 classes are obtained using (12). In the end, by using Equation (2) classify the pixels into various classes.




2.3. Electro-Magnetism Optimization (EMO) Algorithm


The EMO [12] can be used to discover the solutions to global problems which are nonlinear in nature, and it can be used for minimization and maximization problems. For maximizing     x   , x =     x   1   ,   x   1   , …     x   1     ∈ R   where   x ∈ R  , whereas   X =   x ∈ R |   l   1   ≤   x   i   ≤   u   i   , i = 1 , 2 , …   n     is a solution set limited between (    l   1    ) and (    u   i    ) lower and upper limits, respectively. The EMO uses N, n-dimensional points     x   i , t     as a population, the X indicates a solution set from the above expression, and t represents several generations or iterations by using the algorithm. Similar to other evolutionary optimization techniques, in EMO the initial population can also be taken as     S   t   = {   x   1 , t   ,   x   2 , t   … ,   x   N , t   }   (being t = 1), selected from uniformly distributed random samples of the search region, X, whereas     S   t     is the resultant solution set at the tth iteration. At the first iteration     S   t     should be initialized by arbitrary values randomly, then the EMO algorithm executes until the stopping criterion is satisfied.



In every iteration of EMO, two essential operations will take place; the first operation is the solution set     S   t     moved to another different location or solution by means of the attraction and repulsion mechanism of the electromagnetism theory [11]; in the next operation positions moved as per the electromagnetism technique are auxiliary moved locally by local search and reach a member of     S   t + 1     in the (t + 1)th iteration. These two operations bring the solutions to the set close to global optimization solutions.



In EMO, similarly to electromagnetism theory, each solution     x   i , t   ∈   S   t     is treated as a charged particle, whereas the magnitude of the particle’s charge is treated as an object function, the solutions with better or optimal (higher/lower) object functions are associated with higher charges than the other set of solutions and also have a greater repulsion–attraction mechanism. In the evolution process of EMO, the points or solutions with higher charges can attract other points in the search space     S   t     and points with a lower charge repel other points.



The total force     F   i   t     exerted at each point, (    x   i , t   ) ,   can be calculated by a combination of attraction-repulsion forces and each     x   i , t   ∈   S   t     is moved towards its total force to the location     y   i , t    . After this step, a local search algorithm is used to find the vicinity of every     y   i , t     by     y   i , t     to     z   i , t    . The solution set     x   i , t + 1   ∈   S   t + 1     at (t + 1)th iteration is subsequently computed as:


     x   i , t + 1   =   y   i , t     i f   f     y   i , t     ≤ f (   z   i , t   )      x   i , t + 1   =   z   i , t   ,   o t h e r w i s e   



(16)







A detailed description of each step in EMO is given in Algorithm 1 below.



	
Algorithm 1: A summary of the EMO algorithm is given below




	
i.

	
InputParameters: Maximum number of iterations max     I t e r   m a x    , local search parameters such as local     I t e r   l o c a l ,     and δ, and the size of the population N




	
ii.

	
Initialize: set the iteration counter 1 = t, initialize the number of St uniformly in X, and identify the best point in St




	
iii.

	
while t <     I t e r   m a x     do




	
iv.

	
  

	
    F   i   t   ← C a l c F     S   t      




	
v.

	
  

	
    y   i , t   ← M o v e (   x   i , t   ,   F   i   t   )  




	
vi.

	
  

	
    z   i , t   ← L o c a l (   I t e r   l o c a l ,   δ ,   y   i , t   )  




	
vii.

	
  

	
    x   i , t + 1   ← S e l e c t (   S   t + 1   ,   y   i , t   ,   z   i , t )    




	
viii.

	
end while









Step 1: The algorithm runs for     I t e r   m a x     iterations or generations;   n ×   I t e r   l o c a l     is the maximum number of locations     z   i , t    .



Step 2: The points     x   i , t    , t = 1 are selected uniformly in X, i.e.,     x   i , t     i n   U n i f ( X )  , i = 1,2,…, N where   U n i f   represents the uniform distribution. The cost function   f (   x   i , t   )   is computed at each iteration and the best point is identified as follows:


    x   t   B   =   arg  ⁡  m a x     f (   x   i , t   )     w h e r e     x   i , t   ∈   S   t    



(17)







From Equation (17),     x   t   B     is the element of     S   t     that gives the maximum numerical value in terms of the fitness function or objective function   f  .



Step 3: while t <     I t e r   m a x     do



Step 4: At this step, a value   (   q   i , t   )   is assigned to each point     x   i , t   ,   the charge     q   i , t     of     x   i , t     depends on the function   f     x   i , t       and the points which have the best cost function have more charge than other points. At every point, the charges can be computed by Equation (18) as given below:


    q   i t   = e x p   − n   f     x   i , t     − f (   x   t   B   )     ∑  j = 1   N    f     x   i , t     − f (   x   t   B   )        



(18)







Then, at this point, the force     F   i , j   t    , connecting two points     x   i , t     and     x   j , t   ,   can be found by using Equation (19).


    F   i , j   t   = (   x   j , t   −   x   i , t   )     q   j , t   .   q   i , t         | | x   j , t   −   x   i , t   | |   2       i f ,   f (   x   i , t   >   x   j , t   )  



(19)







In the end, the total force     F   i   t     computed at each     x   i , t     is


    F   i   t   =   ∑  j = 1 , j ≠ i   N      F   i , j   t      



(20)







Step 5: each point     x   i , t     except for     x   t   B     is moved along the total force     F   i   t     using:


    x   i , t   =   x   i , t   + λ     F   i   t       | | F   i   t   | |     R N G   , i = 1,2 , … , N , i ≠ B  



(21)




where   λ   in   U n i f ( 0,1 )   for each coordinate of     x   i , t   ,   and RNG is the range of movement toward the upper or lower limits.



Step 6: For each,     y   i , t     a maximum of local     I t e r   l o c a l ,     points are generated in each coordinate direction in the   δ   neighborhood of     y   i , t    . This means that the process of generating local points is continued for each     y   i , t     until either a better     z   i , t     is found or the   n ×   I t e r   l o c a l     the trail is reached.



Step 7:     x   i , t + 1   ϵ   S   t + 1     are chosen from     y   i , t     and     z   i , t     by using Equation (20), and the best solution is recognized by using Equation (21).



The significant steps of the EMO algorithm are given in [8] and the EMO algorithm needs a smaller number of iterations to generate solutions for complex nonlinear optimization problems.



Table 1 depicted the comparative parameters and expressions used for evaluating the proposed method. The main reason for selecting the EMO is, that it gives much better results, as shown in Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16 and Table 17. The EMO has been used for solving various optimization problems, including image-processing tasks such as multilevel thresholding. EMO is known for its efficiency in solving complex optimization problems. In the context of multilevel thresholding, EMO can efficiently search for the optimal set of thresholds that maximize the image segmentation quality. EMO is a population-based algorithm that can search the entire solution space and avoid getting stuck in local optima. This is important for multilevel thresholding because the optimal set of thresholds may be located in a complex and highly nonlinear search space. EMO can be easily adapted to handle different types of objective functions and constraints. EMO is robust to noise; in the context of multilevel thresholding, it can handle images with different levels of noise and variability. EMO requires a few parameters to be tuned, which makes it easy to use.





3. Energy Curve


To find effective optimized threshold levels, the energy curve [3] will be used instead of the histogram of an image for various applications.



3.1. Equation of Energy Curve


Consider an image indicated as   I = x ( i , j )   where   i   a n d   j   are spatial coordinates,   i = 1 , 2 , … N   a n d   j = 1 , 2 , . . . M   and the size of the image are   X = M × N  . For an image, spatial correlation among neighboring pixels can be devised by defining the neighborhood system with N of order d, for an image with spatial coordinates   ( i , j )   as     N   i j   d   =     i + u , j + v   , ( u , v ) ∈   N   d      ; various configurations of the neighborhood are described in [30]. Neighborhood systems with second-order are measured for the generation of energy curve, i.e.,  ( u , v ) ∈     ± 1 , 0   ,   0 , ± 1   ,   1 , ± 1   , ( − 1 , ± 1 )    .



The foremost step is to find the energy of each pixel value of the entire grayscale range of an image considered; generate a binary matrix     B   x   =     b   i j   , 1 ≤ i ≤ M , 1 ≤ j ≤ N    ;     b   i j   = 1   if     x   i j   > x  , else     b   i j   = − 1  . Let   C =     c   i j   , 1 ≤ i ≤ M , 1 ≤ j ≤ N     be another matrix, where     c   i j   = 1  ,  ∀ ( i , j )  . At each pixel value   x  , the energy value     E   x     of the image, I can be computed with the below expression.


    E   x   = −   ∑  i = 1   M      ∑  j = 1   N      ∑  p q ∈   N   i j   2        b   i j     b   p q   +   ∑  i = 1   M      ∑  j = 1   N      ∑  p q ∈   N   i j   2        c   i j     c   p q                



(22)







From Equation (22), its second term should be a constant; consequently, the energy associated with each pixel is     E   x   ≥ 0  . From the above equation, we can see that the energy for a particular gray level is zero if each element of     B   x   ,   either   1   o r   −1   can be put forward in another way as all the pixels of an image   I ( i , j )   with gray level either greater than x or less than x, otherwise, the energy level at a particular gray value x is positive as given in Figure 1.




3.2. Characteristics of Energy Plot


The energy plot generated as per Equation (22) is associated with some exciting characteristics. Each object in an image is represented by a gray level range, for instance, the pixel range       t   1   ,   t   2       represents an object in a given image, at   x =   t   1   ;   the elements in     B   x     are 1 for pixels corresponding to the object in the same image. As x increases few elements in the matrix     B   x     will become −1, at   x =   t   2    ; all the matrix elements in     B   x     corresponding to pixels in the object becomes −1. The energy curve produced for the gray-level range       t   1   ,   t   2       is a bell shape. Figure 1 depicts the image histogram and energy curve related to eight images. The valley and peak points on the energy curve are useful to identify objects in an image.





4. Proposed Method


The variety of multilevel thresholding techniques for image segmentation is given in the introduction section and the limitations of the histogram-based techniques are also presented. The proposed method uses an energy curve instead of the histogram, and EMO was used to find optimized threshold levels on the energy curve by maximizing the inter-class variance and entropy for Otsu’s method and Kapur’s method, respectively, as given in Equation (11) for Otsu’s method; the flow chart of a new approach is given in Figure 2.



From the flow chart, take an image for experimentation   x ( i , j )   for multilevel thresholding-based segmentation and plot the energy curve of the considered color image by using Equation (1), then assign the design parameters of EMO and the solution matrix values are filled with arbitrary numbers, initially denoted as     x   i     (set of threshold levels) as per Equation (18), then divide all the pixels in the image as per selected threshold levels into different classes or regions as per Otsu’s technique and Kapur’s method, then find the inter-class variance and entropy of the segmented image, as given in Equation (11). Afterward, find the new set of threshold levels with Equation (17) again, find the fitness and compare it with the previous fitness function, and run this procedure until there is no improvement in the objective function or the specified number of iterations is reached, and lastly find the optimized threshold valued (    x   n e w    ) and classify the gray levels as Equation (3) for final segmentation for R, G, and B components separately for color images. The results of this method are compared with histogram-based techniques for evolution.



Steps in the implementation of the proposed method for color image segmentation are given in Table 18 below.



The Algorithm for EMO initialization is given below as Algorithm 2.



	
Algorithm 2: EMO initialization




	
1.

	
For i = 1 to m do




	
2.

	
   

	
for k = 1 to d do




	
3.

	
      

	
        λ ← r a n d ( 0,1 )  




	
4.

	
      

	
          x   k   i   ←   l   k   + λ (   u   k   −   l   k   )  




	
5.

	
   

	
end for




	
6.

	
Compute   f (   X   i   )  




	
7.

	
End for









The Algorithm to find optimized or best threshold values is given below as Algorithm 3.



	
Algorithm 3: Find optimized threshold values




	
1.

	
  c o u n t ← 1  




	
2.

	
  L e n g t h ← δ ( m a x ⁡ (   u   k   −   l   k   ) )  




	
3.

	
For i = 1 to m do




	
4.

	
for k = 1 to d do




	
5.

	
    λ   1   ← r a n d ( 0,1 )  




	
6.

	
while count < LSITER do




	
7.

	
  y ←   x   i    




	
8.

	
    λ   2   ← r a n d ( 0,1 )  




	
9.

	
    

	
if     λ   1   > 0.5   then




	
10.

	
    

	
    y   d   =   y   d   +   λ   2   · ( L e n g t h )  




	
11.

	
    

	
else




	
12.

	
    

	
    y   d   =   y   d   −   λ   2   · ( L e n g t h )  




	
13.

	
    

	
end if




	
14.

	
    

	
  i f f   y   < f (   X   i   )   then




	
15.

	
    

	
  

	
    x   p   ← y  




	
16.

	
    

	
  

	
  c o u n t ← L S I T E R − 1  




	
17.

	
    

	
end if




	
18.

	
    

	
  c o u n t ← c o u n t + 1  




	
19.

	
    

	
End while




	
20.

	
    

	
end for




	
21.

	
end for




	
22.

	
    X   b e s t   ←   arg  ⁡    min  ⁡  ( f (   x   i       ) ) ,   x   i   ∈ X  









From the above algorithms, pseudo-code, LSITER is the number of local search iterations. The steps given in Algorithms 2 and 3 can be treated as pseudo-code also.



The proposed “multilevel thresholding based on EMO and energy curve (MTEMOE)” has many advantages over other methods for natural color images as illustrated in Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16 and Table 17 and Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11 and Figure 12. Despite its merits, the MTEMOE method also has some limitations such as being based on an energy curve, which takes more time compared to the time needed to compute the histogram of an image. Direct keywords for computing the histogram of an image are available in Matlab and other scientific languages but the code required to generate the energy curve needs to be developed by researchers based on Equation (22). In the case of color image segmentation, the time taken to compute is much greater than the energy curve that needs to be computed for three color components of the image. While EMO has been successfully applied to a wide range of optimization problems, it also has some limitations. Multilevel thresholding of images often involves optimizing over high-dimensional search spaces, which can make it difficult for EMO to converge to an optimal solution in a reasonable amount of time. Images may contain noise that can affect the performance of EMO. EMO may not be able to handle the noise and may converge to suboptimal solutions. EMO may not be adaptable to different types of images, such as images with varying contrast or illumination.



The advantage of context-sensitive multilevel thresholding with an energy curve can be used with different upcoming new optimization techniques to further improve the effectiveness of segmentation. This method proposed with electromagnetic optimization can be extended for color images with different sorts of artifacts and can be tested for its efficiency. EMO with an Energy Curve can be applied to other image-processing tasks, such as image denoising, image compression, and image restoration. Hybrid optimization algorithms can be developed that combine EMO with other optimization techniques to further improve the performance of multilevel thresholding. The robustness of EMO can be studied for multilevel thresholding by testing it on a variety of images with different characteristics, such as size, complexity, and noise levels. Future research work in this area has the potential to contribute to the development of more efficient and effective algorithms for image-processing tasks.




5. Results and Discussions


This section describes the experimental results of the proposed method and compares it with existing state-of-the-art techniques, and also explains the source of images under test and metrics used for the evolution of the segmentation techniques.



The proposed algorithm and existing techniques are experienced with color images fetched from USC-SIPI and Berkeley segmentation data set (BSDS500); a total of nine images are considered for the test, six natural images and three satellite images as shown in Figure 1; in the same image the histograms and energy curves are also illustrated, indicated as Images 1–9; all of the images considered for experimentation have distinct features. In this study mainly objective analysis is adapted and depends on numerical values instead of quality measures based on visual perception [40].



The comparative analysis between the proposed algorithm and other different optimization algorithms such as SAMFO -TH [9], MVO [29], WOA [24], FPA [28], SCA [25], ACO [16], PSO [13], ABC [19], and MFO [21] is necessary. The results and experimental setups are taken from published articles [8] to compare with the proposed method, all the algorithms executed until there is no change in the fitness function, and the MEAN value fitness function of all the algorithms [8] is illustrated in Table 17. All the images are tested with the number of threshold levels N = 4, 6, 8, 10, 16, 20, and 24.



The selection of comparative metrics [8] is an important task; it should be done in such a way as to test all the aspects of segmentation. The parameters used in this study [4] are described in this section. (i) The mean value of fitness (MEAN) with Kapur’s and Otsu’s method, is considered a significant metric to test the performance of optimization schemes. This index is computed using Equation (9) in Otsu’s method or Equation (3) in Kapur’s entropy. It demonstrates the robustness of the optimization algorithm in the course of selecting the optimized threshold vector. (ii) Peak signal-to-noise ratio (PSNR), this parameter estimates the deviation of a segmented image from its original image, which indicates the quality of a reconstructed image. A high PSNR value refers to better segmentation. (iii) Mean square error (MSE), a lower MSE value illustrates better segmentation; it computes the average of the square of the error. (iv) Structural similarity (SSIM), this parameter gives the level of similarity between the segmented and input image under test; a greater value of SSIM [39] indicates a better segmentation effect; it is in the range from −1 to +1. (v) Feature similarity (FSIM), this is similar to SSIM, which indicates degradation of image quality; it ranges [−1, 1]; a high value of FSIM means better segmentation of the color image. (vi) probability Rand index (PRI) or simply Rand index (RI), this computes the connection between the ground truth and segmented image; better performance [9,42,43] is indicated by a higher PRI value. (vii) Variation of information (VOI), this gives the randomness of a segmented image; a low VOI value indicates better segmentation performance. All comparative parameters are described along with the required equations in Table 1. The segmented images with various optimization techniques are obtained from published articles and this study proves that the proposed approach provides better performance [44,45] than the techniques considered in this research work. Figure 2 and Figure 3 illustrate the segmented results using the proposed (MTEMOE) approach to color image segmentation based on Otsu’s and Kapur’s methods [43,46,47]. In the end, a statistical analysis is firmly used to demonstrate the dominance of the proposed approach. The segmented images are depicted in Figure 2, Figure 3, Figure 4, Figure 5, Figure 6 and Figure 7 for threshold levels = 4, 6, 8, 10, 16, 20, and 24 using Otsu’s variance and Kapur’s entropy. Figure 2 illustrates the segmented resultant images with the proposed image with Kapur’s methods; at the same time, segmented results of the proposed technique are given in Figure 3, Figure 4 and Figure 5 with a focus on results with SAMFO-TH, MVO, WOA, ABC, MFO, ACO, and ABC based on Kapur’s entropy as the fitness function. Figure 6 and Figure 7 demonstrate results with Otsu’s methods with the above-mentioned optimization techniques. The comparative metrics of segmentation performance are presented in Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16 and Table 17; the performance parameters used are MEAN, PSNR, MSE, SSIM, FSIM, PRI, andVoI.



The required expressions of comparative parameters are given in Table 1. From Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16 and Table 17, the values of comparative metrics are presented for the proposed method and another existing method. In Table 17, the average MEAN values of fitness with Kapur’s and Otsu’s methods on optimization techniques MVO, WOA, PFA, SCA, ACO, PSO, ABC, MFO, and SAMFO-TH, and for the proposed approach on nine images considered with threshold levels N = 4, 6, 8, and 10 are given. It shows clearly that the proposed methods result in higher values of average MEAN with both Kapur’s and Otsu’s techniques. The average MEAN values of fitness are computed separately for three color components (R, G, and B) for each image. In particular, the values with the proposed method with Otsu’s techniques are much higher compared with other optimization techniques. In Table 2 PSNR values are presented for SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO, and the proposed model using Kapur’s method with threshold levels N = 4, 6, 8, and 10; the results clearly show that the PSNR values with the proposed method are much better than other techniques, especially with N= 10. In Table 9, PSNR values with Otsu’s method are given and with all the images the PSNR values for the proposed method are superior to any other method considered; the average PSNR with the proposed method is 26.2278 which is higher than other techniques; after the proposed method, the SAMFO-TH method gives the best PSNR values. In Table 3 and Table 10, the mean square error (MSE) values with Kapur’s and Otsu’s techniques are given for the proposed method and other techniques. The required expression to compute MSE is mentioned in Table 1. MSE value should be less for better segmentation; the MSE values are much less for the proposed method compared to other techniques, especially for higher thresholding levels (8 and 10). From Table 10, the average MSE for all nine images is 229.5213 with the proposed methods, whereas its value is 1449.4559 with SCA-based segmentation. After the proposed method, the SAMFO-TH provides the best MSE values with both Kapur’s and Otsu’s techniques. In Table 4 and Table 11, the structural similarity index (SSIM) is given for Kapur’s and Otsu’s techniques; its value should be higher for better segmentation. The value of SSIM with the proposed method is slightly higher than the SAMFO-TH method but much higher than multilevel thresholding techniques with other optimization methods considered for comparison.



In Table 5 and Table 12, the featured similarity index (SSIM) is given for Kapur’s and Otsu’s techniques; its value should be higher for better segmentation. The value of FSIM with the proposed technique is higher than all other techniques. The average FSIM computed for nine images with the proposed technique with Otsu’s method is 0.8818; its value with SCA is only 0.8011. From Table 6 and Table 13, the PRI should be a higher value for better image segmentation. The PRI values are slightly better for SAMFO-TH compared to the proposed method, whereas its values are much better than other techniques.



In Table 15 and Table 16, there is a comparison of MEAN computed by SAMFO-TH, MVO, and WOA using Otsu’s and Kapur’s methods with N = 4, 6, 8, and 10 for red, green, and blue components separately; its values are much higher with Otsu’s method than Kapur’s method. After analyzing the information from Table 17 it can be concluded that the proposed method gives a much better average MEAN of fitness with both Kapur’s and Otsu’s methods than all other techniques considered.



In this discussion of results, the proposed approach is compared with other algorithms using the mean of fitness function (MEAN); in Table 8, the MEAN values computed by the proposed method are given for both Kapur’s and Otsu’s methods. Higher MEAN values indicate higher accuracy. These values are significantly higher than those values obtained with other methods, including SAMFO-TH; as the level of threshold increases the MEAN values increase in both Kapur and Otsu methods. The MEAN values are much greater with Otsu’s method than with Kapur’s method. Table 15 depicts the MEAN values with SAMFO_TH, MVO, and WOA with Otsu’s methods; these values are much lower than with the proposed approach and MEAN values with other optimization techniques can be fetched from published [8] articles for comparison. In Table 16, a comparison of MEAN computed by SAMFO-TH, MVO, and WOA using Kapur’s method with N = 4, 6, 8, and 10 for the red, green, and blue components is given. Very importantly, in Table 17, the average of MEAN values with various optimization techniques with both Otsu’s and Kapur’s methods are presented; the results show that the results with the proposed method are highly superior to all the techniques considered in this research, for color components red, green, and blue. From Table 17, we can conclude that the mean of MEAN value for all the images is higher with the proposed approach with both Otsu’s and Kapur’s methods; at the same time the performance of SCA, PSO, and MFO is not up to the mark; after the proposed approach SAMFO-TH is the best one. From this discussion, we can conclude that the proposed approach for segmentation performs with better stability.



In Table 1 PSNR values with Kapur’s method are presented for all the optimization techniques which are under test and, in Table 9, PSNR values with Otsu’s method are given. From the two tables mentioned above, we can deduce the conclusion that the proposed approach produces better PSNR compared to other methods; PSNR performance is much higher with Kapur’s than with Otsu’s method, as the level thresholding increases PSNR also increases tremendously. The mean PSNR for nine images with the proposed method is 25.2768 (from Table 2) and 24.6188 with SAMFO-TH; the lowest value is with FPA at 21.678. At the same time, the mean of PSNR with Otsu’s criteria is 26.222 for the proposed method, 21.2768 with SAMFO-TH, and the lowest value is 19.5712 with FPA. PSNR values are higher for satellite images (Images 7, 8) compared to the rest of the images; for Image 3 PSNR performance is very low; from the above discussion, the proposed method can provide better PSNR compared to the other methods considered. Lower MSE implies better segmentation performance; from Table 3 and Table 10, MSE with the proposed approach is much lower than with other methods for Kapur’s and Otsu’s techniques. The average MSE value with the proposed method is 294.4714, whereas it is 707.477 with FPA for Kapur’s method.



Other most significant quality metrics for color image segmentation are SSIM and FSIM, and higher values of FSIM and SSIM indicate accurate image segmentation. In Table 4, SSIM values are presented and computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO, and with the proposed model using Kapur’s method with N = 4, 6, 8, and 10. In Table 11, a comparison of SSIM with Otsu’s method is described; mean values of SSIM for the technique are given which indicate the overall SSIM performance of nine images. For instance, from Table 4, SSIM is 0.9867 with the proposed method and 0.98539 with SAMFO-TH, with only slight variation with other methods. In Table 5 and Table 12, FSIMs with Kapur’s and Otsu’s methods are presented, respectively. From Table 5, they are 0.8923 for the proposed method, 0.7898 with SAMFO-TH, and finally, the lowest value is 0.8377 with PSO. Both the SSIM and FSIM values are enhanced along with threshold levels from 4 to 10.



The VOI and PRI are important and distinguishing comparative metrics in the field of segmentation. High-quality segmentation is referred to by higher PRI and low value of VOI. The PRI values with various techniques including the proposed one (MTEMOE) are illustrated in Table 6 and Table 13 with Kapur’s and Otsu’s methods, respectively. From Table 6, the PRI value with the proposed method is better than WOA, FPA, SCA, and ACO, but lower than other methods with Kapur’s method. With Otsu’s criteria, MTEMOE performs well in terms of PRI compared to all the techniques other than SAMFO-TH and WOA, as illustrated in Table 13; finally, we point out that higher PRI values are generated with Otsu’s method compared to Kapur’s method. However, with higher threshold levels (N = 16, 20, and 24) the proposed method gives higher PRI values compared to all other methods considered in this study. From Table 7 and Table 14, the VOIfor the proposed method gives better results than other techniques for both Kapur’s and Otsu’s methods; only WOA and SAMFO-TH give a minute improvement in the case of Otsu’s methods; at a higher level of thresholding, the proposed method gives much lower(or better) values compared with the methods in this study including SAMFO-TH. The overall impression is that the MTEMOE is a better approach to color image segmentation than other state-of-the-art techniques and the proposed technique uses an energy curve instead of a histogram.




6. Conclusions


In this article, many schemes for color image segmentation are discussed. From that pool of methods, multilevel thresholding (MT) is a powerful technique, generally based on the histogram of an image. To nullify the shortfalls of the histogram, another curve that is similar to the histogram called the energy curve is used instead of the histogram to efficiently compute optimized thresholds. The proposed model for segmentation is based on Otsu’s and Kapur’s methods for MT on an energy curve with EMO for finding optimized threshold levels by maximizing the inter-class variances and entropy. The results for a group of color benchmark images clearly show that MT on the energy curve is more efficient than the histogram-based techniques. The energy curve can consider spatial contextual information to find energy levels at each pixel. Consequently, the same veiled information is used to compute optimized levels. The efficiency of the proposed approach is evaluated with mean of fitness (MEAN), PSNR, MSE, PRI, VOI, SSIM, and FSIM. The proposed approach (MTEMOE) is tested on nine color images using both Otsu’s and Kapur’s methods at different threshold levels (N = 4, 6, 8, 10, 16, 20, and 24); the proposed method is compared with other state-of-the-art methods for color image segmentation: SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO. From the results, we can conclude that the value of PSNR is greater with the energy curve than with methods based on the histogram; for the proposed method, the MEAN of the objective function is very high compared with a histogram-based method with optimization techniques. The higher PRI and lower VOI values mean better inter-class variance with the proposed method. Based on the values of comparative metrics such as PSNR, MSE, VOI, PRI, and the average MEAN value of fitness function and other parameters, the methods for segmentation of a color image are arranged from best to worst as the proposed method, SAMFO-TH, ACO, SCA, PSO, WOA, MFO, ABC, FPA, SCA, and MVO. Finally, we can conclude that the proposed approach gives an overall better performance for color image segmentation than the methods considered for various applications. The energy curve can be used with the latest upcoming optimization algorithms for still better results.
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Figure 1. (A) Images considered for experimentation along with histogram and energy curves of images. Red, green, and blue color plots indicate histograms and energy curves of red, green, and blue components of input images. (B) Images considered for experimentation along with histogram and energy curves of images. Red, green, and blue color plots indicate the histograms and energy curves of red, green, and blue components of input images. 
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Figure 2. Flow chart of the proposed approach to color image segmentation. 
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Figure 3. Segmented images of Image 1 to Image 9 for N = 4, 6, 8, 10, 16, 20, and 24 using the proposed method based on Otsu’s method. 
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Figure 4. Segmented images of Image 1 to Image 9 for N = 4, 6, 8, 10, 16, 20, and 24 using the proposed method based on Kapur’s method. 
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Figure 5. Segmented images of Image 1 at N = 4, 6, 8, 10, 16, 20, and 24, using SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO, and with the proposed model based on Kapur’s method. 
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Figure 6. Segmented images of Image 6 at N = 4, 6, 8, 10, 16, 20, and 24, using SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO, and with the proposed model based on Otsu’s method. 
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Figure 7. Segmented images of Image 7 at N = 4, 6, 8, 10, 16, 20, and 24, using SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO, and with the proposed model based on Otsu’s method. 
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Figure 8. Comparison of PSNR for the proposed method using Otsu’s and Kapur’s methods. 
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Figure 9. Comparison of PSNR based on Otsu’s method. 
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Figure 10. Comparison of PSNR based on Kapur’s method. 
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Figure 11. Comparison of SSIM with the proposed method based on Otsu’s and Kapur’s criteria. 
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Figure 12. (A) Comparison of PSNR based on Kapur’s method. (B) Comparison of FSIM with the proposed method based on Otsu’s and Kapur’scriteria. 
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Table 1. Different metrics to test the efficiency of the algorithms.
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	S.No
	Comparative

Parameters
	Formula
	Remarks





	1
	The mean value of fitness (MEAN)
	It can be calculated as the average value of fitness values of objective values at each iteration of the algorithm.
	Inter-class variance and entropy are the objective functions for Otsu’s and Kapur’s methods.



	3
	Peak signal-to-noise ratio (PSNR)
	   20   l o g   10         M A X   R M S E       2     
	The MAX is the maximum gray value taken as 255.



	4
	Mean square error (MSE)
	   M S E =   ( R M S E )   2     

   R M S E =      ∑  i = 1     R   0        ∑  j = 1     C   0          I   i , j   −   I   s     i , j       2           R   0   ×   C   0        
	  I ( i , j )   is the input image and the segmented image is     I   s     i , j    .     C   0   ×   R   0     is the size of the image.



	5
	Structural similarity (SSIM)
	   =     2   μ   x     μ   y     + c   1     ( 2   σ   x y   +   c   2   )       μ   x   2   +   μ   y   2     + c   1     (   σ   x   2   +   σ   y   2     + c   2   )     
	    μ   x     and     μ   y     are the mean intensities of input and segmented images.     σ   x y     is the covariance,     σ   x   2     and     σ   y   2     are the variance of images.



	6
	Feature similarity index (FSIM)
	   =     ∑  x ϵ Ω      S   L     x     P C   m   ( x )       ∑  x ϵ Ω      P C   m   ( x )       
	    S   L     x     is the similarity between images.     P C   m   ( x )   is the maximum phase congruency of two images.



	7
	Probability Rand Index (PRI)
	The internal validation measurePRIis an indication of resemblance between two regions in an image or clusters; it is expressed as given below

          P R I =   a + b   a + b + c + d    
	Whereas dataset   X   is portioned into two subsets     C   1     and     C   2    , the number of pairs of pixels (or elements) that are present in both subsets     C   1     and     C   2     is indicated by   a  .

  b   indicates the number of pairs of elements in X that are a different subset in C1 and a different subset in C2.

  c   indicates the number of pairs of elements in X that are the same subset in C1 and a different subset in C2.

  d   denotes the number of pairs of elements in X that are a different subset in C1 and the same subset in C2.



	8
	Variation of information (VOI)
	   V O I = E n t     I   s     + E n t     I   R     − 2 M I (   I   s   ,   I   R   )   

   M I     I   s   ,   I   R     = E n t     I   s     + E n t     I   R     − E n t (   I   s   ,   I   R   )   
	    I   s     is the segmented image,     I   R     is the reference image,   E n t   is entropy,   E n t (   I   s   ,   I   R   )   is joint entropy.
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Table 2. Comparison of PSNR computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO with the proposed model using Kapur’s method with N = 4, 6, 8, and 10.
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Image

	
N

	
PSNR




	

	

	
SAMFO-TH

	
MVO

	
WOA

	
FPA

	
SCA

	
ACO

	
PSO

	
ABC

	
MFO

	
Proposed






	
Image 1

	
4

	
14.2867

	
14.2850

	
14.1218

	
16.6767

	
13.9373

	
16.6382

	
15.3040

	
14.1319

	
14.2850

	
17.411




	
6

	
0.7623

	
17.4474

	
20.0144

	
18.0251

	
22.0077

	
19.5418

	
19.9410

	
21.2326

	
17.4474

	
23.3624




	
8

	
24.5806

	
23.6349

	
22.7130

	
19.2523

	
24.1795

	
23.4068

	
19.5648

	
23.2057

	
22.6762

	
26.4105




	
10

	
26.9502

	
26.7858

	
26.4701

	
24.2091

	
25.8698

	
22.9264

	
21.8110

	
24.9282

	
26.8866

	
29.3038




	
Image 2

	
4

	
13.5789

	
13.3799

	
13.2111

	
14.0750

	
13.1322

	
16.9569

	
12.6058

	
13.2116

	
13.3799

	
16.9332




	
6

	
21.2486

	
19.1958

	
19.1717

	
16.7705

	
18.0188

	
20.6228

	
20.3663

	
18.9082

	
19.2011

	
23.2135




	
8

	
25.1726

	
24.9161

	
24.9029

	
19.3409

	
21.8487

	
18.1980

	
23.7460

	
24.3227

	
24.1126

	
27.0255




	
10

	
27.6556

	
26.0105

	
25.7441

	
23.4190

	
21.3457

	
25.1496

	
25.1499

	
23.7446

	
27.4677

	
29.7932




	
Image 3

	
4

	
14.9730

	
14.7516

	
14.7516

	
14.6601

	
14.6416

	
14.3734

	
14.3436

	
14.7839

	
14.8017

	
19.6832




	
6

	
19.6315

	
15.3583

	
15.3563

	
20.8057

	
18.0842

	
19.5661

	
15.4180

	
15.1249

	
15.4616

	
23.8255




	
8

	
21.8110

	
20.2832

	
20.2763

	
16.1667

	
21.7836

	
21.4141

	
20.3278

	
20.8963

	
19.9967

	
26.1728




	
10

	
24.0922

	
20.8407

	
20.7880

	
16.9484

	
21.0673

	
22.9669

	
15.8518

	
23.5685

	
22.0379

	
28.1644




	
Image 4

	
4

	
22.6650

	
22.6187

	
22.6187

	
20.3850

	
22.5610

	
21.9843

	
22.1260

	
22.2906

	
22.5522

	
21.0083




	
6

	
23.3561

	
24.8435

	
22.8323

	
22.1698

	
21.1181

	
23.1694

	
20.0681

	
22.5925

	
23.0749

	
26.5867




	
8

	
25.8717

	
25.9515

	
25.6615

	
24.8007

	
25.1022

	
20.6755

	
20.9384

	
24.5891

	
23.1128

	
28.2479




	
10

	
28.3709

	
27.2012

	
28.3390

	
24.2414

	
22.9892

	
26.3917

	
25.8571

	
23.5946

	
27.5801

	
29.3581




	
Image 5

	
4

	
22.6650

	
22.6187

	
22.6187

	
20.3850

	
22.5610

	
21.9843

	
22.1260

	
22.2906

	
22.5522

	
19.2267




	
6

	
23.3561

	
24.8435

	
22.8323

	
22.1698

	
21.1181

	
23.1694

	
20.0681

	
22.5925

	
23.0749

	
23.5926




	
8

	
25.8717

	
25.9515

	
25.6615

	
24.8007

	
25.1022

	
20.6755

	
20.9384

	
24.5891

	
23.1128

	
25.8969




	
10

	
28.3709

	
27.2012

	
28.3390

	
24.2414

	
22.9892

	
26.3917

	
25.8571

	
23.5946

	
27.5801

	
28.7066




	
Image 6

	
4

	
21.5290

	
21.5290

	
21.5290

	
20.8569

	
21.0864

	
20.1992

	
19.9682

	
22.2765

	
21.5068

	
19.3631




	
6

	
24.3622

	
24.3605

	
24.3905

	
23.6272

	
22.4015

	
21.0277

	
21.5290

	
24.3142

	
23.0741

	
24.6747




	
8

	
27.8633

	
26.4006

	
26.2061

	
26.7374

	
24.9330

	
24.2707

	
24.8640

	
24.5837

	
26.2940

	
26.9835




	
10

	
29.1790

	
27.7527

	
29.1194

	
22.7830

	
24.2800

	
27.0600

	
25.0170

	
27.2259

	
29.0730

	
28.3946




	
Image 7

	
4

	
25.5470

	
25.4570

	
25.4570

	
24.1766

	
19.1235

	
24.5240

	
19.4536

	
19.0881

	
25.4570

	
25.195




	
6

	
29.7362

	
27.6434

	
28.9754

	
26.1089

	
25.7468

	
19.7999

	
28.1928

	
27.1875

	
28.9557

	
28.6755




	
8

	
33.6300

	
30.7366

	
30.6802

	
29.5335

	
28.6656

	
22.0921

	
30.9938

	
27.1974

	
33.3217

	
33.1943




	
10

	
36.4519

	
29.9769

	
33.7857

	
30.3995

	
24.9723

	
27.8741

	
31.9742

	
29.1914

	
34.1678

	
36.1217




	
Image 8

	
4

	
22.6392

	
22.5244

	
22.5244

	
18.4377

	
19.0066

	
20.8646

	
20.8291

	
22.5279

	
22.5244

	
20.4749




	
6

	
26.1655

	
25.8536

	
25.8350

	
22.4239

	
19.0136

	
20.1567

	
24.5617

	
21.3842

	
25.8134

	
26.2102




	
8

	
28.6575

	
27.7273

	
27.5732

	
24.9561

	
26.0938

	
25.7541

	
25.7131

	
24.5071

	
28.6420

	
28.6113




	
10

	
30.5915

	
28.401

	
30.2800

	
23.3037

	
22.4820

	
21.9794

	
26.6112

	
26.8636

	
30.2009

	
31.1743




	
Image 9

	
4

	
19.8193

	
19.7421

	
19.7421

	
17.0760

	
19.4905

	
17.2988

	
19.2776

	
19.4984

	
19.8087

	
21.3238




	
6

	
22.6291

	
22.5596

	
22.6157

	
21.7415

	
20.7706

	
18.7977

	
22.0371

	
21.3628

	
22.6060

	
24.1806




	
8

	
25.1702

	
24.9523

	
25.0680

	
21.7143

	
21.5330

	
21.4059

	
23.9504

	
23.9585

	
25.0186

	
27.439




	
10

	
27.0309

	
26.7189

	
26.6886

	
22.8024

	
23.8913

	
23.0109

	
22.6262

	
24.3817

	
26.6501

	
30.0399




	
Average

	

	
24.6188

	
23.6325

	
23.8026

	
21.6728

	
21.7482

	
21.7316

	
21.9444

	
22.4984

	
23.7086

	
25.7213
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Table 3. Comparison of MSE computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO with the proposed model using Kapur’s method with N = 4, 6, 8, and 10.
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Image

	
N

	
MSE-Kapur




	

	

	
SAMFO-TH

	
MVO

	
WOA

	
FPA

	
SCA

	
ACO

	
PSO

	
ABC

	
MFO

	
Proposed






	
Image 1

	
4

	
2423.32

	
2424.22

	
2517.14

	
1397.72

	
2626.34

	
1410.17

	
1917.33

	
2511.23

	
2424.28

	
1183.26




	
6

	
545.564

	
1170.47

	
648.102

	
1024.60

	
409.55

	
722.602

	
659.140

	
489.575

	
1170.47

	
299.806




	
8

	
197.301

	
281.571

	
348.158

	
772.419

	
226.473

	
296.753

	
718.782

	
310.824

	
351.125

	
148.604




	
10

	
131.237

	
136.302

	
146.579

	
246.702

	
168.305

	
331.467

	
428.533

	
209.054

	
133.175

	
76.3309




	
Image 2

	
4

	
2956.02

	
2986.04

	
3104.45

	
2544.33

	
3161.27

	
1310.45

	
3568.64

	
3104.05

	
2986.03

	
1317.53




	
6

	
355.465

	
782.530

	
786.885

	
1367.80

	
1026.15

	
487.773

	
597.653

	
836.101

	
781.568

	
310.2633




	
8

	
197.617

	
209.639

	
210.277

	
756.819

	
424.825

	
984.645

	
274.458

	
240.330

	
252.243

	
128.9824




	
10

	
111.562

	
162.940

	
173.249

	
295.925

	
476.991

	
198.665

	
198.650

	
274.547

	
116.495

	
68.19623




	
Image 3

	
4

	
2152.35

	
2177.33

	
2177.33

	
2223.71

	
2233.28

	
2375.45

	
1899.97

	
2151.26

	
2152.30

	
699.4559




	
6

	
707.825

	
1893.42

	
1894.34

	
540.146

	
1010.88

	
718.566

	
1867.60

	
1998.01

	
1848.93

	
269.4824




	
8

	
428.524

	
609.199

	
610.169

	
1571.85

	
431.236

	
469.541

	
602.970

	
528.995

	
650.742

	
156.9641




	
10

	
253.433

	
535.808

	
542.347

	
1312.95

	
508.565

	
328.393

	
1690.17

	
285.908

	
406.716

	
99.2294




	
Image 4

	
4

	
352.032

	
355.804

	
355.804

	
595.089

	
336.500

	
411.762

	
316.575

	
383.729

	
361.295

	
515.5257




	
6

	
300.242

	
213.170

	
338.727

	
394.552

	
502.651

	
313.429

	
640.131

	
357.955

	
320.322

	
142.6955




	
8

	
168.231

	
165.168

	
176.575

	
215.281

	
159.537

	
556.585

	
523.894

	
226.032

	
317.543

	
97.33978




	
10

	
94.6216

	
123.869

	
95.3183

	
244.874

	
326.710

	
149.250

	
168.800

	
284.196

	
113.518

	
75.38247




	
Image 5

	
4

	
1525.07

	
1529.68

	
1529.63

	
2356.50

	
1356.78

	
1662.81

	
1220.39

	
1689.70

	
1558.81

	
776.9809




	
6

	
623.770

	
650.887

	
636.915

	
634.497

	
469.579

	
1258.92

	
702.469

	
441.362

	
666.638

	
284.3285




	
8

	
325.161

	
343.619

	
335.542

	
425.048

	
553.578

	
861.665

	
568.193

	
357.963

	
326.081

	
167.2593




	
10

	
195.209

	
237.657

	
205.215

	
407.361

	
330.530

	
264.978

	
529.601

	
203.436

	
236.277

	
87.58311




	
Image 6

	
4

	
457.273

	
457.273

	
457.273

	
533.814

	
506.337

	
621.104

	
655.032

	
384.975

	
459.617

	
752.9573




	
6

	
236.608

	
238.250

	
320.382

	
282.072

	
374.051

	
513.229

	
457.273

	
240.802

	
238.152

	
221.6207




	
8

	
106.353

	
148.943

	
155.764

	
137.829

	
208.824

	
243.228

	
212.170

	
226.312

	
152.644

	
130.2358




	
10

	
78.5562

	
109.097

	
79.6421

	
342.597

	
242.706

	
127.961

	
204.821

	
123.164

	
80.4963

	
94.10666




	
Image 7

	
4

	
185.090

	
185.090

	
185.090

	
248.551

	
795.662

	
229.447

	
737.426

	
802.177

	
185.090

	
392.2657




	
6

	
69.0973

	
111.875

	
82.3258

	
159.289

	
173.142

	
680.915

	
98.5827

	
124.258

	
82.7000

	
176.0072




	
8

	
28.1892

	
54.8811

	
55.5983

	
72.3988

	
88.4136

	
401.668

	
51.7245

	
123.975

	
30.2638

	
78.27992




	
10

	
14.7190

	
65.3712

	
27.1964

	
59.3091

	
206.943

	
106.089

	
41.2723

	
78.3322

	
62.5614

	
63.22813




	
Image 8

	
4

	
354.124

	
363.613

	
363.613

	
931.783

	
817.366

	
532.874

	
537.243

	
363.320

	
363.613

	
582.895




	
6

	
157.227

	
168.935

	
169.662

	
372.125

	
816.056

	
627.207

	
227.463

	
472.784

	
170.506

	
155.6182




	
8

	
25.7542

	
88.5788

	
113.698

	
207.717

	
159.844

	
109.735

	
174.491

	
230.341

	
88.8945

	
89.52624




	
10

	
62.0859

	
93.9654

	
60.9653

	
303.882

	
367.180

	
412.227

	
141.894

	
133.882

	
56.7455

	
49.61927




	
Image 9

	
4

	
677.871

	
690.033

	
690.033

	
1274.95

	
731.182

	
1211.21

	
767.929

	
729.868

	
679.526

	
479.4026




	
6

	
354.950

	
360.679

	
356.051

	
435.445

	
544.529

	
857.653

	
406.786

	
475.113

	
356.846

	
248.325




	
8

	
197.722

	
207.897

	
202.433

	
438.178

	
456.855

	
470.421

	
261.845

	
261.355

	
204.750

	
117.2682




	
10

	
128.822

	
138.417

	
139.384

	
341.065

	
265.432

	
325.078

	
355.185

	
237.088

	
140.626

	
64.43033




	
Average

	

	
477.194

	
568.672

	
563.662

	
707.477

	
652.618

	
627.331

	
678.474

	
608.111

	
70.219

	
294.4718
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Table 4. Comparison of SSIM computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO with the proposed model using Kapur’s method with N = 4, 6, 8, and 10.






Table 4. Comparison of SSIM computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO with the proposed model using Kapur’s method with N = 4, 6, 8, and 10.





	
Image

	
N

	
SSIM-Kapur




	

	

	
SAMFO-TH

	
MVO

	
WOA

	
FPA

	
SCA

	
ACO

	
PSO

	
ABC

	
MFO

	
Proposed






	
Image 1

	
4

	
0.9275

	
0.9190

	
0.9209

	
0.9206

	
0.9016

	
0.8788

	
0.9193

	
0.9146

	
0.9213

	
0.9568




	
6

	
0.9768

	
0.9600

	
0.9652

	
0.9624

	
0.9758

	
0.9419

	
0.9723

	
0.9681

	
0.9653

	
0.9713




	
8

	
0.9882

	
0.9858

	
0.9830

	
0.9389

	
0.9860

	
0.9877

	
0.9837

	
0.9861

	
0.9852

	
0.9636




	
10

	
0.9958

	
0.9947

	
0.9952

	
0.9879

	
0.9885

	
0.9927

	
0.9914

	
0.9949

	
0.9908

	
0.9932




	
Image 2

	
4

	
0.9386

	
0.9353

	
0.9339

	
0.9475

	
0.9295

	
0.9353

	
0.9305

	
0.9357

	
0.9357

	
0.9619




	
6

	
0.9785

	
0.9735

	
0.9731

	
0.9634

	
0.9636

	
0.9662

	
0.9762

	
0.9738

	
0.9741

	
0.9815




	
8

	
0.9935

	
0.9874

	
0.9861

	
0.9794

	
0.9878

	
0.9790

	
0.9896

	
0.9924

	
0.9920

	
0.9967




	
10

	
0.9953

	
0.9951

	
0.9944

	
0.9850

	
0.9894

	
0.9907

	
0.9876

	
0.9934

	
0.9952

	
0.9971




	
Image 3

	
4

	
0.9417

	
0.9393

	
0.9395

	
0.9382

	
0.9404

	
0.9332

	
0.9397

	
0.9390

	
0.9397

	
0.961




	
6

	
0.9611

	
0.9460

	
0.9464

	
0.9733

	
0.9549

	
0.9649

	
0.9559

	
0.9432

	
0.9490

	
0.9724




	
8

	
0.9785

	
0.9673

	
0.9662

	
0.9572

	
0.9713

	
0.9615

	
0.9726

	
0.9766

	
0.9675

	
0.9881




	
10

	
0.9890

	
0.9772

	
0.9725

	
0.9694

	
0.9853

	
0.9809

	
0.9722

	
0.9882

	
0.9770

	
0.9888




	
Image 4

	
4

	
0.9886

	
0.9881

	
0.9881

	
0.9873

	
0.9876

	
0.9878

	
0.9879

	
0.9885

	
0.9879

	
0.9988




	
6

	
0.9942

	
0.9932

	
0.9934

	
0.9897

	
0.9905

	
0.9922

	
0.9873

	
0.9904

	
0.9939

	
0.9971




	
8

	
0.9959

	
0.9951

	
0.9959

	
0.9938

	
0.9919

	
0.9877

	
0.9883

	
0.9934

	
0.9955

	
0.9921




	
10

	
0.9973

	
0.9971

	
0.9972

	
0.9924

	
0.9910

	
0.9894

	
0.9951

	
0.9943

	
0.9970

	
0.999




	
Image 5

	
4

	
0.9699

	
0.9695

	
0.9695

	
0.9632

	
0.9638

	
0.9606

	
0.9695

	
0.9658

	
0.9691

	
0.9964




	
6

	
0.9869

	
0.9858

	
0.9865

	
0.9817

	
0.9836

	
0.9789

	
0.9855

	
0.9894

	
0.9863

	
0.9921




	
8

	
0.9916

	
0.9915

	
0.9914

	
0.9910

	
0.9872

	
0.9859

	
0.9833

	
0.9918

	
0.9911

	
0.9986




	
10

	
0.9952

	
0.9949

	
0.9945

	
0.9936

	
0.9932

	
0.9920

	
0.9917

	
0.9953

	
0.9943

	
0.9934




	
Image 6

	
4

	
0.9887

	
0.9887

	
0.9887

	
0.9870

	
0.9837

	
0.9826

	
0.9766

	
0.9874

	
0.9888

	
0.9885




	
6

	
0.9935

	
0.9927

	
0.9935

	
0.9899

	
0.9906

	
0.9885

	
0.9903

	
0.9930

	
0.9931

	
0.98871




	
8

	
0.9965

	
0.9960

	
0.9957

	
0.9950

	
0.9918

	
0.9928

	
0.9934

	
0.9945

	
0.9959

	
0.9984




	
10

	
0.9978

	
0.9973

	
0.9975

	
0.9935

	
0.9921

	
0.9932

	
0.9929

	
0.9968

	
0.9975

	
0.9986




	
Image 7

	
4

	
0.9915

	
0.9811

	
0.9811

	
0.9810

	
0.9768

	
0.9768

	
0.9730

	
0.9759

	
0.9809

	
0.9939




	
6

	
0.9950

	
0.9946

	
0.9946

	
0.9838

	
0.9883

	
0.9903

	
0.9913

	
0.9931

	
0.9948

	
0.9252




	
8

	
0.9971

	
0.9954

	
0.9959

	
0.9932

	
0.9952

	
0.9956

	
0.9888

	
0.9947

	
0.9958

	
0.9994




	
10

	
0.9980

	
0.9977

	
0.9964

	
0.9972

	
0.9956

	
0.9948

	
0.9927

	
0.9973

	
0.9976

	
0.9908




	
Image 8

	
4

	
0.9855

	
0.9853

	
0.9853

	
0.9771

	
0.9797

	
0.9796

	
0.9799

	
0.9851

	
0.9853

	
0.9918




	
6

	
0.9932

	
0.9930

	
0.9929

	
0.9900

	
0.9840

	
0.9820

	
0.9850

	
0.9899

	
0.9931

	
0.9899




	
8

	
0.9961

	
0.9956

	
0.9954

	
0.9912

	
0.9939

	
0.9905

	
0.9936

	
0.9918

	
0.9954

	
0.9829




	
10

	
0.9974

	
0.9969

	
0.9971

	
0.9934

	
0.9920

	
0.9909

	
0.9949

	
0.9946

	
0.9971

	
0.9995




	
Image 9

	
4

	
0.9799

	
0.9795

	
0.9795

	
0.9735

	
0.9774

	
0.9708

	
0.9744

	
0.9742

	
0.9796

	
0.993




	
6

	
0.9902

	
0.9898

	
0.9895

	
0.9767

	
0.9805

	
0.9816

	
0.9857

	
0.9881

	
0.9892

	
0.9892




	
8

	
0.9935

	
0.9934

	
0.9933

	
0.9843

	
0.9903

	
0.9895

	
0.9922

	
0.9933

	
0.9932

	
0.9976




	
10

	
0.9963

	
0.9962

	
0.9961

	
0.9918

	
0.9855

	
0.9926

	
0.9920

	
0.9938

	
0.9962

	
0.9948




	
Average

	

	
0.98539

	
0.982472

	
0.98237

	
0.97811

	
0.97945

	
0.97720

	
0.97989

	
0.98217

	
0.98281

	
0.9867
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Table 5. Comparison of FSIM computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO with the proposed model using Kapur’s method with N = 4, 6, 8, and 10.






Table 5. Comparison of FSIM computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO with the proposed model using Kapur’s method with N = 4, 6, 8, and 10.





	
Image

	
N

	
FSIM




	

	

	
SAMFO-TH

	
MVO

	
WOA

	
FPA

	
SCA

	
ACO

	
PSO

	
ABC

	
MFO

	
Proposed






	
Image 1

	
4

	
0.6875

	
0.6716

	
0.6749

	
0.6783

	
0.6558

	
0.6183

	
0.6754

	
0.6725

	
0.6754

	
0.74




	
6

	
0.7756

	
0.7626

	
0.7607

	
0.7405

	
0.7728

	
0.7182

	
0.7392

	
0.7532

	
0.7679

	
0.8089




	
8

	
0.8377

	
0.8365

	
0.8217

	
0.7294

	
0.8117

	
0.7807

	
0.7907

	
0.8218

	
0.8319

	
0.8787




	
10

	
0.8988

	
0.8890

	
0.8903

	
0.8268

	
0.8315

	
0.8444

	
0.8313

	
0.8727

	
0.8733

	
0.9108




	
Image

	
4

	
0.7613

	
0.7611

	
0.7597

	
0.7578

	
0.7452

	
0.7329

	
0.7496

	
0.7590

	
0.7563

	
0.7461




	
6

	
0.8234

	
0.8114

	
0.8109

	
0.7829

	
0.7881

	
0.8038

	
0.8111

	
0.8077

	
0.8150

	
0.8696




	
8

	
0.8982

	
0.8769

	
0.8704

	
0.8184

	
0.8409

	
0.8127

	
0.8499

	
0.8835

	
0.8910

	
0.8978




	
10

	
0.9233

	
0.9206

	
0.9153

	
0.8541

	
0.8561

	
0.8782

	
0.8540

	
0.9007

	
0.9216

	
0.9421




	
Image

	
4

	
0.7674

	
0.7664

	
0.7662

	
0.7441

	
0.7665

	
0.7537

	
0.7469

	
0.7681

	
0.7670

	
0.8265




	
6

	
0.8118

	
0.8001

	
0.7997

	
0.7927

	
0.7977

	
0.7878

	
0.7765

	
0.7995

	
0.8005

	
0.8310




	
8

	
0.8344

	
0.8326

	
0.8324

	
0.7906

	
0.8188

	
0.8149

	
0.8230

	
0.8355

	
0.8330

	
0.9001




	
10

	
0.8663

	
0.8561

	
0.8517

	
0.7883

	
0.8428

	
0.8417

	
0.8339

	
0.8691

	
0.8629

	
0.9168




	
Image 4

	
4

	
0.8245

	
0.8241

	
0.8242

	
0.8196

	
0.8161

	
0.8114

	
0.8149

	
0.8183

	
0.8205

	
0.7890




	
6

	
0.8852

	
0.8756

	
0.8746

	
0.8334

	
0.8330

	
0.8650

	
0.8300

	
0.8391

	
0.8726

	
0.8751




	
8

	
0.9122

	
0.9094

	
0.8972

	
0.8718

	
0.8583

	
0.8294

	
0.8176

	
0.8775

	
0.9003

	
0.9129




	
10

	
0.9349

	
0.9246

	
0.9341

	
0.8766

	
0.8367

	
0.8171

	
0.8906

	
0.8766

	
0.9283

	
0.9446




	
Image 5

	
4

	
0.7856

	
0.7854

	
0.7854

	
0.7641

	
0.7842

	
0.7222

	
0.7585

	
0.7809

	
0.7842

	
0.7800




	
6

	
0.8603

	
0.8576

	
0.8551

	
0.8370

	
0.8397

	
0.8069

	
0.8318

	
0.8678

	
0.8596

	
0.9032




	
8

	
0.9010

	
0.8983

	
0.9007

	
0.8793

	
0.8568

	
0.8419

	
0.8550

	
0.9038

	
0.8993

	
0.9350




	
10

	
0.9308

	
0.9287

	
0.9305

	
0.8953

	
0.9008

	
0.8995

	
0.8811

	
0.9311

	
0.9306

	
0.9834




	
Image 6

	
4

	
0.7456

	
0.7454

	
0.7454

	
0.7311

	
0.7209

	
0.7069

	
0.7327

	
0.7359

	
0.7453

	
0.7363




	
6

	
0.8079

	
0.7953

	
0.8077

	
0.7717

	
0.7710

	
0.7751

	
0.7684

	
0.8032

	
0.7963

	
0.8682




	
8

	
0.8682

	
0.8544

	
0.8662

	
0.8326

	
0.7871

	
0.8044

	
0.8282

	
0.8236

	
0.8659

	
0.8621




	
10

	
0.8965

	
0.8862

	
0.8946

	
0.8066

	
0.7853

	
0.8316

	
0.8154

	
0.8731

	
0.8828

	
0.8851




	
Image 7

	
4

	
0.9068

	
0.8824

	
0.8792

	
0.8687

	
0.8546

	
0.8298

	
0.8384

	
0.8384

	
0.8774

	
0.9252




	
6

	
0.9418

	
0.9377

	
0.9376

	
0.8928

	
0.8940

	
0.8857

	
0.8980

	
0.8921

	
0.9400

	
0.9198




	
8

	
0.9623

	
0.9500

	
0.9537

	
0.9161

	
0.9393

	
0.9279

	
0.8830

	
0.9298

	
0.9569

	
0.9647




	
10

	
0.9732

	
0.9707

	
0.9633

	
0.9553

	
0.9182

	
0.9146

	
0.9186

	
0.9442

	
0.9657

	
0.9746




	
Image 8

	
4

	
0.9160

	
0.9139

	
0.9139

	
0.8562

	
0.8902

	
0.8572

	
0.8179

	
0.9099

	
0.9139

	
0.9111




	
6

	
0.9593

	
0.9591

	
0.9592

	
0.9170

	
0.9100

	
0.8888

	
0.9158

	
0.9004

	
0.9589

	
0.9599




	
8

	
0.9716

	
0.9772

	
0.9740

	
0.9472

	
0.9555

	
0.9605

	
0.9378

	
0.9537

	
0.9736

	
0.9759




	
10

	
0.9805

	
0.9849

	
0.9846

	
0.9479

	
0.9473

	
0.9299

	
0.9595

	
0.9620

	
0.9812

	
0.9827




	
Image 9

	
4

	
0.9290

	
0.9289

	
0.9286

	
0.8854

	
0.9117

	
0.8562

	
0.8693

	
0.9203

	
0.9282

	
0.8489




	
6

	
0.9539

	
0.9577

	
0.9574

	
0.9050

	
0.9361

	
0.9106

	
0.9135

	
0.9472

	
0.9566

	
0.9541




	
8

	
0.9622

	
0.9682

	
0.9672

	
0.9468

	
0.9437

	
0.9495

	
0.9489

	
0.9658

	
0.9676

	
0.9756




	
10

	
0.9792

	
0.9797

	
0.9790

	
0.9558

	
0.9479

	
0.9613

	
0.9523

	
0.9630

	
0.9783

	
0.9897




	
Average

	

	
0.8798

	
0.8744

	
0.87409

	
0.83936

	
0.84350

	
0.83251

	
0.83774

	
0.86113

	
0.87443

	
0.89237
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Table 6. Comparison of PRI computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO with the proposed model using Kapur’s method with N = 4, 6, 8, and 10.






Table 6. Comparison of PRI computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO with the proposed model using Kapur’s method with N = 4, 6, 8, and 10.





	
Image

	
N

	
PRI-Kapur-EMO




	

	

	
SAMFO-TH

	
MVO

	
WOA

	
FPA

	
SCA

	
ACO

	
PSO

	
ABC

	
MFO

	
Proposed






	
Image 1

	
4

	
0.6470

	
0.6352

	
0.6418

	
0.5833

	
0.5986

	
0.4005

	
0.6423

	
0.6350

	
0.6422

	
0.5264




	
6

	
0.7467

	
0.7427

	
0.7182

	
0.7070

	
0.7198

	
0.6157

	
0.6552

	
0.6828

	
0.7247

	
0.6681




	
8

	
0.7948

	
0.7945

	
0.7693

	
0.6684

	
0.7489

	
0.6820

	
0.7519

	
0.7934

	
0.7839

	
0.7899




	
10

	
0.8282

	
0.82827

	
0.8201

	
0.7990

	
0.7611

	
0.7693

	
0.7777

	
0.8033

	
0.8170

	
0.8188




	
Image 2

	
4

	
0.6210

	
0.6008

	
0.5931

	
0.6372

	
0.5361

	
0.5523

	
0.5907

	
0.5731

	
0.6010

	
0.5698




	
6

	
0.7332

	
0.7214

	
0.7234

	
0.7045

	
0.7064

	
0.7020

	
0.7147

	
0.7121

	
0.6969

	
0.6712




	
8

	
0.7919

	
0.7797

	
0.7790

	
0.7006

	
0.7050

	
0.7393

	
0.7059

	
0.7802

	
0.7729

	
0.7458




	
10

	
0.8265

	
0.8078

	
0.8013

	
0.7267

	
0.7053

	
0.8069

	
0.7511

	
0.7678

	
0.8250

	
0.8225




	
Image 3

	
4

	
0.5290

	
0.5092

	
0.5109

	
0.5044

	
0.5226

	
0.4611

	
0.5122

	
0.5103

	
0.5125

	
0.4985




	
6

	
0.6597

	
0.5466

	
0.5496

	
0.6219

	
0.6039

	
0.6781

	
0.6335

	
0.5237

	
0.5700

	
0.63255




	
8

	
0.7125

	
0.6771

	
0.6647

	
0.6287

	
0.6602

	
0.6378

	
0.7067

	
0.7190

	
0.6807

	
0.6043




	
10

	
0.7903

	
0.7526

	
0.7165

	
0.6949

	
0.7875

	
0.7894

	
0.6729

	
0.7781

	
0.7496

	
0.7192




	
Image 4

	
4

	
0.6152

	
0.6193

	
0.6193

	
0.6214

	
0.6046

	
0.6412

	
0.6049

	
0.6004

	
0.6117

	
0.4589




	
6

	
0.7180

	
0.7014

	
0.6903

	
0.6401

	
0.6035

	
0.6577

	
0.6116

	
0.6421

	
0.6935

	
0.6546




	
8

	
0.7476

	
0.7558

	
0.7605

	
0.7389

	
0.6795

	
0.7027

	
0.6658

	
0.7412

	
0.7263

	
0.721




	
10

	
0.7966

	
0.7927

	
0.7802

	
0.7521

	
0.6231

	
0.7273

	
0.7363

	
0.7132

	
0.7840

	
0.7524




	
Image 5

	
4

	
0.7942

	
0.7914

	
0.7925

	
0.7704

	
0.7677

	
0.7311

	
0.7576

	
0.7902

	
0.7939

	
0.7542




	
6

	
0.8487

	
0.8364

	
0.8441

	
0.8348

	
0.8201

	
0.7911

	
0.8087

	
0.8466

	
0.8433

	
0.8525




	
8

	
0.8838

	
0.8815

	
0.8830

	
0.8595

	
0.8463

	
0.8234

	
0.8523

	
0.8750

	
0.8822

	
0.8778




	
10

	
0.9048

	
0.9031

	
0.9057

	
0.8831

	
0.8706

	
0.8735

	
0.8673

	
0.8951

	
0.9003

	
0.8952




	
Image 6

	
4

	
0.6642

	
0.6639

	
0.6642

	
0.6286

	
0.6329

	
0.5797

	
0.6621

	
0.6638

	
0.6634

	
0.61258




	
6

	
0.7566

	
0.7414

	
0.7453

	
0.7465

	
0.6773

	
0.7694

	
0.6809

	
0.7580

	
0.7231

	
0.7299




	
8

	
0.8141

	
0.7982

	
0.7906

	
0.7986

	
0.7316

	
0.7832

	
0.7763

	
0.7762

	
0.7948

	
0.7788




	
10

	
0.8455

	
0.8276

	
0.8431

	
0.7847

	
0.7402

	
0.7664

	
0.7938

	
0.8281

	
0.8320

	
0.8436




	
Image 7

	
4

	
0.4376

	
0.3253

	
0.3242

	
0.3180

	
0.3403

	
0.3340

	
0.2412

	
0.2772

	
0.3280

	
0.3658




	
6

	
0.4615

	
0.4502

	
0.4540

	
0.4148

	
0.3937

	
0.3654

	
0.3925

	
0.4566

	
0.4581

	
0.4589




	
8

	
0.5227

	
0.5154

	
0.4970

	
0.5117

	
0.4590

	
0.4837

	
0.4901

	
0.4265

	
0.5133

	
0.6384




	
10

	
0.6222

	
0.5989

	
0.5442

	
0.5579

	
0.5417

	
0.6113

	
0.5790

	
0.5440

	
0.5320

	
0.6683




	
Image 8

	
4

	
0.7585

	
0.7337

	
0.7337

	
0.7337

	
0.7143

	
0.7049

	
0.7005

	
0.7183

	
0.7341

	
0.6867




	
6

	
0.8129

	
0.8096

	
0.8094

	
0.7717

	
0.7809

	
0.7490

	
0.7476

	
0.7663

	
0.8017

	
0.8423




	
8

	
0.8544

	
0.8464

	
0.8360

	
0.7986

	
0.8283

	
0.7916

	
0.8389

	
0.7878

	
0.8395

	
0.8507




	
10

	
0.8738

	
0.8612

	
0.8717

	
0.8397

	
0.7780

	
0.7937

	
0.8621

	
0.8378

	
0.8684

	
0.865




	
Image 9

	
4

	
0.7531

	
0.7520

	
0.7514

	
0.7140

	
0.7380

	
0.6981

	
0.7412

	
0.7518

	
0.7524

	
0.6142




	
6

	
0.8214

	
0.8201

	
0.8041

	
0.7613

	
0.7619

	
0.7749

	
0.7381

	
0.7831

	
0.8200

	
0.6983




	
8

	
0.8563

	
0.8479

	
0.8494

	
0.8191

	
0.8003

	
0.8017

	
0.8063

	
0.8350

	
0.8337

	
0.775




	
10

	
0.8825

	
0.8765

	
0.8760

	
0.8490

	
0.8210

	
0.8411

	
0.8425

	
0.8437

	
0.8726

	
0.8384




	
Average

	

	
0.7424

	
0.7262

	
0.7210

	
0.6979

	
0.6836

	
0.6841

	
0.6920

	
0.7065

	
0.7216

	
0.7027
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Table 7. Comparison of VOI computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO with the proposed model using Kapur’s method with N = 4, 6, 8, and 10.






Table 7. Comparison of VOI computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO with the proposed model using Kapur’s method with N = 4, 6, 8, and 10.





	
Image

	
N

	
VOI-Kapur-EMO




	

	

	
SAMFO-TH

	
MVO

	
WOA

	
FPA

	
SCA

	
ACO

	
PSO

	
ABC

	
MFO

	
Proposed






	
Image 1

	
4

	
5.3330

	
5.3576

	
5.3336

	
5.4371

	
5.4764

	
5.9613

	
5.2945

	
5.3470

	
5.3324

	
5.4929




	
6

	
4.8227

	
4.8497

	
4.9617

	
4.9534

	
4.9410

	
5.2220

	
5.1722

	
5.0549

	
4.9153

	
4.7986




	
8

	
4.5099

	
4.5170

	
4.6569

	
5.0336

	
4.7645

	
4.9313

	
4.7757

	
4.5355

	
4.5731

	
4.4826




	
10

	
4.2423

	
4.3121

	
4.3065

	
4.4640

	
4.6410

	
4.5176

	
4.5288

	
4.3774

	
4.3215

	
4.2165




	
Image 2

	
4

	
5.2284

	
5.3003

	
5.3176

	
5.2022

	
5.4836

	
5.4641

	
5.3048

	
5.3813

	
5.2958

	
5.1645




	
6

	
4.7333

	
4.8488

	
4.8459

	
4.9018

	
4.9639

	
4.8143

	
4.9237

	
4.8548

	
4.7964

	
4.8883




	
8

	
4.4419

	
4.5026

	
4.5222

	
4.8948

	
4.9212

	
4.9252

	
4.7919

	
4.5447

	
4.5486

	
4.3051




	
10

	
4.2167

	
4.2874

	
4.3251

	
4.5219

	
4.7620

	
4.3481

	
4.6797

	
4.4438

	
4.2172

	
4.1258




	
Image 3

	
4

	
5.1486

	
5.1894

	
5.1876

	
5.2404

	
5.1837

	
5.3184

	
5.1667

	
5.1845

	
5.1814

	
5.1224




	
6

	
4.6392

	
4.9628

	
4.9574

	
4.6476

	
4.8242

	
4.7506

	
4.7276

	
5.0135

	
4.9010

	
4.6039




	
8

	
4.4126

	
4.5210

	
4.5607

	
4.7344

	
4.6110

	
4.6030

	
4.4475

	
4.3978

	
4.5123

	
4.3412




	
10

	
4.1030

	
4.1800

	
4.3102

	
4.4259

	
4.1170

	
4.1168

	
4.4745

	
4.1607

	
4.1549

	
4.1243




	
Image 4

	
4

	
5.1787

	
5.1617

	
5.1614

	
5.1402

	
5.2015

	
5.0637

	
5.1667

	
5.1457

	
5.1851

	
5.1776




	
6

	
4.7021

	
4.7650

	
4.8077

	
4.9795

	
5.0493

	
4.7123

	
4.9176

	
4.9828

	
4.8211

	
4.6573




	
8

	
4.4405

	
4.4753

	
4.4438

	
4.5795

	
4.7648

	
4.6895

	
4.8842

	
4.5344

	
4.5506

	
4.3403




	
10

	
4.2049

	
4.2094

	
4.2883

	
4.4242

	
4.8911

	
4.6964

	
4.4474

	
4.5626

	
4.2779

	
4.2658




	
Image 5

	
4

	
5.0841

	
5.0933

	
5.0841

	
5.1615

	
5.2042

	
5.3147

	
5.2377

	
5.1676

	
5.0848

	
5.0065




	
6

	
4.6610

	
4.7338

	
4.6999

	
4.7572

	
4.8916

	
4.9611

	
4.8981

	
4.6937

	
4.7025

	
4.6558




	
8

	
4.3212

	
4.3385

	
4.3278

	
4.4909

	
4.6591

	
4.6347

	
4.5010

	
4.3848

	
4.3361

	
4.2331




	
10

	
4.0469

	
4.0638

	
4.1039

	
4.2530

	
4.4220

	
4.3279

	
4.3399

	
4.1630

	
4.0583

	
4.3297




	
Image 6

	
4

	
5.2650

	
5.2676

	
5.2650

	
5.3632

	
5.3958

	
5.5519

	
5.2872

	
5.2788

	
5.2674

	
5.1710




	
6

	
4.7954

	
4.9082

	
4.8970

	
4.8278

	
5.1177

	
4.9170

	
5.0589

	
4.7993

	
4.9751

	
4.4071




	
8

	
4.4488

	
4.5450

	
4.6060

	
4.5046

	
4.9017

	
4.5562

	
4.6108

	
4.6814

	
4.5639

	
4.0305




	
10

	
4.1773

	
4.3155

	
4.2042

	
4.4149

	
4.8285

	
4.5117

	
4.5394

	
4.2892

	
4.2814

	
4.3887




	
Image 7

	
4

	
4.4371

	
4.6715

	
4.6934

	
4.6916

	
4.6462

	
4.7513

	
4.9261

	
4.8303

	
4.6838

	
4.7709




	
6

	
4.3105

	
4.3017

	
4.3222

	
4.3926

	
4.5140

	
4.5557

	
4.4991

	
4.3334

	
4.3303

	
4.4257




	
8

	
4.0766

	
4.0629

	
4.1389

	
3.8737

	
4.2378

	
4.1750

	
4.2134

	
4.3480

	
4.1253

	
4.0134




	
10

	
3.7302

	
3.8034

	
3.9591

	
3.8714

	
3.9576

	
3.7968

	
3.9279

	
3.9594

	
3.9441

	
3.5823




	
Image 8

	
4

	
5.2353

	
5.2396

	
5.2396

	
5.3274

	
5.3096

	
5.2584

	
5.3555

	
5.2864

	
5.2396

	
5.1201




	
6

	
4.7303

	
4.7425

	
4.7413

	
4.8706

	
4.8987

	
5.0754

	
5.0003

	
4.9568

	
4.7932

	
4.7156




	
8

	
4.3851

	
4.4530

	
4.5217

	
4.7100

	
4.6106

	
4.6958

	
4.4705

	
4.7702

	
4.5139

	
4.7666




	
10

	
4.1701

	
4.2839

	
4.1797

	
4.3947

	
4.7208

	
4.6088

	
4.2242

	
4.4325

	
4.2204

	
4.2265




	
Image 9

	
4

	
5.2527

	
5.2685

	
5.2758

	
5.3564

	
5.3178

	
5.4439

	
5.2739

	
5.3524

	
5.2705

	
5.1827




	
6

	
4.8043

	
4.8097

	
4.8980

	
5.0513

	
5.1684

	
4.9999

	
5.1457

	
5.0007

	
4.8105

	
4.7817




	
8

	
4.4959

	
4.5616

	
4.5543

	
4.7000

	
4.8973

	
4.8750

	
4.8079

	
4.6274

	
4.6573

	
4.4210




	
10

	
4.2281

	
4.2806

	
4.2873

	
4.4128

	
4.7177

	
4.4756

	
4.4871

	
4.4928

	
4.3162

	
4.1244




	
Average

	

	
4.5837

	
4.6440

	
4.6662

	
4.75016

	
4.8614

	
4.82281

	
4.79189

	
4.73248

	
4.65997

	
4.5683
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Table 8. Comparison of MEAN computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFOwith the proposed model using Kapur’s method with N = 4, 6, 8, and 10.






Table 8. Comparison of MEAN computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFOwith the proposed model using Kapur’s method with N = 4, 6, 8, and 10.





	

	

	
Proposed Method




	

	
N

	
EMO_Kapur

	
EMO_OTSU




	
Image

	

	
R

	
G

	
B

	
R

	
G

	
B






	
Image 1

	
4

	
22.7245

	
20.6617

	
21.9151

	
1.8715 × 1010

	
2.7645 × 1010

	
2.3448 × 1010




	
6

	
31.3838

	
31.1731

	
30.2143

	
1.8715 × 1010

	
2.7645 × 1010

	
2.3448 × 1010




	
8

	
38.9241

	
37.9386

	
37.6682

	
1.8715 × 1010

	
2.7645 × 1010

	
2.3448 × 1010




	
10

	
45.6957

	
44.2571

	
44.3222

	
1.8715 × 1010

	
2.7645 × 1010

	
2.3448 × 1010




	
Image 2

	
4

	
23.1335

	
21.3695

	
21.3695

	
1.2788 × 1011

	
2.2774 × 1011

	
2.2464 × 1011




	
6

	
31.7350

	
30.2454

	
30.6368

	
2.2774 × 1011

	
1.2788 × 1011

	
2.2464 × 1011




	
8

	
38.7069

	
37.1543

	
37.7688

	
2.2774 × 1011

	
2.2464 × 1011

	
1.2788 × 1011




	
10

	
45.7586

	
45.4235

	
44.4192

	
2.2774 × 1011

	
2.2464 × 1011

	
1.2788 × 1011




	
Image 3

	
4

	
23.3813

	
20.7151

	
23.1100

	
1.3372 × 1010

	
1.0266 × 1010

	
8.4907 × 109




	
6

	
31.6050

	
30.3837

	
31.5643

	
1.3372 × 1010

	
1.0266 × 1010

	
8.4907 × 109




	
8

	
39.2754

	
38.5151

	
39.1151

	
1.3372 × 1010

	
1.0266 × 1010

	
8.4907 × 109




	
10

	
46.0921

	
45.6209

	
44.8967

	
1.3372 × 1010

	
1.0266 × 1010

	
8.4907 × 109




	
Image 4

	
4

	
22.0506

	
20.3480

	
22.4926

	
7.1205 × 1010

	
1.1270 × 1011

	
6.8970 × 1010




	
6

	
30.1096

	
28.7478

	
29.7487

	
7.1205 × 1010

	
1.1270 × 1011

	
6.8970 × 1010




	
8

	
37.5105

	
36.9517

	
38.4094

	
7.1205 × 1010

	
1.1270 × 1011

	
6.8970 × 1010




	
10

	
44.1471

	
43.7316

	
44.8359

	
7.1205 × 1010

	
1.1270 × 1011

	
6.8970 × 1010




	
Image 5

	
4

	
23.0147

	
21.6803

	
22.5429

	
2.8927 × 1011

	
3.1468 × 1011

	
2.4490 × 1011




	
6

	
31.1646

	
31.0380

	
30.4736

	
2.8927 × 1011

	
3.1468 × 1011

	
2.4490 × 1011




	
8

	
38.3985

	
37.7448

	
38.5851

	
2.8927 × 1011

	
3.1468 × 1011

	
2.4490 × 1011




	
10

	
44.9580

	
45.6851

	
45.2806

	
2.8927 × 1011

	
3.1468 × 1011

	
2.4490 × 1011




	
Image 6

	
4

	
22.4669

	
21.5328

	
21.5243

	
2.8820 × 1010

	
2.3478 × 1010

	
8.8752 × 109




	
6

	
31.3892

	
29.5077

	
29.6574

	
2.8820 × 1010

	
2.3478 × 1010

	
8.8752 × 109




	
8

	
39.0856

	
37.1529

	
37.6348

	
2.8820 × 1010

	
2.3478 × 1010

	
8.8752 × 109




	
10

	
45.9102

	
42.9632

	
44.0875

	
2.8820 × 1010

	
2.3478 × 1010

	
8.8752 × 109




	
Image 7

	
4

	
22.9682

	
19.4795

	
21.3255

	
1.8752 × 1010

	
1.6944 × 1010

	
3.6049 × 109




	
6

	
31.2527

	
29.0121

	
30.4313

	
1.8752 × 1010

	
1.6944 × 1010

	
3.6049 × 109




	
8

	
38.2344

	
35.3177

	
37.6600

	
1.8752 × 1010

	
1.6944 × 1010

	
3.6049 × 109




	
10

	
45.5786

	
42.0219

	
43.9885

	
1.8752 × 1010

	
1.6944 × 1010

	
3.6049 × 109




	
Image 8

	
4

	
22.5804

	
22.6632

	
21.8942

	
1.1475 × 1011

	
1.0766 × 1011

	
5.5300 × 1010




	
6

	
35.5656

	
33.8955

	
34.6598

	
1.1475 × 1011

	
1.0766 × 1011

	
5.5300 × 1010




	
8

	
37.9865

	
37.9041

	
38.1715

	
1.1475 × 1011

	
1.0766 × 1011

	
5.5300 × 1010




	
10

	
45.7055

	
44.2770

	
45.0063

	
1.1475 × 1011

	
1.0766 × 1011

	
5.5300 × 1010




	
Image 9

	
4

	
79.7932

	
79.2440

	
79.2472

	
2.1651 × 1011

	
3.3482 × 1011

	
3.7903 × 1011




	
6

	
22.3258

	
22.0532

	
21.7375

	
2.1651 × 1011

	
3.3482 × 1011

	
3.7903 × 1011




	
8

	
31.4954

	
29.6734

	
30.1372

	
2.1651 × 1011

	
3.3482 × 1011

	
3.7903 × 1011




	
10

	
39.0669

	
37.7023

	
37.6457

	
2.1651 × 1011

	
3.3482 × 1011

	
3.7903 × 1011




	
Average

	

	
42.72888

	
41.809

	
41.9909

	
1.83× 1011

	
2.59× 1011

	
2.71× 1011
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Table 9. Comparison of PSNR computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFOwith the proposed model using Otsu’s method with N = 4, 6, 8, and 10.






Table 9. Comparison of PSNR computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFOwith the proposed model using Otsu’s method with N = 4, 6, 8, and 10.





	
Image

	
N

	
PSNR




	

	

	
SAMFO-TH

	
MVO

	
WOA

	
FPA

	
SCA

	
ACO

	
PSO

	
ABC

	
MFO

	
Proposed






	
Image 1

	
4

	
16.3860

	
16.4406

	
16.4308

	
16.1198

	
15.9518

	
16.5188

	
15.9471

	
15.7504

	
16.3509

	
19.6804




	
6

	
18.9503

	
18.6464

	
18.6453

	
17.0514

	
18.8871

	
16.2863

	
17.6779

	
18.8405

	
18.6600

	
22.3901




	
8

	
22.1062

	
21.6261

	
23.1484

	
19.1913

	
20.1582

	
24.3537

	
18.3762

	
22.1011

	
21.6192

	
23.9987




	
10

	
23.7705

	
23.3273

	
23.3233

	
23.5426

	
22.8207

	
22.5577

	
22.1879

	
22.6202

	
22.8891

	
28.0707




	
Image 2

	
4

	
16.6237

	
16.8918

	
16.7502

	
15.5177

	
16.8216

	
15.2934

	
17.3576

	
16.6367

	
16.6237

	
18.8124




	
6

	
19.9297

	
19.9122

	
20.1880

	
18.9867

	
21.2966

	
18.3149

	
20.8387

	
18.9461

	
19.9028

	
24.6275




	
8

	
22.3808

	
22.2341

	
22.1322

	
24.7995

	
23.1557

	
21.8098

	
20.5504

	
22.4373

	
22.2379

	
24.8692




	
10

	
25.5448

	
22.2341

	
24.6603

	
26.0898

	
25.3696

	
25.8321

	
20.5533

	
23.6078

	
24.6386

	
26.0680




	
Image 3

	
4

	
16.4184

	
16.1060

	
16.4101

	
13.9539

	
17.0046

	
18.1521

	
16.7390

	
16.3032

	
16.1370

	
20.5265




	
6

	
19.9828

	
19.5770

	
19.6195

	
19.1009

	
15.4523

	
21.3334

	
19.6198

	
19.5441

	
19.5530

	
24.4963




	
8

	
22.7395

	
22.0050

	
21.9373

	
19.5140

	
14.9593

	
21.9748

	
20.7408

	
16.1947

	
22.1665

	
28.0946




	
10

	
24.2109

	
23.6942

	
23.6708

	
20.8159

	
23.3595

	
21.9945

	
26.2623

	
19.0748

	
23.4534

	
27.7046




	
Image 4

	
4

	
21.7144

	
21.7140

	
21.7517

	
21.2717

	
21.7111

	
23.5486

	
17.4448

	
21.6892

	
21.7140

	
26.2798




	
6

	
24.9365

	
24.9499

	
24.9711

	
23.8558

	
23.2487

	
22.7919

	
23.2571

	
24.5169

	
24.9234

	
29.6004




	
8

	
28.2781

	
27.8412

	
27.8172

	
25.0977

	
26.4994

	
26.4631

	
23.0717

	
26.3194

	
27.4682

	
32.1619




	
10

	
29.7479

	
29.7163

	
28.8792

	
26.5819

	
19.5857

	
26.4818

	
28.1911

	
27.0843

	
29.3546

	
34.1414




	
Image 5

	
4

	
14.8363

	
14.8311

	
14.8393

	
12.3275

	
14.9024

	
13.5501

	
13.3716

	
14.3507

	
14.6782

	
19.5873




	
6

	
17.7317

	
17.6955

	
17.5783

	
16.3833

	
16.4033

	
19.7073

	
17.9584

	
20.1421

	
17.7269

	
22.7009




	
8

	
20.2708

	
20.0328

	
20.0432

	
19.2313

	
21.8799

	
20.3893

	
21.8624

	
20.5749

	
19.7951

	
24.5320




	
10

	
21.9833

	
22.3498

	
22.9532

	
20.2590

	
21.6939

	
18.9397

	
22.8995

	
19.1012

	
21.2030

	
26.2652




	
Image 6

	
4

	
17.3196

	
17.4019

	
17.3845

	
16.6688

	
8.1594

	
12.7024

	
13.8483

	
14.6232

	
17.3196

	
23.3272




	
6

	
22.0303

	
21.7427

	
21.3055

	
21.3326

	
8.3820

	
17.8780

	
23.8202

	
21.1869

	
21.4152

	
23.5649




	
8

	
24.6298

	
23.5592

	
24.2151

	
23.9717

	
15.8327

	
24.4255

	
24.3540

	
10.3526

	
24.2388

	
27.4039




	
10

	
27.6155

	
30.0282

	
26.7338

	
28.1801

	
15.3929

	
26.2118

	
26.7839

	
15.1460

	
26.9620

	
30.1257




	
Image 7

	
4

	
17.0406

	
17.0447

	
17.0409

	
15.6237

	
18.9268

	
26.6051

	
26.9731

	
16.7555

	
17.0104

	
26.8075




	
6

	
19.3985

	
2.7706

	
2.7706

	
17.7746

	
16.3519

	
23.1112

	
22.4328

	
13.5358

	
19.3658

	
28.9907




	
8

	
22.7231

	
2.7706

	
20.7583

	
27.0120

	
23.5447

	
29.1942

	
21.3682

	
22.1778

	
21.9322

	
32.2855




	
10

	
27.8591

	
2.7706

	
22.6694

	
2.7706

	
28.7546

	
30.0138

	
12.3543

	
25.4857

	
2.8175

	
28.8837




	
Image 8

	
4

	
12.3553

	
12.4126

	
12.3557

	
12.4771

	
14.3196

	
10.9526

	
15.7630

	
19.3305

	
12.0893

	
21.3351




	
6

	
17.8286

	
17.8180

	
17.8605

	
18.3484

	
17.9321

	
16.5747

	
21.3367

	
18.1996

	
17.7560

	
26.3956




	
8

	
21.2291

	
3.4714

	
20.4676

	
20.4749

	
18.4503

	
20.7354

	
21.3140

	
21.6457

	
21.1268

	
28.9553




	
10

	
24.0933

	
3.4714

	
22.6721

	
23.4736

	
22.7114

	
16.4386

	
24.3220

	
16.6142

	
23.8562

	
31.0910




	
Image 9

	
4

	
15.8561

	
15.6938

	
15.8340

	
14.9129

	
15.7650

	
14.7494

	
15.1135

	
15.7597

	
15.6550

	
21.0972




	
6

	
19.4060

	
19.0694

	
18.9712

	
19.2740

	
16.0860

	
16.5833

	
18.6378

	
21.2941

	
18.8624

	
26.3328




	
8

	
22.9089

	
22.4093

	
21.9344

	
20.4690

	
19.4735

	
20.6358

	
22.6642

	
23.2027

	
21.8292

	
30.3863




	
10

	
25.2257

	
24.1457

	
24.6802

	
22.1094

	
22.3322

	
21.0518

	
22.7531

	
25.7185

	
23.7436

	
32.6120




	
Average

	

	
21.2795

	
18.289

	
20.3723

	
19.5712

	
18.9882

	
20.6710

	
20.5207

	
19.6351

	
20.1965

	
26.2278
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Table 10. Comparison of MSE computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO with the proposed model using Otsu’s method with N = 4, 6, 8, and 10.






Table 10. Comparison of MSE computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO with the proposed model using Otsu’s method with N = 4, 6, 8, and 10.





	
Image

	
N

	
MSE




	

	

	
SAMFO-TH

	
MVO

	
WOA

	
FPA

	
SCA

	
ACO

	
PSO

	
ABC

	
MFO

	
Proposed






	
Image 1

	
4

	
1494.51

	
1475.82

	
1479.16

	
1588.94

	
1651.68

	
1449.46

	
1653.48

	
1730.05

	
1506.67

	
699.907




	
6

	
828.028

	
888.056

	
888.275

	
1282.26

	
840.169

	
1529.14

	
1109.97

	
874.585

	
885.276

	
375.0338




	
8

	
400.368

	
447.168

	
314.952

	
783.336

	
622.564

	
238.619

	
945.053

	
400.843

	
447.880

	
258.9467




	
10

	
272.918

	
302.235

	
302.520

	
287.620

	
339.636

	
360.835

	
392.904

	
355.687

	
334.323

	
101.3936




	
Image 2

	
4

	
1414.80

	
1330.12

	
1374.24

	
1825.26

	
1351.81

	
1922.02

	
1194.93

	
1410.62

	
1414.80

	
854.7525




	
6

	
660.860

	
663.536

	
622.700

	
821.135

	
482.416

	
958.506

	
536.061

	
828.859

	
664.974

	
224.0425




	
8

	
375.835

	
388.752

	
397.975

	
215.342

	
314.418

	
428.643

	
572.847

	
354.681

	
388.413

	
211.9143




	
10

	
181.383

	
388.752

	
222.356

	
159.992

	
188.852

	
169.775

	
572.463

	
283.335

	
223.471

	
160.7979




	
Image 3

	
4

	
1483.35

	
1594.03

	
1486.21

	
2616.30

	
1296.09

	
995.099

	
1377.87

	
1523.20

	
1582.63

	
576.0104




	
6

	
652.823

	
716.768

	
709.797

	
799.811

	
1825.94

	
478.348

	
709.746

	
722.213

	
720.747

	
230.9141




	
8

	
346.045

	
409.811

	
416.244

	
727.240

	
2075.66

	
412.666

	
548.278

	
1561.85

	
394.849

	
100.8371




	
10

	
246.600

	
277.754

	
279.254

	
538.876

	
300.003

	
410.796

	
153.761

	
804.646

	
293.589

	
110.3114




	
Image 4

	
4

	
438.168

	
438.205

	
434.423

	
485.192

	
438.496

	
287.221

	
1171.15

	
440.713

	
438.205

	
153.1441




	
6

	
208.656

	
208.012

	
206.998

	
267.610

	
307.761

	
341.890

	
307.164

	
229.82

	
209.286

	
71.29193




	
8

	
96.6658

	
106.895

	
107.489

	
201.050

	
145.593

	
146.814

	
320.563

	
151.750

	
116.483

	
39.52668




	
10

	
68.9119

	
69.4147

	
84.1704

	
142.853

	
715.340

	
146.185

	
98.6201

	
127.241

	
75.4424

	
25.05765




	
Image 5

	
4

	
2135.33

	
2137.82

	
2133.85

	
3840.84

	
2103.04

	
2871.26

	
2991.75

	
2387.92

	
2214.41

	
715.073




	
6

	
1096.23

	
1105.40

	
1135.72

	
1495.41

	
1488.58

	
695.577

	
1040.57

	
629.324

	
1097.59

	
349.1326




	
8

	
610.943

	
645.363

	
643.810

	
776.151

	
421.786

	
594.500

	
423.484

	
569.622

	
681.670

	
229.0237




	
10

	
411.860

	
378.529

	
329.429

	
612.604

	
440.239

	
830.066

	
333.524

	
799.767

	
492.920

	
153.6598




	
Image 6

	
4

	
1205.40

	
1182.73

	
1187.55

	
1400.21

	
9934.32

	
3490.10

	
2680.7

	
2242.71

	
1205.47

	
302.2459




	
6

	
407.424

	
435.319

	
481.429

	
478.427

	
9438.04

	
1059.96

	
269.818

	
494.758

	
469.419

	
286.1478




	
8

	
223.925

	
286.523

	
246.359

	
260.561

	
1697.58

	
234.709

	
238.606

	
5995.41

	
245.019

	
118.2198




	
10

	
112.598

	
64.6047

	
137.942

	
98.8710

	
1878.42

	
155.562

	
136.361

	
1988.32

	
130.882

	
63.16992




	
Image 7

	
4

	
1285.30

	
1284.14

	
1285.35

	
1781.25

	
832.535

	
142.093

	
130.548

	
1372.62

	
1291.32

	
135.6221




	
6

	
746.842

	
3435.82

	
3435.82

	
1085.56

	
1506.27

	
317.659

	
371.367

	
2880.74

	
753.742

	
82.03711




	
8

	
350.520

	
3435.82

	
546.068

	
129.383

	
287.479

	
78.2817

	
474.529

	
380.256

	
21.9322

	
38.41761




	
10

	
105.163

	
3435.82

	
351.671

	
3435.82

	
86.6203

	
64.8187

	
3781.45

	
183.868

	
3398.81

	
84.08342




	
Image 8

	
4

	
3780.54

	
3731.0

	
3780.28

	
3676.02

	
2405.19

	
5221.88

	
1725.08

	
758.633

	
3786.56

	
478.1568




	
6

	
1072.16

	
1074.7

	
1064.25

	
951.136

	
1046.80

	
1430.92

	
477.979

	
984.288

	
1080.15

	
149.1147




	
8

	
489.974

	
2923.71

	
583.880

	
582.888

	
929.082

	
548.963

	
480.488

	
445.158

	
489.974

	
82.70854




	
10

	
253.366

	
2923.71

	
351.453

	
292.227

	
348.290

	
1476.44

	
240.372

	
1418.05

	
253.366

	
50.58018




	
Image 9

	
4

	
1688.44

	
1752.75

	
1697.01

	
2097.92

	
1724.25

	
2178.42

	
1591.21

	
1762.36

	
1768.52

	
505.0802




	
6

	
745.555

	
805.642

	
824.069

	
769.197

	
1601.33

	
1428.13

	
889.810

	
482.687

	
844.971

	
151.2866




	
8

	
332.804

	
373.378

	
416.522

	
583.683

	
734.065

	
561.690

	
352.099

	
311.036

	
426.741

	
59.49088




	
10

	
195.214

	
250.330

	
221.338

	
400.074

	
380.069

	
510.392

	
344.961

	
174.271

	
274.613

	
35.6353




	
Average

	

	
733.8752

	
1149.1232

	
838.3489

	
1041.4180

	
1449.4559

	
949.0955

	
851.0990

	
1057.2747

	
850.6977

	
229.5213
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Table 11. Comparison of SSIM computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO with the proposed model using Otsu’s method with N = 4, 6, 8, and 10.






Table 11. Comparison of SSIM computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO with the proposed model using Otsu’s method with N = 4, 6, 8, and 10.





	
Image

	
N

	
SSIM-O




	

	

	
SAMFO-TH

	
MVO

	
WOA

	
FPA

	
SCA

	
ACO

	
PSO

	
ABC

	
MFO

	
Proposed






	
Image 1

	
4

	
0.9394

	
0.9395

	
0.9395

	
0.9239

	
0.9361

	
0.9284

	
0.9365

	
0.9330

	
0.9393

	
0.8898




	
6

	
0.9696

	
0.9669

	
0.9661

	
0.9486

	
0.9568

	
0.9624

	
0.9663

	
0.9672

	
0.9688

	
0.9755




	
8

	
0.9847

	
0.9835

	
0.9843

	
0.9836

	
0.9822

	
0.9668

	
0.9784

	
0.9728

	
0.9817

	
0.9857




	
10

	
0.9928

	
0.9883

	
0.9878

	
0.9898

	
0.9859

	
0.9882

	
0.9865

	
0.9877

	
0.9874

	
0.9954




	
Image 2

	
4

	
0.9472

	
0.9462

	
0.9469

	
0.9322

	
0.9311

	
0.9373

	
0.9465

	
0.9105

	
0.9466

	
0.9358




	
6

	
0.9738

	
0.9737

	
0.9733

	
0.9669

	
0.9707

	
0.9677

	
0.9818

	
0.9569

	
0.9744

	
0.9748




	
8

	
0.9844

	
0.9837

	
0.9836

	
0.9801

	
0.9779

	
0.9823

	
0.9825

	
0.9879

	
0.9837

	
0.9844




	
10

	
0.9912

	
0.9901

	
0.9893

	
0.9873

	
0.9849

	
0.9898

	
0.9865

	
0.9910

	
0.9910

	
0.9955




	
Image 3

	
4

	
0.9559

	
0.9461

	
0.9469

	
0.9289

	
0.9463

	
0.9430

	
0.9458

	
0.9474

	
0.9481

	
0.9599




	
6

	
0.9781

	
0.9766

	
0.9767

	
0.9700

	
0.9550

	
0.9728

	
0.9771

	
0.9744

	
0.9764

	
0.9689




	
8

	
0.9871

	
0.9856

	
0.9852

	
0.9843

	
0.9642

	
0.9865

	
0.9776

	
0.9707

	
0.9865

	
0.9879




	
10

	
0.9907

	
0.9893

	
0.9890

	
0.9832

	
0.9897

	
0.9744

	
0.9890

	
0.9748

	
0.9890

	
0.9911




	
Image 4

	
4

	
0.9857

	
0.9857

	
0.9858

	
0.9839

	
0.9860

	
0.9774

	
0.9780

	
0.9859

	
0.9858

	
0.9861




	
6

	
0.9938

	
0.9937

	
0.9935

	
0.9906

	
0.9919

	
0.9907

	
0.9925

	
0.9937

	
0.9938

	
0.9942




	
8

	
0.9968

	
0.9967

	
0.9967

	
0.9948

	
0.9945

	
0.9939

	
0.9936

	
0.9958

	
0.9967

	
0.9971




	
10

	
0.9978

	
0.9976

	
0.9974

	
0.9950

	
0.9838

	
0.9958

	
0.9966

	
0.9967

	
0.9977

	
0.9979




	
Image 5

	
4

	
0.9416

	
0.9408

	
0.9414

	
0.9329

	
0.9453

	
0.9314

	
0.9390

	
0.9283

	
0.9410

	
0.95187




	
6

	
0.9783

	
0.9700

	
0.9694

	
0.9702

	
0.9602

	
0.9723

	
0.9750

	
0.9709

	
0.9697

	
0.98109




	
8

	
0.9865

	
0.9825

	
0.9828

	
0.9792

	
0.9826

	
0.9798

	
0.9837

	
0.9854

	
0.9826

	
0.9877




	
10

	
0.9892

	
0.9887

	
0.9889

	
0.9814

	
0.9839

	
0.9799

	
0.9890

	
0.9832

	
0.9877

	
0.9900




	
Image 6

	
4

	
0.9540

	
0.9539

	
0.9542

	
0.9258

	
0.8634

	
0.9504

	
0.9223

	
0.9553

	
0.9538

	
0.9489




	
6

	
0.9842

	
0.9795

	
0.9792

	
0.9784

	
0.9062

	
0.9427

	
0.9817

	
0.9786

	
0.9821

	
0.9852




	
8

	
0.9913

	
0.9911

	
0.9910

	
0.9800

	
0.9646

	
0.9874

	
0.9908

	
0.9264

	
0.9914

	
0.9925




	
10

	
0.9975

	
0.9968

	
0.9958

	
0.9946

	
0.9696

	
0.9928

	
0.9935

	
0.9760

	
0.9959

	
0.9988




	
Image 7

	
4

	
0.9887

	
0.9805

	
0.9805

	
0.9611

	
0.9866

	
0.9802

	
0.9796

	
0.9865

	
0.9802

	
0.98898




	

	
6

	
0.9890

	
0.7963

	
0.7964

	
0.9910

	
0.9811

	
0.9939

	
0.9827

	
0.9724

	
0.9890

	
0.9945




	

	
8

	
0.9953

	
0.7987

	
0.9923

	
0.9928

	
0.9946

	
0.9936

	
0.9926

	
0.9810

	
0.9936

	
0.9968




	

	
10

	
0.9969

	
0.6464

	
0.9949

	
0.7993

	
0.9811

	
0.9958

	
0.9794

	
0.9950

	
0.8029

	
0.9978




	
Image 8

	
4

	
0.9371

	
0.9371

	
0.9372

	
0.9656

	
0.9560

	
0.9305

	
0.9351

	
0.9226

	
0.9369

	
0.9487




	
6

	
0.9842

	
0.9804

	
0.9804

	
0.9802

	
0.9787

	
0.9692

	
0.9808

	
0.9855

	
0.9806

	
0.9845




	
8

	
0.9912

	
0.8135

	
0.9899

	
0.9597

	
0.9875

	
0.9910

	
0.9886

	
0.9903

	
0.9906

	
0.9925




	
10

	
0.9952

	
0.8156

	
0.9939

	
0.9860

	
0.9921

	
0.9874

	
0.9935

	
0.9859

	
0.9949

	
0.9958




	
Image 9

	
4

	
0.9517

	
0.9511

	
0.9511

	
0.9477

	
0.9508

	
0.9292

	
0.9472

	
0.9506

	
0.9514

	
0.9625




	
6

	
0.9810

	
0.9793

	
0.9789

	
0.9674

	
0.9639

	
0.9740

	
0.9672

	
0.9807

	
0.9791

	
0.9811




	
8

	
0.9894

	
0.9869

	
0.9887

	
0.9855

	
0.9776

	
0.9860

	
0.9818

	
0.9870

	
0.9870

	
0.9985




	
10

	
0.9952

	
0.9947

	
0.9941

	
0.9904

	
0.9863

	
0.9905

	
0.9901

	
0.9958

	
0.9939

	
0.8898




	
Average

	

	
0.9801

	
0.9479

	
0.9728

	
0.9670

	
0.9680

	
0.972

	
0.9752

	
0.9717

	
0.9730

	
0.9803











[image: Table] 





Table 12. Comparison of FSIM computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO with the proposed model using Otsu’s method with N = 4, 6, 8, and 10.






Table 12. Comparison of FSIM computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO with the proposed model using Otsu’s method with N = 4, 6, 8, and 10.





	
Image

	
N

	
FSIM




	

	

	
SAMFO-TH

	
MVO

	
WOA

	
FPA

	
SCA

	
ACO

	
PSO

	
ABC

	
MFO

	
Proposed






	
Image 1

	
4

	
0.6964

	
0.6988

	
0.6991

	
0.6818

	
0.6945

	
0.6882

	
0.6789

	
0.6468

	
0.6960

	
0.7303




	
6

	
0.7898

	
0.7800

	
0.7772

	
0.7372

	
0.7239

	
0.7316

	
0.7779

	
0.7855

	
0.7782

	
0.8091




	
8

	
0.8357

	
0.8328

	
0.8332

	
0.8245

	
0.7911

	
0.7670

	
0.8018

	
0.7181

	
0.8299

	
0.8446




	
10

	
0.8705

	
0.8704

	
0.8688

	
0.8431

	
0.7797

	
0.8132

	
0.8512

	
0.7951

	
0.8667

	
0.8934




	
Image 2

	
4

	
0.7564

	
0.7457

	
0.7544

	
0.7359

	
0.6661

	
0.7326

	
0.7440

	
0.7039

	
0.7525

	
0.8099




	
6

	
0.8201

	
0.8165

	
0.8198

	
0.7929

	
0.7701

	
0.8025

	
0.8082

	
0.7514

	
0.8174

	
0.8706




	
8

	
0.8655

	
0.8633

	
0.8609

	
0.8785

	
0.8118

	
0.8241

	
0.8505

	
0.8414

	
0.8592

	
0.8579




	
10

	
0.9022

	
0.8977

	
0.8950

	
0.8792

	
0.9014

	
0.8788

	
0.8615

	
0.8758

	
0.9003

	
0.8443




	
Image 3

	
4

	
0.7309

	
0.7303

	
0.7368

	
0.7451

	
0.7412

	
0.7112

	
0.7245

	
0.7359

	
0.7312

	
0.8224




	
6

	
0.7973

	
0.7915

	
0.7951

	
0.7713

	
0.7622

	
0.7756

	
0.7912

	
0.7895

	
0.7922

	
0.8786




	
8

	
0.8494

	
0.8422

	
0.8427

	
0.8236

	
0.7705

	
0.8079

	
0.8035

	
0.8034

	
0.8337

	
0.9181




	
10

	
0.8762

	
0.8692

	
0.8690

	
0.8311

	
0.8409

	
0.8021

	
0.8562

	
0.8070

	
0.8728

	
0.9189




	
Image 4

	
4

	
0.8214

	
0.8212

	
0.8212

	
0.8112

	
0.8205

	
0.7817

	
0.7841

	
0.8215

	
0.8212

	
0.8430




	
6

	
0.8910

	
0.8914

	
0.8941

	
0.8700

	
0.8675

	
0.8462

	
0.8712

	
0.8852

	
0.8926

	
0.9124




	
8

	
0.9318

	
0.9305

	
0.9315

	
0.9019

	
0.9031

	
0.8909

	
0.8775

	
0.9170

	
0.9286

	
0.9318




	
10

	
0.9500

	
0.9483

	
0.9464

	
0.9035

	
0.8112

	
0.9184

	
0.9271

	
0.9269

	
0.9479

	
0.9446




	
Image 5

	
4

	
0.7487

	
0.7450

	
0.7474

	
0.7123

	
0.6931

	
0.7053

	
0.7260

	
0.6547

	
0.7471

	
0.8122




	
6

	
0.8329

	
0.8298

	
0.8327

	
0.8114

	
0.7323

	
0.7935

	
0.8148

	
0.8340

	
0.8325

	
0.8663




	
8

	
0.8788

	
0.8773

	
0.8734

	
0.8670

	
0.8156

	
0.8438

	
0.8676

	
0.8677

	
0.8748

	
0.8961




	
10

	
0.9027

	
0.9017

	
0.9061

	
0.8491

	
0.8379

	
0.8548

	
0.8870

	
0.8569

	
0.8992

	
0.9160




	
Image 6

	
4

	
0.7146

	
0.7118

	
0.7134

	
0.6894

	
0.6311

	
0.6550

	
0.6651

	
0.6936

	
0.7103

	
0.7740




	
6

	
0.8061

	
0.8016

	
0.7956

	
0.7954

	
0.7113

	
0.6985

	
0.7667

	
0.7508

	
0.8000

	
0.7830




	
8

	
0.8567

	
0.8529

	
0.8540

	
0.8085

	
0.6770

	
0.7953

	
0.8009

	
0.7403

	
0.8560

	
0.8376




	
10

	
0.9117

	
0.8988

	
0.8993

	
0.8354

	
0.7020

	
0.8283

	
0.8384

	
0.7161

	
0.8989

	
0.8710




	
Image 7

	
4

	
0.8415

	
0.8435

	
0.8439

	
0.7543

	
0.8313

	
0.8670

	
0.8120

	
0.8616

	
0.8383

	
0.8982




	
6

	
0.9093

	
NaN

	
NaN

	
0.8888

	
0.8326

	
0.8953

	
0.8560

	
NaN

	
0.9075

	
0.9455




	
8

	
0.9369

	
NaN

	
0.9311

	
0.8700

	
0.9038

	
0.9187

	
0.8522

	
0.8636

	
0.9367

	
0.9614




	
10

	
0.9559

	
NaN

	
0.9486

	
NaN

	
0.8531

	
0.9307

	
0.8982

	
0.8894

	
NaN

	
0.9462




	
Image 8

	
4

	
0.8125

	
0.8173

	
0.8138

	
0.8777

	
0.7630

	
0.7839

	
0.8035

	
0.8073

	
0.8111

	
0.8636




	
6

	
0.8968

	
0.8958

	
0.8965

	
0.9127

	
0.8890

	
0.8600

	
0.8928

	
0.8789

	
0.8962

	
0.9294




	
8

	
0.9379

	
NaN

	
0.9343

	
0.8637

	
0.8632

	
0.9329

	
0.9164

	
0.9310

	
0.9346

	
0.9545




	
10

	
0.9594

	
NaN

	
0.9561

	
0.9124

	
0.9400

	
0.8680

	
0.9538

	
0.9166

	
0.9574

	
0.9683




	
Image 9

	
4

	
0.8632

	
0.8501

	
0.8511

	
0.8476

	
0.8478

	
0.8133

	
0.8411

	
0.8515

	
0.8562

	
0.8645




	
6

	
0.9275

	
0.9219

	
0.9179

	
0.8992

	
0.8840

	
0.8915

	
0.8827

	
0.9238

	
0.9263

	
0.9125




	
8

	
0.9491

	
0.9440

	
0.9495

	
0.9318

	
0.8575

	
0.9209

	
0.9225

	
0.9437

	
0.9421

	
0.9375




	
10

	
0.9681

	
0.9653

	
0.9652

	
0.9572

	
0.9199

	
0.9544

	
0.9407

	
0.9757

	
0.9628

	
0.9775




	
Average

	

	
0.8609

	
0.844

	
0.8564

	
0.8318

	
0.8011

	
0.8217

	
0.8318

	
0.8217

	
0.8545

	
0.8818
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Table 13. Comparison computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO with the proposed model using Otsu’s method with N = 4, 6, 8, and 10.






Table 13. Comparison computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO with the proposed model using Otsu’s method with N = 4, 6, 8, and 10.





	
Image

	
N

	
PRI for Otsu with EMO




	

	

	
SAMFO-TH

	
MVO

	
WOA

	
FPA

	
SCA

	
ACO

	
PSO

	
ABC

	
MFO

	
Proposed






	
Image 1

	
4

	
0.6945

	
0.6941

	
0.6944

	
0.6502

	
0.6877

	
0.6805

	
0.6783

	
0.5500

	
0.6943

	
0.6854




	
6

	
0.8013

	
0.7993

	
0.7976

	
0.7546

	
0.7143

	
0.6889

	
0.7569

	
0.8008

	
0.7996

	
0.8099




	
8

	
0.8483

	
0.8471

	
0.8385

	
0.8253

	
0.7470

	
0.7660

	
0.7971

	
0.5964

	
0.8451

	
0.8486




	
10

	
0.8871

	
0.8810

	
0.8799

	
0.8345

	
0.6986

	
0.7743

	
0.8192

	
0.7571

	
0.8792

	
0.8945




	
Image 2

	
4

	
0.6603

	
0.6598

	
0.6599

	
0.6220

	
0.3651

	
0.5653

	
0.5918

	
0.5077

	
0.6597

	
0.6877




	
6

	
0.7905

	
0.7898

	
0.7894

	
0.7473

	
0.6506

	
0.7530

	
0.6818

	
0.6818

	
0.7875

	
0.7819




	
8

	
0.8410

	
0.8415

	
0.8429

	
0.7968

	
0.7797

	
0.7674

	
0.7819

	
0.7491

	
0.8404

	
0.8519




	
10

	
0.8755

	
0.8735

	
0.8745

	
0.8188

	
0.8229

	
0.8124

	
0.7796

	
0.8107

	
0.8754

	
0.8676




	
Image 3

	
4

	
0.5691

	
0.5593

	
0.5605

	
0.4360

	
0.5458

	
0.4990

	
0.5531

	
0.5661

	
0.5598

	
0.5488




	
6

	
0.7414

	
0.7377

	
0.7378

	
0.6898

	
0.5048

	
0.7104

	
0.7087

	
0.6402

	
0.7372

	
0.6587




	
8

	
0.8280

	
0.8125

	
0.8065

	
0.7647

	
0.6554

	
0.7817

	
0.7246

	
0.7088

	
0.8126

	
0.6813




	
10

	
0.8663

	
0.8583

	
0.8507

	
0.7772

	
0.8574

	
0.6977

	
0.8003

	
0.5442

	
0.8477

	
0.7494




	
Image 4

	
4

	
0.6876

	
0.6755

	
0.6755

	
0.6755

	
0.6657

	
0.6434

	
0.6385

	
0.6730

	
0.6746

	
0.6795




	
6

	
0.7855

	
0.7810

	
0.7818

	
0.7615

	
0.7281

	
0.7152

	
0.7261

	
0.7646

	
0.7794

	
0.782




	
8

	
0.8374

	
0.8303

	
0.8233

	
0.8077

	
0.7848

	
0.7912

	
0.7247

	
0.7969

	
0.8199

	
0.8216




	
10

	
0.8694

	
0.8562

	
0.8656

	
0.8231

	
0.6977

	
0.8357

	
0.8228

	
0.8438

	
0.8682

	
0.8708




	
Image 5

	
4

	
0.7796

	
0.7695

	
0.7742

	
0.7370

	
0.6891

	
0.7514

	
0.7499

	
0.6413

	
0.7735

	
0.7612




	
6

	
0.8573

	
0.8538

	
0.8504

	
0.8320

	
0.7043

	
0.8033

	
0.8265

	
0.8480

	
0.8499

	
0.8447




	
8

	
0.8900

	
0.8879

	
0.8900

	
0.8593

	
0.8205

	
0.8512

	
0.8701

	
0.8772

	
0.8887

	
0.8846




	
10

	
0.9164

	
0.9134

	
0.9076

	
0.8799

	
0.8323

	
0.8780

	
0.8863

	
0.8753

	
0.9112

	
0.9084




	
Image 6

	
4

	
0.7586

	
0.7404

	
0.7488

	
0.7476

	
0.5164

	
0.6219

	
0.7302

	
0.5437

	
0.7386

	
0.7496




	
6

	
0.8252

	
0.8227

	
0.8112

	
0.8159

	
0.5650

	
0.7537

	
0.7364

	
0.7478

	
0.8215

	
0.8145




	
8

	
0.8643

	
0.8628

	
0.8577

	
0.8351

	
0.4608

	
0.7692

	
0.7923

	
0.7273

	
0.8645

	
0.8353




	
10

	
0.8880

	
0.8829

	
0.8862

	
0.7944

	
0.7184

	
0.8071

	
0.8199

	
0.5512

	
0.8841

	
0.8742




	
Image 7

	
4

	
0.6198

	
0.6198

	
0.6191

	
0.5138

	
0.2837

	
0.4030

	
0.3894

	
0.3804

	
0.6188

	
0.6266




	
6

	
0.7519

	
0.5113

	
0.5115

	
0.5782

	
0.5191

	
0.4573

	
0.4652

	
0.2884

	
0.7513

	
0.7895




	
8

	
0.8357

	
0.5641

	
0.8300

	
0.5235

	
0.5360

	
0.5801

	
0.5792

	
0.3682

	
0.8283

	
0.8145




	
10

	
0.8568

	
0.3171

	
0.8470

	
0.4666

	
0.5364

	
0.5900

	
0.5247

	
0.5319

	
0.5726

	
0.8836




	
Image 8

	
4

	
0.7494

	
0.7559

	
0.7502

	
0.6977

	
0.5501

	
0.7573

	
0.7108

	
0.6869

	
0.7494

	
0.7436




	
6

	
0.8242

	
0.8215

	
0.8227

	
0.7983

	
0.7435

	
0.7045

	
0.7708

	
0.7165

	
0.8216

	
0.8256




	
8

	
0.8686

	
0.5826

	
0.8682

	
0.8200

	
0.7062

	
0.7879

	
0.8222

	
0.8191

	
0.8669

	
0.8674




	
10

	
0.8970

	
0.5995

	
0.8930

	
0.8240

	
0.8085

	
0.6796

	
0.8416

	
0.8397

	
0.8918

	
0.8919




	
Image 9

	
4

	
0.7616

	
0.7470

	
0.7547

	
0.7469

	
0.7440

	
0.7047

	
0.7366

	
0.7555

	
0.7608

	
0.75477




	
6

	
0.8312

	
0.8243

	
0.8303

	
0.8041

	
0.7947

	
0.7814

	
0.7996

	
0.8157

	
0.8312

	
0.8164




	
8

	
0.8739

	
0.8627

	
0.8736

	
0.8452

	
0.6707

	
0.8326

	
0.8261

	
0.8545

	
0.8676

	
0.8612




	
10

	
0.8934

	
0.8909

	
0.8882

	
0.8629

	
0.7996

	
0.8357

	
0.8664

	
0.8682

	
0.8821

	
0.8995




	
Average

	

	
0.8090

	
0.759

	
0.7970

	
0.7435

	
0.6640

	
0.7175

	
0.7313

	
0.6868

	
0.7959

	
0.7982
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Table 14. Comparison of VOI computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO with the proposed model using Otsu’s method with N = 4, 6, 8, and 10.






Table 14. Comparison of VOI computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO with the proposed model using Otsu’s method with N = 4, 6, 8, and 10.





	
Image

	
N

	
VOI




	

	

	
SAMFO-TH

	
MVO

	
WOA

	
FPA

	
SCA

	
ACO

	
PSO

	
ABC

	
MFO

	
Proposed






	
Image 1

	
4

	
5.1597

	
5.1735

	
5.1635

	
5.2914

	
5.1898

	
5.1906

	
5.1953

	
5.5639

	
5.1738

	
5.2185




	
6

	
4.6087

	
4.6091

	
4.6208

	
4.7486

	
4.9652

	
5.0643

	
4.8396

	
4.6954

	
4.6196

	
4.5787




	
8

	
4.2244

	
4.2283

	
4.2972

	
4.3304

	
4.6424

	
4.7098

	
4.5490

	
5.1978

	
4.2383

	
4.2931




	
10

	
3.8522

	
3.8926

	
0.8799

	
4.1881

	
4.9009

	
4.5518

	
4.3579

	
4.5962

	
3.9094

	
4.1352




	
Image 2

	
4

	
5.2490

	
5.2678

	
5.2622

	
5.4100

	
6.0261

	
5.5241

	
5.4267

	
5.6839

	
5.2694

	
5.1835




	
6

	
4.6131

	
4.6186

	
4.6180

	
4.7996

	
5.2373

	
4.8048

	
4.9939

	
5.1233

	
4.6389

	
4.4032




	
8

	
4.2176

	
4.2241

	
4.2256

	
4.4096

	
4.5629

	
4.6096

	
4.5286

	
4.6637

	
4.2457

	
4.1839




	
10

	
3.9058

	
3.9201

	
3.9192

	
4.2513

	
4.2760

	
4.2297

	
4.4573

	
4.2364

	
3.9104

	
4.1574




	
Image 3

	
4

	
5.0987

	
5.1648

	
5.1315

	
5.4153

	
5.2198

	
5.3013

	
5.1339

	
5.1087

	
5.1476

	
5.0607




	
6

	
4.4624

	
4.5006

	
4.5033

	
4.6072

	
5.1735

	
4.4920

	
4.5557

	
4.7943

	
4.5236

	
4.355




	
8

	
3.9634

	
4.0487

	
4.0924

	
4.2768

	
4.6220

	
4.1960

	
4.4160

	
4.4206

	
4.0406

	
4.3397




	
10

	
3.6484

	
3.7003

	
3.7474

	
4.1043

	
3.7382

	
4.4316

	
3.9850

	
4.8480

	
3.7688

	
4.0055




	
Image 4

	
4

	
4.9652

	
5.0588

	
5.0588

	
5.0588

	
5.0924

	
5.1088

	
5.1571

	
5.0646

	
5.0620

	
4.81154




	
6

	
4.4858

	
4.5102

	
4.4942

	
4.5252

	
4.7312

	
4.7436

	
4.7174

	
4.5790

	
4.5166

	
4.2371




	
8

	
4.0900

	
4.1363

	
4.1466

	
4.2513

	
4.4295

	
4.3004

	
4.6372

	
4.2766

	
4.1893

	
4.1069




	
10

	
3.7692

	
3.8670

	
3.8496

	
4.1080

	
4.8438

	
3.9824

	
4.0803

	
3.9572

	
3.7997

	
3.6062




	
Image 5

	
4

	
5.1647

	
5.2732

	
5.2170

	
5.3375

	
5.6024

	
5.2917

	
5.2291

	
5.5993

	
5.2183

	
5.1761




	
6

	
4.6169

	
4.6627

	
4.6878

	
4.7562

	
5.3031

	
4.9591

	
4.8554

	
4.6863

	
4.7021

	
4.4915




	
8

	
4.2945

	
4.3123

	
4.2890

	
4.5386

	
4.7541

	
4.5276

	
4.4113

	
4.3794

	
4.3081

	
4.2279




	
10

	
3.9536

	
3.9790

	
4.0680

	
4.2660

	
4.6134

	
4.2640

	
4.2168

	
4.2744

	
4.0125

	
3.8988




	
Image 6

	
4

	
4.9121

	
5.0424

	
4.9890

	
4.9838

	
5.6897

	
5.4570

	
5.0618

	
5.5668

	
5.0672

	
5.1982




	
6

	
4.4774

	
4.5102

	
4.5846

	
4.5189

	
5.3167

	
4.7687

	
4.8922

	
4.8758

	
4.4973

	
5.0782




	
8

	
4.1121

	
4.1467

	
4.1851

	
4.3303

	
5.6751

	
4.7612

	
4.5974

	
4.7867

	
4.1232

	
4.8123




	
10

	
3.8581

	
3.8961

	
3.8785

	
4.4241

	
5.0560

	
4.4288

	
4.3883

	
5.4037

	
3.8777

	
4.0184




	
Image 7

	
4

	
4.0540

	
4.0541

	
4.0750

	
4.3182

	
4.9103

	
4.5774

	
4.6546

	
4.6716

	
4.0858

	
4.0738




	
6

	
3.5037

	
4.2038

	
4.1898

	
3.9669

	
4.2314

	
4.3535

	
4.3375

	
4.8260

	
3.5100

	
3.3603




	
8

	
3.0216

	
3.9017

	
3.0608

	
4.0790

	
4.0959

	
3.9632

	
4.0252

	
4.5635

	
3.0545

	
3.3305




	
10

	
2.7955

	
4.6133

	
2.8173

	
4.2430

	
4.1140

	
3.9518

	
4.0747

	
4.0944

	
3.7790

	
3.1255




	
Image 8

	
4

	
5.2231

	
5.1586

	
5.2130

	
5.3258

	
5.7569

	
5.1468

	
5.3772

	
5.4878

	
5.2255

	
4.6588




	
6

	
4.6964

	
4.7371

	
4.7190

	
4.7938

	
5.1083

	
5.2071

	
4.9315

	
5.1915

	
4.7365

	
4.1033




	
8

	
4.3131

	
5.2724

	
4.3166

	
4.5875

	
5.0823

	
4.8286

	
4.5802

	
4.6438

	
4.3328

	
4.2363




	
10

	
3.9643

	
5.0740

	
4.0037

	
4.4949

	
4.6658

	
4.8881

	
4.4133

	
4.4484

	
4.0414

	
4.0374




	
Image 9

	
4

	
5.2450

	
5.3662

	
5.3044

	
5.3442

	
5.3740

	
5.4614

	
5.3595

	
5.3094

	
5.2614

	
5.1524




	
6

	
4.7590

	
4.8303

	
4.7883

	
4.8910

	
5.0262

	
5.0121

	
4.9621

	
4.8656

	
4.7724

	
4.632




	
8

	
4.3492

	
4.4895

	
4.3699

	
4.5726

	
5.4184

	
4.6716

	
4.7405

	
4.5477

	
4.4298

	
4.3059




	
10

	
4.1460

	
4.1786

	
4.1995

	
4.3524

	
4.8398

	
4.5492

	
4.3874

	
4.3532

	
4.2530

	
4.0671




	
Average

	

	
4.32705

	
4.51730

	
4.3046

	
4.608

	
4.9523

	
4.7308

	
4.6813

	
4.8162

	
4.3983

	
4.3516
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Table 15. Comparison of MEAN computed by SAMFO-TH, MVO, and WOA using Otsu’s method with N = 4, 6, 8, and 10 for red, green, and blue components.






Table 15. Comparison of MEAN computed by SAMFO-TH, MVO, and WOA using Otsu’s method with N = 4, 6, 8, and 10 for red, green, and blue components.





	

	
N

	
SAMFO-TH

	
MVO

	
WOA




	

	

	
R

	
G

	
B

	
R

	
G

	
B

	
R

	
G

	
B






	
Image 1

	
4

	
1.6087 × 103

	
994.5160

	
845.7528

	
1.6087 × 103

	
994.5160

	
845.7528

	
1.6087 × 103

	
994.5160

	
845.7528




	
6

	
1.6950 × 103

	
1.0597 × 103

	
902.2855

	
1.6955 × 103

	
1.0599 × 103

	
902.4505

	
1.6955 × 103

	
1.0599 × 103

	
901.7954




	
8

	
1.7279 × 103

	
1.0839 × 103

	
922.7777

	
1.7283 × 103

	
1.0844 × 103

	
922.2913

	
1.7284 × 103

	
1.0838 × 103

	
921.2086




	
10

	
1.7435 × 103

	
1.0954 × 103

	
932.5896

	
1.7443 × 103

	
1.0961 × 103

	
933.4105

	
1.7436 × 103

	
1.0956 × 103

	
932.3066




	
Image 2

	
4

	
1.6719 × 103

	
1.5099 × 103

	
1.5454 × 103

	
1.6719 × 103

	
1.5099 × 103

	
1.5454 × 103

	
1.6719 × 103

	
1.5099 × 103

	
1.5454 × 103




	
6

	
1.7701 × 103

	
1.5920 × 103

	
1.6191 × 103

	
1.7702 × 103

	
1.5921 × 103

	
1.6192 × 103

	
1.7702 × 103

	
1.592 l × 103

	
1.6192 × 103




	
8

	
1.8055 × 103

	
1.6233 × 103

	
1.6442× 103

	
1.8062 × 103

	
1.6237 × 103

	
1.6444 × 103

	
1.8063 × 103

	
1.6229 × 103

	
1.6440 × 103




	
10

	
1.8209 × 103

	
1.6365 × 103

	
1.6558× 103

	
1.8216 × 103

	
1.6374 × 103

	
1.6566 × 103

	
1.8218 × 103

	
1.6374 × 103

	
1.6556 × 103




	
Image 3

	
4

	
4.2892 × 103

	
3.0362 × 103

	
2.5487 × 103

	
4.2892 × 103

	
3.0362 × 103

	
2.5487 × 103

	
4.2892 × 103

	
3.0362 × 103

	
2.5487 × 103




	
6

	
4.4047 × 103

	
3.1388 × 103

	
2.6482 × 103

	
4.4049 × 103

	
3.1390 × 103

	
2.6483 × 103

	
4.4049 × 103

	
3.1390 × 103

	
2.6483 × 103




	
8

	
4.4408 × 103

	
3.1738 × 103

	
2.6767 × 103

	
4.441 l × 103

	
3.1743 × 103

	
2.6774 × 103

	
4.441 l × 103

	
3.1743 × 103

	
2.6775 × 103




	
10

	
4.4564 × 103

	
3.1876 × 103

	
2.6898 × 103

	
4.4569 × 103

	
3.1882 × 103

	
2.6903 × 103

	
4.4570 × 103

	
3.1883 × 103

	
2.6903 × 103




	
Image 4

	
4

	
1.4749 × 103

	
1.8297 × 103

	
1.5474 × 103

	
1.4749 × 103

	
1.8297 × 103

	
1.5474 × 103

	
1.4749 × 103

	
1.8297 × 103

	
1.5474 × 103




	
6

	
1.5234 × 103

	
1.8925 × 103

	
1.5981 × 103

	
1.5223 × 103

	
1.8927 × 103

	
1.5982 × 103

	
1.5235 × 103

	
1.8927 × 103

	
1.5982 × 103




	
8

	
1.5453 × 103

	
1.9177 × 103

	
1.6163 × 103

	
1.5458 × 103

	
1.9188 × 103

	
1.6167 × 103

	
1.5444 × 103

	
1.9186 × 103

	
1.6164 × 103




	
10

	
1.5542 × 103

	
1.9285 × 103

	
1.6255 × 103

	
1.5546 × 103

	
1.9293 × 103

	
1.6257 × 103

	
1.5552 × 103

	
1.9300 × 103

	
1.6259 × 103




	
Image 5

	
4

	
3.7536 × 103

	
3.0007 × 103

	
3.7919 × 103

	
3.7536 × 103

	
3.0007 × 103

	
3.7919 × 103

	
3.7536 × 103

	
3.0007 × 103

	
3.7919 × 103




	
6

	
3.9152 × 103

	
3.1253 × 103

	
3.9104× 103

	
3.9155 × 103

	
3.1256 × 103

	
3.9110 × 103

	
3.9155 × 103

	
3.1256 × 103

	
3.9110 × 103




	
8

	
3.9619 × 103

	
3.1642 × 103

	
3.9501 × 103

	
3.9627 × 103

	
3.1655 × 103

	
3.9518 × 103

	
3.9623 × 103

	
3.1656 × 103

	
3.9502 × 103




	
10

	
3.9846 × 103

	
3.1814 × 103

	
3.9680 × 103

	
3.9866 × 103

	
3.1836 × 103

	
3.970l × 103

	
3.986l × 103

	
3.1836 × 103

	
3.9678 × 103




	
Image 6

	
4

	
1.8662 × 103

	
860.0400

	
601.3654

	
1.8662 × 103

	
860.0424

	
601.3678

	
1.8662 × 103

	
860.0424

	
601.3678




	
6

	
1.9412 × 103

	
913.4510

	
634.9386

	
1.9415 × 103

	
914.0838

	
635.1728

	
1.9415 × 103

	
914.1091

	
632.7640




	
8

	
1.9734 × 103

	
932.0683

	
648.1786

	
1.974 l × 103

	
933.0491

	
649.1121

	
1.974l × 103

	
933.2065

	
648.1710




	
10

	
1.9874 × 103

	
941.6650

	
654.5853

	
1.9892 × 103

	
943.0225

	
655.7298

	
1.9899 × 103

	
943.2505

	
654.2640




	
Image 7

	
4

	
1.3407 × 103

	
243.8439

	
40.0194

	
1.3407 × 103

	
243.8439

	
39.9051

	
1.3407 × 103

	
243.8395

	
39.9050




	
6

	
1.3917 × 103

	
262.7468

	
43.7509

	
1.3918 × 103

	
263.0009

	
43.7351

	
1.3918 × 103

	
262.5177

	
43.7559




	
8

	
1.4132 × 103

	
270.2212

	
45.0938

	
1.4139 × 103

	
270.5621

	
−Inf

	
1.4136 × 103

	
270.3070

	
−Inf




	
10

	
1.4235 × 103

	
273.0833

	
48.2657

	
1.4242 × 103

	
274.2223

	
−Inf

	
1.4244 × 103

	
274.3484

	
45.8379




	
Image 8

	
4

	
3.1017 × 103

	
2.2453 × 103

	
683.3868

	
3.1017 × 103

	
2.2453 × 103

	
683.3868

	
3.1017 × 103

	
2.2453 × 103

	
683.3868




	
6

	
3.2166 × 103

	
2.3568 × 103

	
717.0620

	
3.2170 × 103

	
2.3571 × 103

	
717.3555

	
3.2170 × 103

	
2.357 l × 103

	
717.3477




	
8

	
3.2556 × 103

	
2.3951 × 103

	
730.8762

	
3.2566 × 103

	
2.3958 × 103

	
729.9960

	
3.2567 × 103

	
2.3959 × 103

	
730.0061




	
10

	
3.2742 × 103

	
2.4123 × 103

	
735.7058

	
3.276l × 103

	
2.4129 × 103

	
−Inf

	
3.2760 × 103

	
2.4136 × 103

	
−Inf




	
Image 9

	
4

	
1.3756 × 103

	
1.9760 × 103

	
1.7498 × 103

	
1.3756 × 103

	
1.9760 × 103

	
1.7498 × 103

	
1.3732 × 103

	
1.9760 × 103

	
1.7498 × 103




	
6

	
1.4472 × 103

	
2.0578 × 103

	
1.8340 × 103

	
1.4473 × 103

	
2.0566 × 103

	
1.8344 × 103

	
1.4468 × 103

	
2.0532 × 103

	
1.8314 × 103




	
8

	
1.4808 × 103

	
2.0862 × 103

	
1.8657 × 103

	
1.4813 × 103

	
2.0870 × 103

	
1.8652 × 103

	
1.4799 × 103

	
2.0874 × 103

	
1.8642 × 103




	
10

	
1.4947 × 103

	
2.1044 × 103

	
1.8806 × 103

	
1.4954 × 103

	
2.1055 × 103

	
1.8806 × 103

	
1.496 l × 103

	
2.1060 × 103

	
1.8791 × 103




	
Average

	

	
1.71 × 103

	
1.44 × 103

	
6.15 × 102

	
1.58 × 103

	
1.66 × 103

	
1.06 × 103

	
1.73 × 103

	
1.47 × 103

	
1.06 × 103
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Table 16. Comparison of MEAN computed by SAMFO-TH, MVO, and WOA using Kapur’s method with N = 4, 6, 8, and 10 for red, green, and blue components.
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Image

	
N

	
SAMFO-TH

	
MVO

	
WOA




	

	

	
R

	
G

	
B

	
R

	
G

	
B

	
R

	
G

	
B






	
Image 1

	
4

	
18.6011

	
18.3224

	
18.1192

	
18.6013

	
18.3228

	
18.1249

	
18.6013

	
18.3228

	
18.1259




	
6

	
23.7425

	
23.4112

	
23.3245

	
23.7519

	
23.4374

	
23.3455

	
23.7535

	
23.4374

	
23.3129




	
8

	
28.4075

	
27.9424

	
27.9925

	
28.3981

	
27.9889

	
28.009

	
28.3251

	
27.9161

	
28.0052




	
10

	
32.5752

	
31.9895

	
32.2486

	
32.5213

	
32.0989

	
32.3002

	
32.4842

	
32.0061

	
32.3188




	
Image 2

	
4

	
17.5802

	
17.5424

	
18.5899

	
17.5805

	
17.5505

	
18.5933

	
17.5805

	
17.5505

	
18.5933




	
6

	
22.5676

	
22.5665

	
23.8485

	
22.5912

	
22.5931

	
23.8607

	
22.5974

	
22.5936

	
23.858




	
8

	
27.1253

	
27.0319

	
28.7393

	
27.0672

	
27.0603

	
28.7825

	
27.1326

	
27.0716

	
28.8099




	
10

	
31.2837

	
31.1974

	
33.0202

	
31.2257

	
31.3003

	
33.0647

	
31.2572

	
31.3245

	
33.1572




	
Image 3

	
4

	
17.6776

	
17.5996

	
17.3878

	
17.6777

	
17.6

	
17.3886

	
17.6777

	
17.6003

	
17.3885




	
6

	
22.9482

	
22.6386

	
22.5821

	
22.9479

	
22.6474

	
22.6717

	
22.9421

	
22.6488

	
22.6716




	
8

	
27.7786

	
27.2642

	
27.4267

	
27.7695

	
27.3503

	
27.4994

	
27.7393

	
27.3631

	
27.5042




	
10

	
32.2057

	
31.542

	
31.7474

	
32.1717

	
31.6993

	
31.883

	
32.0405

	
31.6441

	
31.9212




	
Image 4

	
4

	
17.5082

	
17.9799

	
17.4413

	
17.5028

	
17.9983

	
17.4419

	
17.5079

	
17.9982

	
17.4415




	
6

	
22.4998

	
23.0284

	
22.2581

	
22.5099

	
23.035

	
22.282

	
22.4832

	
23.0501

	
22.282




	
8

	
26.9272

	
27.5976

	
26.7533

	
26.9801

	
27.6366

	
26.8219

	
26.8891

	
27.6498

	
26.7813




	
10

	
30.8946

	
31.7548

	
30.7424

	
30.8572

	
31.9019

	
30.6887

	
30.8505

	
31.8949

	
30.8114




	
Image 5

	
4

	
18.053

	
17.5873

	
17.6037

	
18.0534

	
17.5877

	
17.6043

	
18.0534

	
17.5878

	
17.6043




	
6

	
23.0011

	
22.3708

	
22.7447

	
23.0067

	
22.3848

	
22.7505

	
23.0076

	
22.3856

	
22.7519




	
8

	
27.5962

	
26.6633

	
27.3121

	
27.5879

	
26.726

	
27.3687

	
27.5815

	
26.7322

	
27.3685




	
10

	
31.8751

	
30.5385

	
31.4943

	
31.8596

	
30.5861

	
31.5435

	
31.8028

	
30.5624

	
31.5951




	
Image 6

	
4

	
18.372

	
17.6817

	
16.5909

	
18.3723

	
17.6815

	
16.591

	
18.3724

	
17.6718

	
16.5849




	
6

	
23.7047

	
22.9559

	
21.4418

	
23.707

	
22.9787

	
21.4523

	
23.6896

	
22.9848

	
21.4489




	
8

	
28.4616

	
27.5295

	
25.6948

	
28.4571

	
27.6226

	
25.5179

	
28.4069

	
27.6628

	
25.6499




	
10

	
32.5313

	
31.6233

	
29.2761

	
32.6353

	
31.6326

	
28.9661

	
32.4703

	
31.6589

	
29.3176




	
Image 7

	
4

	
17.9999

	
16.0346

	
12.1942

	
17.9919

	
16.0339

	
12.0486

	
17.9972

	
16.0369

	
11.7758




	
6

	
23.235

	
20.7147

	
15.5653

	
23.2065

	
20.7138

	
14.0047

	
23.1991

	
20.487

	
14.4237




	
8

	
27.9628

	
24.821

	
17.944

	
27.9217

	
24.5978

	
16.2308

	
27.9

	
24.6795

	
16.8152




	
10

	
32.0804

	
28.3688

	
19.5

	
31.9972

	
27.5907

	
17.9641

	
32.0429

	
27.9357

	
18.1042




	
Image 8

	
4

	
18.5996

	
18.6285

	
15.9913

	
18.5996

	
18.6286

	
15.9914

	
18.5996

	
18.6287

	
15.9912




	
6

	
23.9028

	
23.8893

	
20.3696

	
23.9016

	
23.8302

	
20.3211

	
23.8386

	
23.8394

	
20.1171




	
8

	
28.623

	
28.5837

	
24.2063

	
28.6191

	
28.4635

	
23.7059

	
28.5621

	
28.576

	
23.7238




	
10

	
32.9212

	
32.8709

	
27.55

	
32.8936

	
32.727

	
26.2619

	
32.785

	
32.9277

	
26.9726




	
Image 9

	
4

	
17.8777

	
17.8204

	
18.2427

	
17.8772

	
17.821

	
18.2429

	
17.8778

	
17.8209

	
18.2428




	
6

	
22.7729

	
22.6426

	
23.5334

	
22.6822

	
22.657

	
23.5311

	
22.685

	
22.6579

	
23.5242




	
8

	
27.1134

	
26.9126

	
28.2759

	
27.0729

	
26.803

	
28.2644

	
27.1241

	
26.6663

	
28.1919




	
10

	
31.3765

	
30.6957

	
32.4466

	
31.3039

	
30.5338

	
32.4963

	
31.3781

	
30.5634

	
32.4157




	
Average

	

	
24.89989

	
24.12585

	
22.79991

	
24.86062

	
23.99844

	
22.47571

	
24.82708

	
24.03807

	
22.54371
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Table 17. Average MEAN of fitness with Kapur’s and Otsu’s methods on optimization techniques for MVO, WOA, PFA, SCA, ACO, PSO, ABC, MFO, and SAMFO-TH and on the proposed approach for nine images considered with N = 4, 6, 8, and 10.






Table 17. Average MEAN of fitness with Kapur’s and Otsu’s methods on optimization techniques for MVO, WOA, PFA, SCA, ACO, PSO, ABC, MFO, and SAMFO-TH and on the proposed approach for nine images considered with N = 4, 6, 8, and 10.





	

	
MEAN with KAPUR’s Method

	
MEAN with OTSU’s Method




	
Methods

	
R

	
G

	
B

	
R

	
G

	
B






	
Proposed

	
42.7288

	
41.8091

	
41.9909

	
1.83 × 1011

	
2.59 × 1011

	
2.71 × 1011




	
MVO

	
24.8606

	
23.9984

	
22.4757

	
1.58 × 103

	
1.66 × 103

	
1.06 × 103




	
WOA

	
24.8270

	
24.0380

	
22.5437

	
1.73 × 103

	
1.47 × 103

	
1.06 × 103




	
PFA

	
24.6788

	
24.1296

	
22.8015

	
7.10 × 102

	
5.69 × 102

	
4.04 × 102




	
SCA

	
22.6041

	
21.2926

	
19.9449

	
9.95 × 102

	
2.09 × 103

	
1.89 × 103




	
ACO

	
28.8877

	
27.5038

	
25.4009

	
1.02 × 103

	
1.38 × 103

	
2.31 × 103




	
PSO

	
23.5873

	
22.5467

	
20.8294

	
8.92 × 102

	
1.12 × 103

	
1.25 × 103




	
ABC

	
24.2798

	
23.3019

	
21.5508

	
1.47 × 103

	
2.04 × 103

	
1.86 × 103




	
MFO

	
23.7660

	
22.7604

	
21.2234

	
1.47 × 103

	
2.04 × 103

	
1.86 × 103




	
SAMFO-TH

	
24.8998

	
24.1258

	
22.7999

	
1.71 × 103

	
1.44 × 103

	
6.15 × 102
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Table 18. Steps for implementation of the Proposed method on a color image.






Table 18. Steps for implementation of the Proposed method on a color image.





	Step
	Operation





	1:
	Read a color image I and separate it into IR, IG, and IB. For RGB image c = 1,2,3 and for gray image c = 1.



	2:
	Obtain energy curves for RGB images ER, EG, and EB.



	3:
	Calculate the probability distribution using Equation (3) and the histograms.



	4:
	Initialize the parameters:     I t e r   m a x    ,     I t e r   l o c a l   ,   δ, and N



	5:
	Initialize a population     S   t   c     of N random particles with k dimensions.



	6:
	Find     w   i   c     and     μ   i   c    ; evaluate     S   t   c     in the objective function     f   o t s u     or     f   K a p u r     depends on the thresholding method to find threshold values for segmentation.



	7:
	Compute the charge of each particle using Equation (18), and with Equations (19) and (20) compute the total force vector.



	8:
	Move the entire population     S   t   c     along the total force vector using Equation (21).



	9:
	Apply the local search to the moved population and select the best elements of this search depending on their values of the objective function.



	10:
	The t index is increased in 1. If t ≥     I t e r   m a x     or if the stop criteria are satisfied the algorithm finishes the iteration process and jumps to step 11. Otherwise, jump to step 7.



	11:
	Select the particle that has the best     x   i   B     objective function value using     f   o t s u     or     f   K a p u r     from Equation (9)or Equation(14).



	12:
	Apply the best thresholds values contained in     x   i   B     to the input image I as per Equation (2).
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