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Abstract: Automated deep learning is promising in artificial intelligence (AI). However, a few appli-
cations of automated deep learning networks have been made in the clinical medical fields. Therefore,
we studied the application of an open-source automated deep learning framework, Autokeras, for
detecting smear blood images infected with malaria parasites. Autokeras is able to identify the
optimal neural network to perform the classification task. Hence, the robustness of the adopted
model is due to it not needing any prior knowledge from deep learning. In contrast, the traditional
deep neural network methods still require more construction to identify the best convolutional
neural network (CNN). The dataset used in this study consisted of 27,558 blood smear images. A
comparative process proved the superiority of our proposed approach over other traditional neural
networks. The evaluation results of our proposed model achieved high efficiency with impressive
accuracy, reaching 95.6% when compared with previous competitive models.

Keywords: artificial intelligence (AI); convolutional neural network (CNN); deep learning (DL);
malaria parasites

1. Introduction

Malaria is a transmissible and life-threatening disease, as professed by the World
Health Organization (WHO), and is prevalent in many countries, especially Senegal and
those in Asia and Africa [1]. The primary cause of malaria is parasitesrecognized as Plas-
modium, which infect human red blood cells (RBCs). Malaria is transmitted via mosquitoes,
inside which the parasite lives. Once a mosquito bites a person, the person becomes infected
with malaria [2]. In 2019, the WHO stated that 229 million cases of malaria were diagnosed,
and in the same year, the number of deaths reached 409,000 [3].

It is worth noting in this report that the proportion of children under the age of five out
of the total number of people who died of malaria reached 67% (274,000), which indicates
that malaria is one of the most-significant causes of death among children in the world.
In the last few years and during the COVID-19 pandemic, the number of malaria patients
rose, which is a dire circumstance [3,4]. Therefore, malaria remains an acute health concern
in large parts of the world, in particular in developing countries. As such, an automated
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diagnostic method that can decrease the time and cost of the recognition of malaria with
good diagnostic performance becomes imperative.

In detecting malaria, thin and thick blood smears are usually taken from possibly
infected people and examined on glass slides. These smears are viewed under a light
microscope for surveillance. This diagnostic technique requires a high level of expertise to
achieve precise results. Moreover, further complications regarding disease detection and
medication probably lead to inconsistent and delayed results due to inadequate tools and
proficiency in developing regions, as well as many other circumstances [5].

Artificial intelligence comprises machine learning and deep learning neural networks
that could be used to handle current problems in healthcare around the world [6]. The cur-
rent systems related to artificial intelligence in medicine already involve various tasks, from
image segmentation to biometric measurement. However, the construction and training of
a high-tech machine learning model require an in-depth understanding of the mathematical
and engineering concepts of artificial intelligence, as well as choosing suitable algorithms
and tuning the hyperparameters of the models. This is usually an arduous task for many
proficient engineers and computer scientists, let alone healthcare specialists with restricted
experience in computer science. Regarding malaria parasite detection using machine learn-
ing techniques, much work has been performed. For example, in [7], the authors used
powerful classifiers (namely ResNet and DenseNet) via the transfer learning technique to
classify cell images as either parasitized or uninfected. Another approach to tackling the
problem of detecting malaria in blood images can be found in [8], where the work was
based on different machine learning methods (decision tree, support vector machine, naïve
Bayes, and K-nearest neighbor), which were fit on six features extracted by the VGG16,
VGG19, ResNet50, ResNet101, DenseNet121, and DenseNet201 models. Such a manual
approach to machine learning for cell image classification of malaria requires experts in
machine learning to prepare the model. However, the works [7,8], as well as the greatly
different works on machine learning (ML) adopted for the malaria detection problem [9]
suffer from different issues: the first one is that human effort is required in order to extract
the most-valuable features to feed the classifiers efficiently. Furthermore, this approach
requires specialists in ML and DL to build a robust model, in addition to choosing the
best hyperparameters of the model to distinguish the malaria images from the normal
ones. Therefore, AutoML Vision (Autokeras) could be a possible solution to mitigate these
issues, as it has a highly friendly user interface. AutoML Vision offers a highly automated
model improvement framework to help people with little computer encoding knowledge
or experience build and train their own machine learning models.

The automated machine learning methods to detect malaria reduce the human effort
in the construction of networks as an alternative to creating classifier networks from
scratch and modifying the parameters. This work was based on a novel technique that
automatically discovers the best deep learning model to classify cells into parasitized or
healthy cells. No experience in coding is required. It depends on a few lines of code
to function. Large technology companies have made a respectable effort to disseminate
various automated machine learning software, such as Google Cloud AutoML and Azure
automated machine learning. The benefit of such services is the ability to build high-
performance models with as few experts in machine learning as possible. Moreover, several
of the open-source software frameworks also achieve high performance, for example
AutoWeka [10], AutoSKLEARN [11], Autokeras [12], and Teapot. Unfortunately, the above-
mentioned services are restricted when applied. For instance, they are suited only to a
specific problem, e.g., natural language processing (NLP), image classification, or speech
recognition [13]. Figure 1 illustrates the AutoML algorithm.
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Figure 1. Auto-machine learning technique.

We sought in this paper to study the efficiency and performance of auto-machine
learning systems in the medical field. As far as we know, this is the first paper to test the
power of auto-machine learning (AutoML) by implementing Autokeras, an automated
deep learning network, to classify cell images as infected or not with the malaria parasite.
Autokeras’s deep learning model was preferred over other approaches to automatic ma-
chine learning for several reasons mentioned in Section 3.1. The following points describe
the main contributions of this research:

• This work represents a pioneering work in classifying images of malaria-infected and
normal blood cells by the AutoKeras software, one of the auto-machine learning systems.

• We propose preprocessing on malaria image datasets before applying the Autok-
eras model.

• We chose the best model out of 20 trials performed by the Autokeras software to
search for the best network that gave the lowest validation loss.

• We demonstrated the high performance of the Autokeras software in detecting malaria-
infected cells and its superiority over the traditional deep learning (DL) models, which
require machine learning experts.

The results of the proposed method were applied to various medical problems, and the
results were compared to other methods. The proposed method obtained better results in
solving the test problems than the other methods selected from the literature.

The remainder of this paper is organized in the following manner. Section 2 lists
the main related works in the literature that present the malaria diagnosis paradigm.
The adapted Autokeras model is introduced in Section 3. Then, the evaluation metrics used
are illustrated in Section 4. Our proposed methodology is discussed with the details of
the implementation in Section 5. Lastly, the work is concluded with an outlook on future
works in Section 6.

2. Related Work

In this section, the related works that have used deep learning and machine learn-
ing techniques are presented as follows. The immense capability of convolution neural
networks (CNNs) in image detection in various fields has been demonstrated. Several
studies have been conducted on malaria parasite detection, which can be summarized as
follows. In [14], the authors used a deep CNN to automatically discover malaria in thin
blood smear images by proposing an entire computer-aided diagnosis structure. In order
to optimize the process of feature selection, they used the transfer learning technique.
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By using the feature matrix in the intermediate layers, the layer embedding was removed
from the intermediate convolutional layers as an additional layer of security. The proposed
transfer learning technique exploited the ResNet 152 network combined with the deep
greedy model for fitting.

In [15], the study was based on the proposed data augmentation convolutional neural
network (DACNN) deep learning model, which used the reinforcement learning technique
to solve such issues. They compared the effectiveness of their suggested DACNN with
others: CNN and directed acyclic graph convolutional neural network (DAGCNN). By the
experiment’s test result, they proved that their DACNN outperformed previous works in
treating and classifying the images, where the DACNN obtained a 94.79% accuracy.

In [8], the authors proposed an approach based on using the features of ResNet50,
ResNet101, VGG16, VGG19, DenseNet121, and DenseNet201. Then, they used machine
learning models based on decision tree, support vector machine, naïve Bayes, and K-nearest
neighbor to identify the malaria parasite in the cell images. The results showed that their
proposed model could successfully detect the disease in the dedicated dataset with an
accuracy of 94%.

In [16], the PlasmodiumVF-Net framework was introduced to determine whether an
image of a patient sample showed infection. If malaria infection was confirmed, another
classification was performed to specify if the individual was infected with Plasmodium
falciparum or Plasmodium vivax. The work was grounded on the mask regional convo-
lutional neural network (Mask RCNN) and the ResNet50 classifier. They used a dataset
containing 6000 images, which they made publicly available. Their framework achieved an
accuracy of 90%.

In [17], the authors used a transfer learning approach to identify images of malaria
parasite infection by integrating the current Visual Geometry Group (VGG) network and
support vector machine (SVM). This hybrid approach was executed by training the topmost
layers and freezing the remaining layers. First, the “k” layers of the VGG model were
reserved, and the (n − k) layers were replaced bySVM. Finally, the experimental results
showed that this combination of VGG19 and SVM achieved a classification accuracy
of 93.1%

The work [18] was based on the benefit of a pretrained deep convolutional neural
network algorithm for the detection of malaria in images. They achieved a detection
accuracy of 93.89% and 95.20% by using the GoogLeNet and ShuffleNet V2 models, respec-
tively. Moreover, they proved that the ShuffleNet V2 model was three-times faster than
GoogLeNet in the training.

In [19], the authors built a DBN to classify 4100 blood smear images into the classes:
parasite or not. The suggested DBN was built utilizing the contrastive divergence method
for pretraining by stacking limited Boltzmann machines. They found that stacking 800 lay-
ers could achieve a 96.32% accuracy. According to the imbalanced dataset used in this
paper (669 parasite and 3431 non-parasite), the F1-metric, which was best suited to the
performance evaluation, reached 89.66%.

Another approach using in an imbalanced dataset can be found in [9], where the work
was based on building a convolutional neural network. The authors aimed to predict the
existence of malaria-infected cells using images obtained by microscopy of thin and thick
peripheral blood smears. They also used a transfer learning model to compare the proposed
model against the pretrained models. They achieved an accuracy, precision, and sensitivity
of 96.97%, 97.00%, and 97.00%, respectively.

A computer-aided design was proposed in [20] to recognize malaria infections from
blood images obtained by microscopy. The bilateral filtering process was used in the sug-
gested method to eliminate the noise and increase the image quality. The image processing
techniques of adaptive thresholding and morphological operations were utilized to dis-
cover the malaria infection inside an individual cell. Their method achieved a detection
accuracy greater than 91%.
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In [21], the work was based on suggesting a customized CNN. The authors exploited
image augmentation techniques and bilateral filtering to extract the features of red blood
cells before passing them to the model for training. According to the data augmentation
techniques, the number of data was increased from 27,558 to 173,700 images. Therefore,
the model was expected to be more generalized and more accurate (accuracy equal to 96.82).

The work in [22] adopted the problem of diagnosing malaria infection from blood
cell images. To tackle the problem, the authors suggested a multiheaded-attention-based
Transformer model. In order to illustrate the efficiency of the model, they used the gradient-
weighted class activation map (Grad-CAM) technique. This technique is responsible for
recognizing the parts of an image that need much more attention than the others.

In [23], the authors’ proposed model involved three convolutional dense layers and
one fully connected layer. The neural network was a sequence of multiple convolutional
layers using several existing filters in the layers, resulting in a reasonable accuracy. Model
training was implemented, and several blood image datasets served to assess their proposed
model’s accuracy. The CNN was implemented using restricted computational resources,
resulting in an accuracy of 95%.

The authors of [24] used the EfficientNetB0 model to classify blood cell images as
infected or not. To decrease the time and boost the original feature sets, their work was
based on fine-tuning (transfer learning). Their proposed EfficientNetB0 model obtained
an accuracy of 94.70% after training for fifty epochs. As stated in their work, they verified
that the transfer learning of the EfficientNetB0 model could obtain good accuracy in
recognizing malaria-infected cells in blood smear images without requiring preprocessing,
data augmentation, or other techniques.

The work in [25] was based on proposing a convolutional neural network (CNN).
The construction of this CNN involved 20 layers, which was essentially required to dif-
ferentiate between infected cell images and healthy ones. Their work was based on using
the same dataset (LHNCBC) that we used in this study, which contains 27,558 cell images.
They achieved a 95.28% overall accuracy in the experimental test result.

The proposed work by [26] relied on two phases. The first phase used a graphi-
cal user interface to detect infected and fragmented red blood cells. The second phase
determined whether the thin blood smearcell images presented infection, for which a feed-
forward neural network (FNN) was proposed. The dataset used in this paper consisted
of 27,560 benchmark images. Their proposed technique achieved a 92% accuracy in the
testing phase.

However, not all current deep learning (DL) models can be readily implemented for
malaria diagnosis systems, as they require extra effort and may be considered as a technical
challenge, as in the previous solutions of deep learning works. Moreover, constructing a
high-efficiency DL model for a particular task can face issues that make these processes
more complex, such as being resource-expensive, time-consuming, and depending heavily
on human experience through a trial-and-error method. To this end, Autokeras provides a
promising alternative to the manual DL solutions and requires little effort or involvement
of the user, as it excels in providing the best-performing deep learning network along
with the feature engineering (mining, choosing, and building) and network construction
(hyperparameter choice and fine-tuning).

3. Model Development
3.1. Auto-Machine Learning

The AutoML technique can be described as automatically discovering the best classifier
for a certain dataset. As such, performing this method on neural networks results in
identifying the model’s structure and the hyperparameters required to train the classifier.
It relies on a neural architecture search algorithm (NAS). Figure 2 gives the NAS procedure.
It has a specific number of trials provided by the user to search for and choose the most-
powerful architecture and parameters of the neural network (NN) [27].
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Figure 2. NAS procedure.

However, the basic problem that the NAS aims to solve is as follows: Assuming a
search space K for the NN architecture, D as the input data, which are split into training
data DT and validation data DV , and finally, the cost function C, the main goal of the NAS
technique is to detect the best neural network k∗ ∈ K that efficiently obtains the minimum
cost value over the dataset D. This corresponds to finding the k∗ fulfilling

arg min
k∗∈K

C(k(θ∗), DV) (1)

C is the metric assessment function such as the accuracy and mean-squared error
(MSE). The following formulas explain the mathematical notations for each one:

acc(%) =
min(x, x̂)
max(x, x̂)

× 100 (2)

MSE =
∑(x− x̂)2

n
(3)

in which x is the truevalue, x̂ is the forecast value, and n is the size of the data.
We can identify θ as the learnable parameters of k, and the following equation ex-

plains it:
θ∗ = arg min

θ∗∈K
L(k(θ), DT) (4)

The search space K includes all the neural architectures that can be derivedfrom the
startingarchitectures. The searcher unit is responsiblefor the searching process in the neural
architecture search (NAS) algorithm.

In our work, we applied the Autokeras technique as our model. However, there
are different algorithms for AutoML such as Autokeras [12], Auto-Sklearn [11], and Au-
toWEKA [10]. The following two subsections provide an overview plus the architecture
of the utilized technique; moreover, it presents why we chose this approach over the
other techniques.
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3.2. Autokeras Overview

Autokeras is an open-source software library established by DATA Lab at Texas A&M
University [12]. The development of the Autokeras software requires Python programming
language Version 3 with the Keras library.

The main advantage of using the Autokeras software on a local machine is the ability to
dispense with building Dockers and Kubernetes in the cloud. Unlike other AutoML systems
such as TPOT [28], SMAC [29], Auto-Sklearn [11], and AutoWEKA [10], which focus on
shallow models, Autokeras focuses on deep learning models. The primary motivation for
using the Autokeras service can be summarized as three points as follows:

• Cloud services are paid services, which may be a problem for many users who intend
to use AutoML algorithms, unlike Autokeras, which is free.

• Usually, cloud-based AutoML requires users to have a good background in computer
science, which is the opposite for Autokeras with its ease of use.

• The Autokeras services are characterized by their availability to all people, which
can be used locally on a personal desktop. As such, the Autokeras services solve the
problem of the security issues associated with using other AutoML applications.

3.3. Autokeras Architecture

Figure 3 shows the Autokeras system architecture [12]. As described in Figure 3,
the architecture of Autokeras preservesthe full resourcesof both the CPU and GPU, and
it effectively uses the memory by only storing the currently utilized data in the RAM.
At the same time, the remaining information is saved on storage devices, for example
hard drives. Firstly, the API appears at the top, which the user is responsible for calling.
The API callsthe modules of themiddle level in order to perform specific functionalities.
The searcher Autokeras algorithm uses Bayesian optimization as a guide in the neural
architecture search. Such a searcher is responsible for controlling the operations of the
network morphing by containing the Gaussian process and Bayesian optimizer, which run
on the CPU.

Figure 3. Autokeras system architecture. 1. Initially, the API is called by the user. 2. Then, the
Searcher creates NN architectures on the CPU. 3. The graph moduleconstructs the actual neural
networks with the parameters on the RAM from the NN architectures. 4. Following this, a copy of
the NN is sent to the GPU for training. 5. Finally, the fit NNs are kept on the storage devices, and an
update is applied to the searcher according to the training outcomes. Repeat Steps 2 to 5 until the
time limit is reached.

Secondly, the model trainer unit is used for the GPU computation. The model trainer
is responsible for achieving parallelism by training a particular neural network with the
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training data in a separate process. The graph module processes the neural network’s
computational graphs. The current neural architecture in the graph module is located on the
RAM to speed up the access process. The stored models are considered as a trained model
collection. Due to the enormous size of the neural networks, in addition to the difficulty of
storing them in the memory, all the trained models are savedon the storage devices.

4. Model Evaluation

The confusion matrix (CM) (an error matrix) can be defined as a concise table or
tool that reveals how well the model can predict from a particular testing dataset. A CM
consists of rows and columns giving the labels of the ground truth and the predicted class.
The ground truth is the actual infected and uninfected blood cells. On the other hand,
the predicted values specify the number of correct and incorrect classifications made by the
model. The evaluation measures used in the confusion matrix are presented as follows:

• True positives (TPs) signify the amount of correctly predicted positive samples.
• True Negatives (TNs) identify the number of correctly predicted negative samples.
• False Positives (FPs) are cases where the images were predicted as positive, but

were not
• False Negatives (FNs) are cases where the images were predicted as negative, but

were not.

Accuracy is a measure of all correct predictions from all the samples sets and is deter-
mined by Equation (5). We calculated the model’s accuracy, precision, recall, and F1-score as
the metrics. The following illustrates the concepts and the equation for each metric.

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

Precision is the number of times the model made a correct prediction out of an actual
class, determined by Equation (6).

Precision =
TP

TP + FP
(6)

The recall is known as the true positive rate (TPR) or the sensitivity. It implies the
percentage of accurately predicted infected cells or TPs to all TPs and FNs and is determined
by Equation (7).

Recall =
TP

TP + FN
(7)

The F1-measure is a weighted average between the recall and precision, which can
have a maximum score of 1, which is the best case, and the lowest score of 0, and it is
determined by Equation (8).

F-measure =
2× Recall × Precision

Recall + Precision
(8)

5. Methodology
5.1. Dataset

In this work, the publicly available malaria dataset provided by Lister Hill National
Centre for Biomedical Communications (LHNCBC) [30] was used to evaluate our experi-
mental test result. The dataset was manually gathered and classified by experts. The dataset
images were taken at the Bangladesh hospital where the Giemsa-stained thin blood smears
were taken from 200 persons (50 healthy persons and 150 P. falciparum-infected patients).
The dataset contains 27,558 cell images with identical amounts of infected and uninfected
cells: 13,779 parasitized and 13,779 uninfected. Figure 4 shows sample images of uninfected
and infected cells [25].
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Figure 4. Sample of uninfected and infected cell images.

5.2. Experimental Platform

In this work, the Windows 10 system platform with 64 bits was used as the software
platform for implementing the experiments of this research, where the hardware consisted
of 2 GB VRAM with NVIDIA GeForce MX13, and the Intel(R) also was used as a hardware
component with Core(TM), 12 GB RAM, and i5 = 8250U CPU @ 1.60–1.80 GHz. The
experiments were performed in the environment of a Jupyter Notebook with Python
programming language Version 3.9.

5.3. Preprocessing

Any model’s performance is entirely governed by the data that are fed to it. Therefore,
data preprocessing plays a primary role in conducting tests. Therefore, in this work, some
preprocessing steps were conducted on the data, such as resizing the images to 32 (to
reduce time), converting them to arrays (because the input data in the Autokeras function
are expected to be an array), and then shuffling all the training data.

5.4. Implementation

In this paper, the “Hold-Out” validation mechanism [31] was adopted for the ex-
perimental test. Figure 5 shows the procedure of the “Hold-Out” validation mechanism.
The dataset was divided into training, testing, and validation sets at a ratio of 56:30:14,
respectively 15,432, 8268, 3858 images, before the model began training.

Table 1 presents a complete description of the data division. The main goal of this
division of the training and testing data was to build an accurate prediction model. Fur-
thermore, the main objective of a small (%) validation dataset was to keep the model from
overfitting and make it more precise on the unseen dataset.
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Figure 5. “Hold-Out” validation technique.

Table 1. The total number of images after the division of the data into training, validation, and test-
ing sets.

Class Training
Dataset

Validation
Dataset Testing Fraction Total

Images

Uninfected cell images 7716 1929 4134 50% 13,779

Infected cell images 7716 1929 4134 50% 13,779

Fraction 56% 14% 30%

Total 15,432 3858 8268 100% 27,558

In detail, once the data were ready for training, the Autokeras system started locally
working with a workflow as follows. The API conveys the dataset after preprocessing
it to the searcher to begin the search process. We trained the Autokeras software with
a max of 20 trials to enable the searcher to find the best network architecture with the
lowest validation loss. The Bayesian optimizer creates a new CPU architecture in such a
searcher. The mission of the Bayesian optimizer is to call the graph module to construct the
created neural architecture into an actual neural network in the RAM. The novel neural
architecture is used to copy the model trainer to GPU for training the dataset. Feedback on
the model’s performance is passed to the searcher to make any necessary modifications to
the Gaussian process.

6. Result and Evaluation

As we mentioned earlier, the metrics used to assess the performance of the Autok-
eras model were the accuracy, precision, recall, and F1-measure, which are illustrated in
detail in Section 6. Figure 6 illustrates the best network architecture, which showed high
classification performance provided by the AutoKeras model from 20 trials, which is the
number of networks assessed by AutoKeras (i.e., 20 trials = 20 networks). This highest-
performance network was saved and used for the prediction task. Once the prediction task
was accomplished, the confusion matrix metrics were used to assess the performance of
the best Autokeras model. Figure 7 shows the confusion matrix. As is clear from Figure 7,
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the vertical axis indicates the target class (actual label), while the system’s predicted class
(output label) is presented along the horizontal axis.

Figure 6. The best network architecture provided by the AutoKeras model from 20 trials.

Figure 7. Confusion matrix of the malaria dataset.

These four metrics aimed to better describe the adopted model’s evaluation results,
which can be derived from the confusion matrix. A complete review of the performance
evaluation metrics is offered in Table 2. As is clear, the Autokeras model had a promising
ability to distinguish between the images of the infected thin blood smear cells from the
uninfected ones with an impressive accuracy of 95.6%, precision of 95.5%, recall of 95.7%,
and F1-score of 95.6%. The accuracy and loss schemes during the 20 epochs are illustrated in
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Figure 8. It is clear that a 95.6% accuracy was obtained after ten iterations. Furthermore, we
show the evaluation metrics’ results for the three best networks obtained after 20 AutoKeras
trials in Figure 9. As is clear from the figure, we adopted the first network for our prediction
results over the malaria testing dataset.

Figure 8. The accuracy vs. the loss during the validation phase.

Figure 9. The metrics’ results for the three best networks obtained after 20 AutoKeras trails.

Table 2. Evaluation metrics’ results.

Accuracy Precision Recall F1-Measure

95.6% 95.5% 95.7% 95.6%

Despite the large size of the malaria dataset of the images of the thin blood smear
cells, Autokeras’ proposed model proved its robustness in classifying the cell images into
infected or uninfected with malaria.

The Grad-CAM algorithm was applied in order to show a visualized localization of
prominent features appearing on the parasitized blood cell. This approach helped add
transparency to our outcomes. Grad-CAM is a generic method that uses a CNNas the final
activation layer. As such, a set of high-level features is produced in the shape of a heat map. In
Figure 10, the parasite detection using the Grad-CAM algorithm is presented for the proposed
model. As is clear from the figure, the proposed model kept its attention on the critical
areas. Moreover, it produced the most-compelling interpretation and -precise revelation of the
parasites, as the hot region better preserved the infection’s localization.
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Original images
(Parasitized)

Original images
(Uninfected)

Grad-CAM Grad-CAM

Figure 10. Process of the Grad-CAM algorithm for the original image via the AutoKeras model.

Table 3 introduces a complete comparison between the results using the Autokeras
model against the results of the other related works. Five benchmarks were used to
evaluate the prediction precision for each model, specified as follows: the publication title,
publication year, number of images in the dataset used, the approaches used, and the
overall accuracy. The good accuracy, which was beyond 90% for all the models, indicates
each model’s efficiency in the malaria classification tasks.

Table 3. Comparison between the Autokeras model and previous works.

Refs. Number of Images Models Accuracy

[25] 27,558 CNN 95.28%

[18] - ShuffleNet V2 95.20%

[19] 4100 DBN 96.32%

[9] 714 CNN 96.97%

[20] 27,558 Custom algorithm using bilateral filtering 91%

[21] 27,558 CNN 96.82

[15] 27,558 DACNN 94.79%

[24] 27,558 EfficientNetB0 94.70%

Naïve Bayes
[8] 27,558 Support vector machine 94%

K-nearest neighbor

[16] 6000 ResNet50 90%
ResNet50

[26] 27,560 Feed-forward neural network (FNN) 92%

The proposed model 27,558 Autokeras 95.6%

As is clear in Table 3, the Autokeras model outperformed the previous works in
recognizing malaria disease from images of blood smear cells. Moreover, the adopted
Autokeras model proved its advantages over some works, such as those in [8,15], which
were performed on the same dataset, with an accuracy of 94.79% and 94%, respectively.
It is important to note that some works such as [19] produced more accurate models, for
which they achieved 96.32%. However, it is worth knowing that they used an imbalanced
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dataset. Therefore, accuracy is not the best metric in such a case. Therefore, the F1-score
can be a more suitable metric. In [19], their model produced an F1-score equal to 89.66%.

Moreover, the papers in [9,21] demonstrated better performance than ours due to the
augmentation techniques. Therefore, the size of the dataset increased, which may help
the model generalize better (more data result in a more accurate model [32]). In our work,
we did not augment the dataset, which mimics the real-world scenario. Furthermore,
the proposed work can produce a robust model that can achieve approximately 1 percent
less than their works.

In conclusion, this paper applied a novel optimization technique to tune the hy-
perparameters of the machine learning techniques, called automated machine learning.
The proposed method proved its ability to obtain the optimal parameter values, which
better reflect the results of the utilized evaluation measures compared to the other methods
from the literature.

7. Conclusions

This work adopted an open-source automatic AutoKeras deep learning model to
identify malaria parasites in blood cell images. AutoKeras focuses on techniques for au-
tomatically determining the highest-performing model for a given dataset. This theme
has received attention recently and has been developing quickly ever since. However,
the primary motivation for automating the hyperparameters’ tuningin any model is to find
an automatic ML solution that can achieve a high degree of performance accuracy and lead
to an innovative level of automation in the future using artificial intelligence.

The proposed Autokeras malaria classification approach achieved the best overall
accuracy of 95.6%. It was evident from the experimental test implemented that the robust-
ness of Autokeras outperformed previous works from some studies. This proved that the
proposed method can solve other similar problems efficiently according to the results of
the comparisons with the the-stat-of-the-art methods.

Other machine learning methods combined with advanced optimization algorithms
can be used to solve the hyperparameter problems in any model and find a robust automatic
ML method. Moreover, other applications can be addressed using the proposed method,
such as brain medical images, patient risk identification, pancreatic cancer, sarcoma, pattern
imaging analytics, stomach cancer, clinical trial research, predicting epidemics, kidney
cancer, maintaining healthcare records, and others

The limitations of using auto-machine learning are that it requires much time to train
with such a limited platform and requires a faster device. We recommend using a faster
device in such cases.
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