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Abstract: Light detection and ranging (LiDAR) sensors have accrued an ever-increasing presence
in the agricultural sector due to their non-destructive mode of capturing data. LiDAR sensors emit
pulsed light waves that return to the sensor upon bouncing off surrounding objects. The distances
that the pulses travel are calculated by measuring the time for all pulses to return to the source. There
are many reported applications of the data obtained from LiDAR in agricultural sectors. LiDAR
sensors are widely used to measure agricultural landscaping and topography and the structural
characteristics of trees such as leaf area index and canopy volume; they are also used for crop biomass
estimation, phenotype characterisation, crop growth, etc. A LiDAR-based system and LiDAR data
can also be used to measure spray drift and detect soil properties. It has also been proposed in the
literature that crop damage detection and yield prediction can also be obtained with LiDAR data.
This review focuses on different LiDAR-based system applications and data obtained from LiDAR in
agricultural sectors. Comparisons of aspects of LiDAR data in different agricultural applications are
also provided. Furthermore, future research directions based on this emerging technology are also
presented in this review.
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1. Introduction

Light detection and ranging (LiDAR) sensors have been considered one of the most
important technologies for agricultural sectors because they are a form of non-destructive
remote sensing technology that is not affected by light conditions. They also provide
information with higher accuracy compared to other digital sensing technologies. LiDAR
is based on remote sensing and can calculate the distance between the sensor and the
target by emitting an electromagnetic signal as a laser beam towards a given direction.
The elapsed time between emitting and receiving the laser beam is employed to calculate
the target’s distance. LiDAR data sets are captured using special sensors from the air or
the ground, resulting in a set of point clouds all having x, y and z positions relative to
a coordinate [1]. A tree’s geometrical and structural parameters, such as canopy areas
and volumes, leaf area index, etc., can also be obtained by direct, semidirect and indirect
methods. In direct methods, the features are obtained by measuring heights and widths,
counting, and destructive sampling, such as plucking leaves from plants [2]. Hence, the
data collection process is time-consuming, labour-intensive, costly and can lead to human
error. In a semidirect method such as Wilson’s inclined point quadrat method [2], the
number of leaf contacts is counted using probes in the vegetation canopy. Indirect methods
use passive optical devices that are based on a gap fraction method. However, these
methods have limitations in spatial explicitness and accuracy.

There are also digital sensing technologies such as light spectrum analysis, image
analysis techniques, infrared thermography, stereoscopy photography, and optical ranging
to measure and detect plants’ structural characterisation. These techniques are affected
by light conditions [3]. There are topological, bathymetric and terrestrial LiDARs. The
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basic working principle of these LiDARs is the same. Topological LiDAR generally uses a
near-infrared laser to measure the distance of objects on the ground. A bathymetric LiDAR
uses a green wavelength of 532 nm that can penetrate water to map seafloor and riverbed
elevations [4]. On the other hand, a terrestrial LiDAR is usually mounted on a moving
vehicle or a tripod to collect data of surrounding surfaces and objects.

There are potential applications of LiDAR in sectors such as agricultural, flood mod-
elling, coastline management, archaeology, oceanography, navigation and collision avoid-
ance in autonomous vehicles, physics and astronomy, military and law enforcement, etc. [5].
Researchers found that LiDAR-based technology can also be used to detect CO2 in Earth’s
atmosphere [6–8], allowing researchers to develop pollution modelling to monitor and
reduce imperfect builds effectively. LiDAR data have also been used to create fuel maps
to study bushfires [9]. Although there are multidisciplinary applications of LiDAR, the
primary goal of this paper is to provide a comprehensive review of the applications of
LiDAR in the agricultural sector. LiDAR-based systems gained attention from researchers
for non-destructive remote sensing applications in agricultural sectors that are not affected
by light conditions [3]. Researchers are focusing on developing technologies based on
LiDAR sensors. LiDAR is widely used in agricultural landscaping to map water flow and
water flow direction and the trees in an orchard. It was reported that using LiDAR data, it
is possible to visualise, measure and map out variations such as slope, aspect, soil erosion
and elevation of agricultural lands. The information accrued from LiDAR data can be used
for planning to manage agricultural lands effectively [10]. The measurement of canopy
volume [11], leaf area index [12], tree area index [13], biomass [14], etc., also assist in esti-
mating fertiliser and pesticide dose [11,15], biomass accumulation and carbon storage, etc.
Understanding the structural characteristics of canopy phenological stages and phenotype
characterisation [16,17] are also crucial. These influence photosynthesis, growth, plant
development, health, yield potential, CO2 sequestration and evapotranspiration. Hence,
this understanding plays a crucial role in maintaining terrestrial and aboveground agro-
nomic systems [18,19]. With such information, the different characteristics and appropriate
management for each zone of agricultural zones can be determined.

The working principle of LiDAR is described in Section 2, information regarding
different types of LiDAR is presented in Section 2.1, different applications of LiDAR data
are reviewed in Section 3, data processing is elaborated in Section 4 and future directions
of research in the application of LiDAR data are discussed in Section 5.

The key contributions of this paper are as follows:

• The applications of LiDAR data in agriculture of the last 14 years (2008 to 2022) are
discussed. We believe that this can help readers, especially newcomers to this area,
understand the trend of the application of LiDAR in the agricultural sector;

• Comparisons of aspects of LiDAR data in different agricultural applications along
with various data processing aspects are also provided;

• A discussion on future research directions of LiDAR-based system are also presented.

2. How LiDAR Works

The working principle of a LiDAR-based system is presented in Figure 1. Figure 1
shows that when photons of light energy from LiDAR (e.g., airborne LiDAR) hit various
objects (e.g., roads, buildings, tree branches, bridges, etc.), some light reflects off those
objects and returns to the sensor. Depending on the size of the objects and surrounding
gaps, some light continues down towards the ground. This phenomenon results in multiple
reflections, and a waveform is created by the distribution of energy that returns to the
sensor, which is then recorded. The distribution of energy peaks is created within the
regions where the amount of light energy returned to the sensor is high [20].

Based on how the returns are recorded, there are discrete return LiDAR and full-
waveform LiDAR. Both a discrete return LiDAR system and a full-waveform LiDAR system
can record returns. Discrete points for the peaks in the waveform curve are recorded in a
discrete return LiDAR system. On the other hand, the returned light energy distribution is
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recorded in a complete waveform LiDAR system that might obtain the distance between
the LiDAR sensor and the objects. This distance can be measured by time-of-flight (TOF)
or phase shift measurement (PMS) methods. Time-of-flight (ToF) calculates the distance
between a LiDAR sensor and objects of interest that reflect the original signal emanating
from the sensor by recording the time difference between the original and reflected signals.
A LiDAR system utilises light in the shape of a pulsed laser in TOF. The start time of the
emitted pulse and the time of the reflected pulse hitting the sensor are recorded to calculate
the time it takes for the pulse to return to the LiDAR source [21–23]. Thus, Equation (1) can
be used to measure how far an individual photon has travelled to and from an object.

d = c t/2, (1)

where d = distance to the object, c = light speed and t = time between the emitted and
detected light.

Light power is modulated at a constant frequency in PMS, where a continuous light
source is employed. Therefore, the modulated light can be characterized as sinusoidal (time
and laser power on the x and y axes, respectively) in nature. The difference in radians of
the waves’ peaks and the object’s distance can be found by Equation (2) [23].

d = c∆Φ/2πf (2)

where d = distance, c = light speed, ∆Φ = phase difference and f = frequency of the
modulated power.

The distance obtained from TOF or PMS is then converted to elevation. Elevation
information is then used to represent ground objects.

J. Imaging 2023, 9, x FOR PEER REVIEW 3 of 29 
 

 

 
Figure 1. Illustration of laser beam outgoing and return signals (discrete and full-waveform) of Li-
DAR. Reprinted with permission from Ref. [9]. Copyright 2009 Ferraz, A.  

Based on how the returns are recorded, there are discrete return LiDAR and full-
waveform LiDAR. Both a discrete return LiDAR system and a full-waveform LiDAR sys-
tem can record returns. Discrete points for the peaks in the waveform curve are recorded 
in a discrete return LiDAR system. On the other hand, the returned light energy distribu-
tion is recorded in a complete waveform LiDAR system that might obtain the distance 
between the LiDAR sensor and the objects. This distance can be measured by time-of-
flight (TOF) or phase shift measurement (PMS) methods. Time-of-flight (ToF) calculates 
the distance between a LiDAR sensor and objects of interest that reflect the original signal 
emanating from the sensor by recording the time difference between the original and re-
flected signals. A LiDAR system utilises light in the shape of a pulsed laser in TOF. The 
start time of the emitted pulse and the time of the reflected pulse hitting the sensor are 
recorded to calculate the time it takes for the pulse to return to the LiDAR source [21–23]. 
Thus, Equation (1) can be used to measure how far an individual photon has travelled to 
and from an object. 

d= c t/2, (1)

where d = distance to the object, c = light speed and t = time between the emitted and 
detected light. 

Light power is modulated at a constant frequency in PMS, where a continuous light 
source is employed. Therefore, the modulated light can be characterized as sinusoidal 
(time and laser power on the x and y axes, respectively) in nature. The difference in radi-
ans of the waves’ peaks and the object’s distance can be found by Equation (2) [23]. 

d=cΔΦ/2πf  (2)

where d = distance, c = light speed, ΔΦ = phase difference and f = frequency of the 
modulated power. 

The distance obtained from TOF or PMS is then converted to elevation. Elevation 
information is then used to represent ground objects. 

Types of LiDAR 
There are mainly airborne and terrestrial LiDAR systems, and they are split accord-

ing to functionality. Airborne LiDAR can be installed on a drone or helicopter and is clas-
sified as topological LiDAR or bathymetric LiDAR. Topological LiDAR utilises a near-
infrared laser for land mapping and bathymetric LiDAR employs water-penetrating green 
light for seafloor or riverbed elevation measurements [21,24]. 
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2.1. Types of LiDAR

There are mainly airborne and terrestrial LiDAR systems, and they are split according
to functionality. Airborne LiDAR can be installed on a drone or helicopter and is classified
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as topological LiDAR or bathymetric LiDAR. Topological LiDAR utilises a near-infrared
laser for land mapping and bathymetric LiDAR employs water-penetrating green light for
seafloor or riverbed elevation measurements [21,24].

Most airborne LiDAR systems consist of LiDAR sensors, data storage devices, an
on-board computer, a global positioning system (GPS) and an inertial measurement unit
(IMU) [25]. The GPS is responsible for determining the aircraft’s location and the IMU
records the precise orientation of the sensor. Terrestrial LiDAR systems are generally
mounted on vehicles or a tripod on the ground to obtain the required information. Terres-
trial LiDAR uses mirrors to capture data from several directions [26]. Terrestrial LiDAR can
also be used to obtain data for areas such as under tree canopies, where airborne LiDAR
cannot reach. Like airborne LiDAR, various objects reflect the pulsed laser, and the device
is used to calculate their distance from the object.

Figure 2 presents a chart of different applications of LiDAR in agriculture. LiDAR
systems can be broadly classified into terrestrial and airborne categories. In the agricultural
sector, terrestrial LiDAR is primarily used for determining landscape and topography, leaf
area index and canopy volume estimation; crop biomass estimation; canopy phenological
stage and phenotype characterization; weed, crop and soil detection; crop growth estima-
tion; spray drift measurement; yield prediction; etc. Airborne LiDAR can be classified as
bathymetric LiDAR and topological LiDAR. There are not yet many reports of usage of
bathymetric LiDAR in agriculture. Topological LiDAR is primarily used for determining
landscape and topography, crop growth estimation, soil property detection, crop damage
detection, etc.
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3. Applications of LiDAR

LiDAR generally records GPS time; scan angle and direction; x, y and z position
information; intensity; return number; the number of returns; and point classification
values [27]. These stored data sets are then used to obtain the target objects’ height, volume
and area information. The obtained information is then used for determining the landscape
and different physical characteristics of the trees, crop biomass estimation, spray drift
measurement, soil property detection, yield prediction, crop damage detection, etc.

In the following sections, different applications of LiDAR data sets in agricultural
settings are discussed.

3.1. Landscape and Topography

LiDAR sensors have been widely used to determine the landscape and topography of
agricultural land for planning and managing agriculture. Applications of LiDAR data in
landscaping and topography determination are presented below.

3.1.1. Ditch Network Detection

J.S. Bailly et al. used airborne LiDAR to collect Mediterranean vineyard data to detect
a ditch network [28]. In the study, the proposed approaches were based on the hypothesis
that ditches were located at field boundaries. Therefore, a concavity within an elevation
profile would be directed across the ditch. In the proposed method, elevation profiles
were estimated on a set of pre-located sites from raw data. The derivation of profile
for concavity indicators was also applied with the aid of 1D wavelet transforms (DWT)
and a watershed algorithm. In addition, the classification and regression tree (CART)
segmentation method was used to differentiate ditches from non-ditches. It was reported
that the overall accuracies of DWT and the watershed algorithm were 71.3% and 71.7%,
respectively, with an around 50% mean ditch omission rate and approximately 15% mean
ditch commission rate for both DWT and watershed. The results show that ditch omission
rates were higher for high-vegetation sites, but detection rates were around 75% when little
vegetation existed.

3.1.2. Terrace Group Detection

Mark D. McCoy et al. proposed slope contrast mapping to identify agricultural terrace
groups from a LiDAR data set [29]. Their study used a geographic information system (GIS)
model to recognise flat-to-low slope areas between drainages and compare results with
slope contrast mapping. A slope contrast model (SCM) was used to evaluate top-of-canopy
and ground digital elevation models (DEMs) from the LiDAR point cloud data. The SCM
considered a vertical back slope of 900 to be created by a cut out of a natural slope. Side
slopes of 900 were created by cutting and filling. The downslope was composed of fill held
in place by a retaining face [29]. After obtaining the digital elevation model (DEM), the
DEM was transformed into a slope raster. The slope raster then was turned into a classified
raster by dividing cells into flat, low and high slope categories. It was reported that though
the proposed SCM could map naturally flat areas estimating where irrigated agriculture
expanded in the past, it was less effective than the GIS model.

3.1.3. Erosion Detection

A hydro-geomorphological analysis to identify terraces and road-induced erosion
of vineyards was proposed by Tarolli et al. [10]. At first, the relative path impact index
(RPII) was derived from the digital terrain model (DTM) obtained from airborne and
terrestrial LiDAR scanners to identify terraces and road-induced erosions. The index’s
statistical threshold was then used to mark the critical areas for surface erosion in the
terraced vineyard.

Different soil conservation measures were simulated using the index and the defined
thresholds to determine the optimal solution to reduce collapsing or erosion in vineyards
induced by agricultural roads and terraces. Figure 3 shows that though using RPII, the road
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size was captured correctly using a 1 m airborne LiDAR scanner (ALS) DTM, but the terrace
failures T1 to T2 could not be accurately identified to characterise the flow alternations
correctly. On the other hand, for a 0·2 m terrestrial LiDAR scanner (TLS) DTM, the RPII
produced more accurate results and depicted all the surveyed failures (T1 to T5) correctly.
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3.1.4. Overland Flow Detection

Jake Galzki et al. proposed that by applying LiDAR-based terrain attributes, fine-scale
areas consisting of overland flow could be identified [30]. Their study areas were hydrolog-
ically connected to surface water either by an overland flow path or subsurface drainage
along agricultural ditches. These focused areas had a higher possibility of contributing to
surface water quality degradation by conveying contaminants, nutrients and pesticides
to nearby water sources. Precision conservation techniques were used in this proposed
method to obtain LiDAR data with acceptable resolution. LiDAR data were converted
into hydrologically corrected DEMs with 1 m grid cell resolution and then resampled to
a 3 m DEM. Various terrain attributes, e.g., slope, flow accumulation and stream power
index, were then derived from the DEMs. It was reported that out of the 32 most prominent
gullies, 3 m LiDAR correctly identified 31, whereas 30 m LiDAR could identify only 7 [30].

3.1.5. Parcel Detection

In another application in agricultural landscaping, Adam J. Mathews et al. proposed
a method to extract and classify vineyard land-use parcels and parcel boundaries. The
study was carried out in three different vineyard sites. A DTM, digital surface model
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(DSM) and normalised digital surface model (nDSM) were obtained from the raw LiDAR
data set. In this proposed method, the nDSM was developed using airborne LiDAR
data of inter-row spaces, canopy features and a focal statistics method [31]. The study
presented that though the mean accuracies of correctly classified vineyard area and parcel
delineations were 97.55% and 88.79%, respectively, this method had limitations when it
came to distinguishing separated but adjacent vine parcels in the vicinity. In the proposed
method, a 12 × 12 analysis window was used. The scan window size was a function of the
geometry of vine rows, spacing and the DSM’s resolution.

3.1.6. Canopy Openness Detection

In a different type of application of LiDAR data, Collin et al. proposed a method where
airborne LiDAR data were employed to estimate canopy openness to model solar radiation
in terms of light penetration index (LPI) [32]. This index determines the probability that
a direct beam of light will pass through the plants and touch the earth. First, the LiDAR
point clouds stipulated the probability of light reaching the ground; then, this probability
was determined by considering the LPI. Thus, the laser was considered a substitute for sun
rays embracing the ground. In this proposed model, the GRASS GIS r.sun solar model was
used to develop the subcanopy solar radiation model (SSR) from the LiDAR dataset. The
GRASS GIS r.sun was a clear sky solar model that considered topographic angles, shading,
DEM, Julian day, time-step and Linke turbidity index. The SSR model utilised both direct
and indirect field measurements to estimate subcanopy radiation.

Pyranometers were employed for direct measurements of global and diffuse radiation,
whereas hemispherical photographs and a gap light analyzer (GLA) were used for indirect
measurements. The SSR could predict direct radiation better than diffuse radiation. A
simple linear regression (SLR) analysis found that SSR and GLA for total solar radiation pre-
dictions matched field measurements with R2 = 0.92 and R2 = 0.692, respectively. However,
predictions were not highly accurate in diffuse radiation for both SSR and GLA. Canopy
openness obtained from GLA and LPI were correlated with R2 = 0.768. Table 1 presents
the comparisons of various aspects of LiDAR data in determining agricultural landscape
and topography.

3.2. Leaf Area Index and Canopy Volume

Application of LiDAR was also reported for measuring leaf area index (LAI) and
canopy volume. A tractor-mounted 2D LiDAR was proposed by Rosell et al. to make
recordings of 3D tree row structures in pear and apple orchards and grape vineyards [19]. In
this method, the 3D point cloud was visualised with a computer-aided design [18]. Scanner
data were used to calculate the volumes and leaf area of trees to probe the suitability of laser
sensors to characterise vegetation. Foliage areas and plant volume were also compared
with leaf areas employing SLR analysis [19]. Data were collected using a LiDAR sensor
regarding the different growth stages of crops and before and after the defoliation of
designated trees on both sides of the crop rows. Two methods were solicited to determine
leaf area. In the first method, the relationship between plant volume measured by LiDAR
and its corresponding manually measured total foliar area was considered. The second
method formulated by Walklate et al. used Beer’s law and the tree area index (TAI) [13].
Here, the TAI was defined as the ratio between crop detected area and ground area. The
SLR analysis found the coefficient of determination (R2) between plant volume and LAI for
pear orchards, apple orchards and vineyards to be R2 = 0.8422, R2 = 0.814 and R2 = 0.8058,
respectively. However, for vineyards, the coefficient of determination between LAI and
TAI was reported to be R2 = 0.9194 [19].

On the other hand, by comparing the results obtained from LiDAR sensors with ultra-
sonic and traditional manual canopy measurement procedures, Jordi Llorens et al. found
that crop width and volume calculated from LiDAR sensor data presented lower values
of R2 than those obtained from ultrasonic and manual processes [11]. The correlations
between LAI and canopy volume using ultrasonic and LiDAR sensors were found with
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R2 = 0.51 and 0.21, respectively. However, the correlation between calculated volumes with
ultrasonic and LiDAR was obtained with R2 = 0.56. It was reported that LiDAR sensors
possessed a better ability to detect gaps in the canopy but required software for LiDAR
data analysis to obtain accurate information.

Table 1. Comparison of various aspects of LiDAR data in determining agricultural landscape
and topography.

LiDAR Type Algorithm Model Classification
Method Features Results

Airborne DWT;
watershed algorithm

Classification and
regression trees

Elevation profiles;
concavity indicators

For DWT and watershed,
overall accuracy: ~71%. Mean

ditch omission rate: ~50%.
Mean ditch commission

rate: ~15 % [28].

Airborne SCM DEM; GIS Quantile
classification

Top of canopy height;
ground height; flat to

low
slope area

LiDAR data based SCM
estimated less than the GIS

model [29].

Airborne DEM

Slope;
flow

accumulation; stream
power
index

3 m LiDAR identified a
higher number of most

prominent gullies compared
to 30 m LiDAR [30].

Airborne
Fusion’s ground

filter
algorithm

DTM; DSM; nDSM

Focal statistics
function;
iterative

self-organising data
analysis technique

Vine rows height;
relative

elevation of
surface features from

ground level

Mean accuracy of correctly
classified vineyard

area: 97.55%.
Mean accuracy of parcel
delineation: 88.79% [31].

Airborne
Terrestrial DTM Relative path

impact index (RPII)

The RPII obtained from 0.2 m
TLS DTM presented more

accurate results compared to
RPII obtained from 1 m ALS

DTM [10].

Airborne DEM; SSR; GRASS;
GIS r.sun; SLR

Linke turbidity
index;

Julian day;
time-step;

LPI

R2 between SSR and field
measurement for total solar

radiation:
0.92.

R2 between GLA and field
measurement for total solar

radiation: 0.692.
R2 between LPI and canopy

openness obtained from GLA:
0.768 [32].

Furthermore, in an experimental study of J. Arno’ et al., LAI was estimated from
LiDAR data [33]. The measured LAIs with low, medium and high vigour zones were
obtained using cluster analysis. LAI was determined considering the projected left, right
and top surface and the ratio between leaf area and projected envelop area. Here, LiDAR
overestimated LAI compared to measuring LAI in all the three vigour zones, with decreas-
ing differences with more leaf surfaces. It was reported that if the maximum distance
between scans along the rows did not exceed 15 m and the scanned length was 1 m, the
LiDAR system could be used intermittently.

J. Arno et al. also calculated LAI considering TAI using LiDAR sensor data in another
study. The TAI was formulated using a Poisson distribution. Besides TAI, tree height,
cross-sectional area and canopy volume were also calculated from LiDAR sensor data [12].
The relationship between measured LAI and the parameters mentioned above was obtained
with SLR analysis. SLR analysis estimated LAI from canopy tree height, cross-sectional
area, and volume for 1 m long sections of the total row width with R2 = 0.62, 0.72 and 0.81,
respectively. Furthermore, the LAI estimation obtained from the TAI was with R2 = 0.92
for the same length. In this proposed method, the non-random distribution of leaves and
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the inability of LiDAR to distinguish leaf and woody materials affected the accuracy of
LAI estimation.

On the other hand, using a remote-controlled prototype robot consisting of a LiDAR
scanner, C. Poblete-Echeverría et al. obtained data to estimate LAI to study vineyard
growth regarding seasonal progression and environmental progression [34]. Mesh surface
area (MSA) was also evaluated from LiDAR data to demonstrate the usefulness of LiDAR
in the estimation of LAI. SLR analyses were applied to obtain the correlation between actual
LAI and the MSA values. The results demonstrate a correlation between MSA and LAI,
with an R2 of 0.798 and an RMSE of 0.05 m. Table 2 presents the comparisons of various
aspects of LiDAR data in measuring leaf area index and canopy volume.

Table 2. Comparison of various aspects of LiDAR data in measuring leaf area index and canopy volume.

LiDAR Type Analytical Method Classification
Algorithm Features Results

Terrestrial SLR TAI; LAI

R2 between plant volume and LAI: 0.8422
(pear tree), 0.814 (apple tree) and 0.8058
(vineyards). R2 between TAI and LAI:

0.9194 (vineyards).
TAI could be used as a parameter to

determine LAI for some specific crops in a
vineyard [19].

Terrestrial

Lillefors tests;
Box–Cox test; Pearson’s

product-
moment

correlation coefficient

Canopy height; crop width;
canopy volume; LAI

R2 between LAI and canopy volume using
ultrasonic: 0.51; between LAI and canopy
volume using LiDAR: 0.21; R2 of canopy

volume obtained from LiDAR and
ultrasonic sensors: 0.56 [11].

Terrestrial Vector map;
raster map

Fuzzy
c-means LAI

The LiDAR system could be used
intermittently if the maximum distance
between scans along the rows did not

exceed 15 m with a scan length of 1 m [33].

Terrestrial Poisson
distribution; SLR

LAI;
TAI;

tree height; cross-
sectional area;

canopy volume

R2 between TAI and LAI: 0.92; between
canopy volume and LAI: 0.81; between

cross-sectional area and LAI: 0.72;
between tree height and LAI: 0.62 [12].

Terrestrial SLR MSA; LAI R2 between MSA and LAI: 0.798 [34].

3.3. Crop Biomass Estimation

The application of LiDAR sensors to estimate crop biomass was also reported. LiDAR-
based volumetric modelling was also proposed by Keightley et al. to measure the volume
of the biomass of grapevine [35]. LiDAR data were collected from grapevine (mounted on
a turntable) trunks and cordons and used to generate 3D models of that vine’s perennial
woody tissue. An analogue measurement was also carried out where the vine trunks and
cordons were submerged in water and then the displaced water was captured. Water
weight was converted to volume after recording. The vines were dried using an oven and
weighed. Volume, density and mass data were collected for each vine. An SLR analysis
was also accomplished to obtain the relationship between volumes obtained from LiDAR
data and analogue measurements. It was reported that the standard error dropped with
the increasing number of added scans to the volume calculation. Volumes calculated from
the LiDAR data ranged between 1.31 and 10.61 L, whereas volumes obtained from the
analogue measurement ranged between 0.83 and 5.05 L. The SLR of analogue volume on
LiDAR-based volume found that slope values ranged between 0.43 and 0.54. The Pearson
product-moment correlation coefficient (PMCC) had a range from 0.73 to 0.97. LiDAR-
based volume estimates were more significant than those calculated using the analogue
method presented by the y-intercepts. The regression slope values with the RMSE ranged
from 4.23 to 1.45. These results suggest that the volume calculated from LiDAR data for
smaller vines having smaller trunk and cordon diameters had a more significant deviation
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than for larger vines compared to volumes obtained from analogue measurement. It was
noted that the deviation in volume decreased when vine size increased. The LiDAR system
used in the study had instrumental uncertainty of ±4 mm and measured features with
a 10 mm diameter [35]. Hence, measuring smaller vines required analysis closer to the
accuracy limit. Furthermore, complex plant geometry was also one of the factors that
affected the accuracy of the results.

On the other hand, Shichao Jin et al. estimated field maize biomass at the plot, i.e., plot
segmentation; individual plant, i.e., individual maize segmentation; leaf group, i.e., stem
and leaf segmentation; and individual organ, i.e., individual leaf or stem, levels, as shown
in Figure 4 [14]. LiDAR data were collected at four different levels. The data were used
to extract different phenotypic traits such as 1D traits (e.g., height), 2D traits (e.g., canopy
cover) and 3D traits (e.g., volume). All phenotypic traits were used to build SLR, log-
transformed simple regression (LSR), stepwise multiple regression (SMR), an artificial
neural network (ANN) and random forest regression (RFR) to determine the suitable
methods and phenotypic traits for biomass estimation. The estimated biomass for all the
four levels calculated from the LiDAR data were compared with the field-measured data
of corresponding levels. It was reported that at the plot level, the best LSR model and
SLR model were both built with variable H84 (i.e., the 80% quantile height), which had
R2 of 0.79 and 0.80, respectively. The R2 and RMSE of SMR, ANN and RFR were 0.80 and
179.77 g, 0.68 and 222.40 g and 0.79 and 150.14 g, respectively. Again, at the individual
plant level, the best LSR and SLR models had R2 of 0.93 and 0.96, respectively.
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Meanwhile, the R2 and RMSE of SMR, ANN and RFR were also high and at rates of
0.94 and 10.29 g, 0.93 and 10.75 g, and 0.94 and 10.19 g, respectively. The best LSR and
SLR models were built with height and 3DPI variables in the leaf group level and had R2

of 0.95 and 0.92, respectively. The R2 and RMSE of SMR, ANN and RFR were 0.97 and
2.41 g, 0.97 and 2.22 g, and 0.97 and 2.34 g, respectively. Furthermore, the best LSR and SLR
models were built at the stem level with stem height variables and R2 of 0.93 and 0.94. The
R2 and RMSE of SMR, ANN and RFR were also high and were 0.94 and 6.40 g, 0.95 and
5.68 g, and 0.95 and 5.81 g, respectively. On the other hand, at the individual leaf level, the
best LSR and SLR models had leaf area variables with R2 of 0.84 and 0.84, respectively. The
R2 and RMSE of SMR, ANN and RFR were 0.86 and 0.62 g, 0.86 and 0.67 g, and 0.78 and
0.84 g, respectively. From the data mentioned above, it was found that the value of R2 was
greater than 0.80 at all levels for estimating maize biomass. Biomass estimation at the leaf
group level was R2 = 0.97 with RMSE = 2.22 g in four levels [14].

Moreover, for biomass and crop nitrogen (N) estimation, Jan U.H. Eitel et al. used TLS
employing a pulsed green (532 nm) laser. A green laser was utilised as its return intensity
might help sense chlorophyll related attributes (e.g., crop N status). The study considered
that a plant’s chlorophyll concentration affects absorbed green light. [36]. Increased green
laser light is absorbed with increasing plant chlorophyll concentration, decreasing the
laser return’s intensity. In this study, the green laser light reflected by the sensor was
recorded by the TLS instrument. Above-ground crop mass was also estimated from TLS
data. Using DSM and DTM, laser-derived vegetation volume was calculated. With the
aid of computer programming, nitrogen concentration was estimated from LiDAR data.
The laser-derived vegetation volume and the normalised intensity of the reflected green
light were then used to calculate the nitrogen nutrition index (NNI). It was found that
the accuracy of laser-derived vegetation volume decreased with increasing canopy height
and volume since the possibility of the laser beam penetrating the canopy completely de-
creased with increasing canopy cover. From SLR analysis, relationships between observed
physical proxies (e.g., crop height or volume) and TLS-derived vegetation volume for all
seasons and growth stages were with R2 >= 0.72 and RMSE ≤ 0.68 t ha−1. The range of
relationships between the actual nitrogen concentration and green laser return intensity
had R2 = 0.10–0.75 and RMSE = 0.31–0.63% [36]. Furthermore, James D. C. Walter used
LiDAR data to estimate aboveground biomass (AGB) along with canopy height (CH) of
the wheat crop [37]. In the study, LiDAR-derived measurements were contrasted against
AGB and CH manual measurements to assess application suitability within a breeding
program. It was reported that the correlations between AGB and LiDAR projected volume
(LPV) were up to Pearson’s correlation coefficient (r) of 0.86 and correlations between CH
and LiDAR canopy height (LCH) were up to r = 0.94. Table 3 presents the comparison of
several aspects of LiDAR data in crop biomass estimation.

3.4. Canopy Phenological Stages and Phenotype Characterisation

LiDAR data also were applied to study the phonological stages and phenotype char-
acterisation of crops. Rinaldi M. et al. [16] implemented a mathematical protocol to char-
acterise the phenological stages, i.e., BBCH stages of grapevine canopy. In the study, tree
row volume (TRV), leaf wall area (LWA) and LAI were calculated. The BBCH stages were
determined utilising manually collected data sets and with LiDAR scanning at each canopy
phenological stage. The estimated values of TRV, LWA and LAI derived from LiDAR data
were compared with manual measurements. The correlations between manual and LiDAR
scan measurements of height and width were R2 = 0.98 and R2 = 0.81, respectively. The
plant was measured from each side and the superposition of scans resulted in errors. Hence,
the measurement of the width was less accurate than the height. Furthermore, the study
demonstrated that the coefficients of determination between the estimated values of TRV or
LWA and the growth stage of the vine were R2 = 0.99 and R2 = 0.95, respectively. It was also
possible to monitor time-series phenotype dynamics of maize under drought stress [17].
Several parameters, e.g., plant height, projected leaf area (PLA) and plant area index (PAI)
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could be obtained from the terrestrial LiDAR point clouds at the individual plant level.
Rinaldi M. et al. also considered voxel size when estimating PAI from LiDAR data because
the voxel-based method underestimated the PAI if the voxel size was too small.

Table 3. Comparison of various aspects of LiDAR data in crop biomass estimation.

LiDAR Type Analytical Method Model Features Results

Terrestrial SLR;
PMCC

3D
volumetric

model

The volume of woody
tissue of vines

Volumes calculated from LiDAR data range
between 1.31 and 10.61 L. Volumes obtained from
analogue measurement range between 0.83 and

5.05 L.
The SLR of analogue volume on LiDAR-based

volume indicates that slope values range from 0.43
to 0.54. Furthermore, the PMCC ranges between

0.73 and 0.97 [35].

Terrestrial SLR; LSR; SMR;
ANN; RFR

Height;
canopy cover;

canopy volume

At the plot level: LSR and SLR had R2 of 0.79 and
0.80, respectively. The R2 of SMR, ANN and RF

were 0.80, 0.68 and 0.79, respectively.
At the individual plant level: LSR and SLR had R2

of 0.93 and 0.96, respectively. The R2 of SMR, ANN
and RF were 0.94, 0.93 and 0.94, respectively.

In the leaf group level: LSR and SLR had R2 of 0.95
and 0.92, respectively. The R2 of SMR, ANN and RF

were 0.97, 0.97 and 0.97, respectively.
At the stem level: LSR and SLR had R2 of 0.93 and
0.94, respectively. The R2 and RMSE of SMR, ANN
and RF were 0.94, 0.95 and 0.95, respectively [14].

Terrestrial SLR DSM;
DTM

Vegetation
volume;

NNI;
canopy height;
canopy volume

Relationships between observed physical proxies
and LiDAR-derived vegetation volume for all

seasons and growth stages were with R2 >= 0.72.
The range of relationships between the actual
nitrogen concentration and green laser return

intensity was R2 = 0.10–0.75 [36].

Terrestrial

Percentile
algorithm;
Pearson’s

correlation
coefficient (r);

SLR

AGB; CH;
LPV; LCH

The correlations between AGB and LPV were up to
r = 0.86.

The correlations between CH and LCH were up to
r = 0.94 [37].

On the contrary, the method overestimated the PAI if the voxel size was large. In
the study, a voxel size of 1.5 times the average point distance was effective for obtaining
relatively high accuracy to estimate the PAI. The results show that the estimation accuracies
of plant height, PLA and PAI obtained from LiDAR data had R2 of 0.96 and RMSE of
0.15 m2/m2, R2 of 0.92 and RMSE of 0.05 m2/m2 and R2 of 0.70 and RMSE of 0.15 m2/m2,
respectively, compared to manual measurements [17]. During the growth period, plant
height, PAI and PLA demonstrated a trend of first increasing and later decreasing. Distance-
based clustering analysis was also employed. Nine, five and three of the seventeen maize
varieties were grouped as low drought tolerance, medium drought tolerance and high
drought tolerance, respectively.

Furthermore, to develop a high throughput phenotyping system and analyse the
growth of cotton plants, Shangpeng Sun et al. [38] used terrestrial 2D LiDAR. They re-
constructed a 3D model of the scanned crops. The 3D model was then used to calculate
morphological characteristics such as canopy height, projected canopy area (PCA) and
plant volume. In this study, experiments were performed on four cotton cultivars. First,
an analysis of variance (ANOVA) test was performed to understand the effect of cultivar
on height trait. Second, 3D plant reconstructions were performed for detecting the growth
patterns of cotton plants of the different cultivars over time. The validation experiments
indicated a correlation between LiDAR measurements and manual measurements for max-
imum canopy height, PCA and plant volume, with R2 and RMSE values of 0.97 and 0.03 m,
0.97 and 0.007 m2 and 0.98 and 0.011 m3, respectively. The highest R2 values between PCA
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and final yield for cultivars 1, 2, 3 and 4, between 88 and 109 days after planting (DAP),
were 0.65, 0.83, 0.87 and 0.88, respectively. On the other hand, the maximum R2 values
between plant volume and final yield were 0.77, 0.85, 0.84 and 0.83 on 95, 67, 74 and 74 DAP
for cultivars 1, 2, 3 and 4, respectively [38]. This study suggests that PCA and plant volume
could be utilised as high-throughput phenotyping tools to detect productivity differences
other than canopy height.

Moreover, for high-throughput estimation in maize and sorghum crops, Suresh Thapa
et al. developed a LiDAR scanner with a precision rotation stage to produce 3D point
clouds of plants with a 360-degree view [39]. The obtained data were then processed for
noise removal, voxelisation, triangulation and plant leaf surface reconstruction. Plant
morphological characteristics such as individual and total leaf area, leaf inclination angle
and angular leaf distribution were obtained after reconstructing the digital leaf surfaces.
The angle measured between the plant’s leaves and its stem was considered the leaf
inclination angle in the reference method. All leaves on the plant were cut after imaging
and leaf area was obtained using a leaf area meter. Finally, locally weighted scatterplot
smoothing (LOWESS) was applied to reconstruct the leaf surface. The R2 between model-
derived leaf area and the reference measurement was 0.92 for maize and the mean absolute
error (MAE) was 43.2 cm2.

On the other hand, for sorghum, the R2 between the two measurement sets was 0.94
and the MAE was 16.0 cm2. These results show that the correlation between leaf area
measured using the LiDAR-based instrument and the reference methods was R2 > 0.91
for individual leaf area and R2 > 0.95 for each plant’s total leaf area. The 3D models
underestimated individual leaf area in contrast to the area meter measurement because
of maize’s wrinkle structures at the edges of leaves. The LiDAR-based system did not
detect those. On the contrary, as sorghum leaves are smoother than maize, this introduced
a lower amount of systematic error in leaf area modelling. The correlation between leaf
inclination angles measured from 2D images and acquired from the 3D model for maize
plants had R2 = 0.904 [39]. Meanwhile, for sorghum, the coefficient of determination was
R2 = 0.723. Some limitations of this proposed method were reported, which are to be
noted. In this proposed method, the maize and sorghum examined had a simple plant
structure and large leaves. Hence, the structure of the leaves and plants could influence
the experimental results. With this method, it could be challenging to obtain the canopy’s
complete point cloud with a denser leaf structure due to occlusion. On the other hand,
smaller leaves could reduce the efficiency of surface reconstruction, and if the plant’s stem
is not upright, it might be difficult to remove the stem from the raw point clouds [39]. The
results could also vary as parameters such as LiDAR height for point cloud generation,
start and stop angles, the threshold for point cloud noise removal and the leaf number for
k-means clustering in point cloud processing were inserted manually. This might not be
desirable in a practical setting. Table 4 presents a comparison of various aspects of LiDAR
data in canopy phenological stages and phenotype characterisation.

3.5. Weed, Crop and Soil Detection and Crop Growth Estimation

LiDAR data can also be used to detect weeds, crops and soil. It can also be applied to
estimate crop growth and fresh aboveground weight.

3.5.1. Weed, Crop and Soil Discrimination

Dionisio And’ujar et al. [40] proposed a method where height and reflection values
obtained from terrestrial LiDAR were used to detect soil, crops and weeds. It was reported
that the correlation between actual plant heights and LiDAR measured height was R2 = 0.75.
A strategy was employed in the study to separate areas with vegetation from soil and
perform discrimination of monocots, dicots, crops and soil cases [40]. It was found that
vegetation presence corresponded to higher reflection values. Therefore, along with LiDAR
height measurements, reflection data were used to differentiate soil and vegetation. The
predicted values from binary logistic regression were 95.3% for vegetation and 82.2% for
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soil and there was an overall accuracy of 92.7%. Using canonical discriminant analysis
(CDA), the overall success in discriminating these four cases was 72.2%. Soil and dicots
were classified with 92.4% and 64.5% accuracy, respectively. The accuracy of the weed dis-
crimination for monocots was poor as they were similar to maize. However, the predictions
for the crop were obtained with 74.3% accuracy. The resolution of the images was one of
the important factors in this discrimination study, and it is lower if the laser beam footprint
size is larger. As a result, the field of view declines with higher accuracy, thereby limiting
the efficiency of the proposed method [40]. Hence, selecting the laser beam footprint’s
optimal size to discriminate weeds and maze accurately was a challenge in the study.

Table 4. Comparison of various aspects of LiDAR data in canopy phenological stages and pheno-
type characterisation.

LiDAR Type Analytical Method Model Features Results

Terrestrial SLR GRASS-GIS
Canopy height;

canopy width; LAI;
TRV; LWA

R2 between manual and LiDAR scan
of canopy height, between manual
and LiDAR scan of canopy width,

between TRV and the growth stage
and between LWA and the growth
stage were 0.98, 0.81, 0.99 and 0.95,

respectively [16].

Terrestrial SLR;
distance-based clustering DTM

Plant height; PAI;
PLA;

plant area density (PAD)

R2 between plant height and manual
measurement, between PLA and

manual measurement and between
PAI and manual measurement were
0.96, 0.92 and 0.70, respectively [17].

Terrestrial SLR;
ANOVA test analysis

Plant volume;
canopy height;

PCA

R2 between manual and LiDAR
measurements of canopy height,

between manual and LiDAR
measurements of PCA, between

manual and LiDAR measurements of
canopy volume were 0.97, 0.97 and

0.98, respectively [38].

Terrestrial SLR

Delaunay
triangulation algorithm;

K-means
clustering; LOWESS

Leaf area;
plant area;

the inclination angle of
individual leaves;

leaf angular distribution
of the whole plant

R2 between model-derived leaf area
and the reference measurement for

maize was 0.92.
For sorghum, R2 between

model-derived leaf area and the
reference measurement was 0.94.

For maize, R2 between leaf
inclination angles measured from 2D
images and those obtained from the

3D model was 0.904.
For sorghum, R2 between leaf

inclination angles measured from 2D
images and those obtained from the

3D model was 0.723 [37].

However, Reji Jayakumari et al. applied a deep convolutional neural network (CNN)
model named CropPointNet for the semantic segmentation of crops from a 3D perspective.
This model was used on LiDAR point cloud data for object-based classification of cabbage,
tomato and eggplant. The crop classification was validated and compared with PointNet
and a dynamic graph-based convolutional neural network (DGCNN). It was reported
that the crop objects in the 3D point cloud were classified with an overall accuracy of
81.5% using the CropPointNet model. The PointNet and DGCNN had overall accuracies
of 55% and 66.5%, respectively. However, CropPointNet, DGCNN and PointNet models
discriminated cabbage with 91%, 82% and 72% accuracy, respectively, and eggplant with
88%, 83% and 69% accuracy, respectively. In contrast, the accuracy of discrimination of
tomato crop was 65%, 61% and 60% for CropPointNet, DGCNN and PointNet, respectively.
It was reported that most of the tomato crop discriminations were underestimated due to
apparent confusion with residual soil ridges [41].
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3.5.2. Crop Growth Estimation

On the other hand, to measure wheat height, a ground-based multi-sensor system
containing LiDAR and ultrasonic sensors was developed by Wenan Yuan et al. [41]. The
study also determined the effectiveness of LiDAR, ultrasonic sensors and unmanned aircraft
system (UAS) data and compared the results with manual measurement [41]. LiDAR data
were pre-processed to correct the slanting effect to improve the accuracy of wheat height
estimations. LiDAR had an RMSE of 0.05 m and the correlation between manual and
LiDAR had an R2 of 0.97; UAS had an RMSE of 0.09 m and the correlation between manual
and UAS had an R2 of 0.91 for determining canopy height. The RMSE obtained from
ultrasonic sensors for height estimation was 0.3 m and the correlation between manual
and ultrasonic sensors had an R2 of 0.05. It was reported that when the ground is fully
covered with vegetation, pre-processing of the point cloud might not be possible in the
case of LiDAR due to the possibility of not capturing enough ground point data [42].

Furthermore, to study the effect of nitrogen application in sugarcane growth, Jeremy
Sofonia et al. employed a hover map LiDAR utilising simultaneous localisation and map-
ping (SLAM). The results obtained from LiDAR and photogrammetry were also compared
to determine the effectiveness of these two systems [43]. A multispectral camera (for
photogrammetry) and LiDAR system mounted to a single unmanned aerial vehicle (UAV)
platform were used to obtain the data set regarding the height of sugarcane. The ground
returns were detected across the study area throughout all six surveys. The first survey
started 58 days after cropping. The interval between surveys was 42 days.

On the other hand, the number of ground returns decreased over each survey and was
absent from the third survey with photogrammetry. However, using a power regression,
the ratio of ground to non-ground returns obtained for LiDAR and photogrammetry had
a R2 of 0.971 and R2 of 0.993, respectively. Figure 5 shows that LiDAR was able to collect
more data from Survey6 than photogrammetry. The SLR’s coefficient of determination
between LiDAR measured maximum height and photogrammetry-measured maximum
height was an R2 of 0.885. The coefficient of determination between mean crop height
obtained from LiDAR and those obtained from photogrammetry was an R2 of 0.929. It was
also reported that though both LiDAR and photogrammetry could detect the difference
between zero nitrogen and applied nitrogen treatments in the second and third surveys, the
ability to detect sugarcane height difference decreased with increasing days after cropping.

3.5.3. Aboveground Fresh Weight Estimation

In addition to measuring sugarcane height, sugarcane aboveground fresh weight
(AFW) was also estimated from the correlation between height and weight by Jing-Xian
Xu et al. [44], where a LiDAR-based system was mounted on a UAV. In the study, AFW
was measured manually; sugarcane height was obtained manually and via LiDAR data.
After generating the DEM and DSM from the LiDAR data set, the height of sugarcane
was calculated by deducting DSM and DEM raster data. The value of the coefficient of
determination between sugarcane height and weight measured in the field on individual
plants was 0.51. The weight of sugarcane was positively correlated with its height. Multiple
linear regression (MLR), SMR, a generalised linear model (GLM), a generalised boosted
model (GBM), kernel-based regularised least squares (KRLS) and RFR algorithms were
used to develop the AWF models. A LiDAR data-based machine learning approach was
also applied. An evaluation index based on R2 and RMSE between fitted and observed data
was employed for model accuracy. In machine learning, KRLS, GBM, RFR and GLM were
used as predictive models. It was found that RMSE decreased gradually and R2 increased
gradually in the machine learning methods. The results show that the relationship between
observed AFW and fitted AFW via RFR was obtained with an R2 of 0.96 and an RMSE of
1.27 kg m−2, which was the highest value for R2 and the lowest value for RMSE among the
six models, as shown in Figure 6 [44]. Here, the black dotted line represents the 1:1 line and
the solid blue lines represent a linear fit. Table 5 compares various aspects of LiDAR data
in weed, crop and soil detection and crop growth estimation.
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Table 5. Comparison of LiDAR data in weed, crop and soil detection and crop growth estimation.

LiDAR Type Analytical Method Model Features Results

Terrestrial

SLR;
binary
logistic

regression;
CDA

Plant
height;

reflection
value

R2 between LiDAR measured height and actual plant
heights was 0.75. The predicted values from binary
logistic regression shows an accuracy of 95.3% for

vegetation and 82.2% for non-vegetation/soil, with an
overall accuracy of 92.7%.

Using canonical discriminant analysis (CDA), the overall
success to discriminate was 72.2%. The soil and dicots

were classified with 92.4% and
64.5% accuracy, respectively [40].

Terrestrial
CropPointNet;

PointNet;
DGCNN

Crop height

CropPointNet model had an overall accuracy of 81.5%.
PointNet and DGCNN had overall accuracies of 55%
and 66.5%, respectively. CropPointNet, DGCNN and

PointNet models discriminated cabbage with 91%, 82%
and 72% accuracy, respectively, eggplant with 88%, 83%
and 69% accuracy, respectively, and tomato crop with

65%, 61% and 60% accuracy, respectively [41].

Terrestrial SLR Canopy
height

R2 between LiDAR measured height and manual
measurement, between UAS measured height and

manual measurement and between
ultrasonic-sensor-measured height and manual

measurement were 0.97, 0.91 and 0.05, respectively [42].

Airborne
Power

regression;
SLR

DTM Sugarcane
height

The ratio of ground to non-ground returns with LiDAR
had R2 = 0.971.

The ratio of ground to non-ground returns with
photogrammetry had R2 = 0.993. R2 between maximum

crop height obtained from LiDAR and those obtained
from photogrammetry was 0.885.

R2 between the mean crop height obtained from LiDAR
and those obtained from photogrammetry was 0.929 [43].

Airborne

MLR;
SMR;
GLM;
GBM;
KRLS;
RFR

DEM;
DSM AFW R2 between observed AFW and fitted AFW via RFR was

0.96, the highest value for R2 among the six models [44].

3.6. Spray Drift Measurement

The use of a LiDAR system to characterise drift during pesticide application was also
reported in the literature.

3.6.1. Spray Deposition Prediction

Eduard Gregorio et al. demonstrated a LiDAR-based system where lasers of 1.5 µm
wavelength were used to design an eye-safe system to monitor pesticide clouds [45].
Parameters including wavelength, emission frequency, pulse energy and reception area
were calculated using signal-to-noise ratio simulations for pesticide spray drift measure-
ment. It was reported that the developed LiDAR system could measure mid-range spray
drift with distance 2.4 m and temporal (100 ms at maximum pulse repetition frequency)
resolution [45].

On the other hand, Emilio Gil et al. used a LiDAR measurement based model to
predict spray deposit [46]. The predicted spray deposit obtained from LiDAR data was
compared with the deposits measured over the ad hoc test bench [46]. A conventional mist
blower with conventional and air injection nozzles and a multi-row sprayer was employed
at two airflow rates. The results show that the largest drift fraction was detected within
the closest 5 m of the measurement zone for all cases, close to the spray pass and canopy.
However, after 5.0 m, a constant reduction in deposition was observed and the reduction
was more prominent in the LiDAR measurements. In their experiment, a spray drift cloud
exceeding the canopy was scanned using a LiDAR-based system. When the laser beam
intercepted the drifting cloud, the sensor detected the angular position and the radial
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distance of all impacts from the reflected signal. The results show that for a 34,959 m3.h−1

air flow rate with conventional and air injection nozzle types, the correlation coefficient
®between the number of LiDAR detected points and the deposition in the artificial collector
placed in the test bench ranged from 0.87 to 0.91 and 0.88 to 0.40, respectively, with a
number of repetitions. The correlation coefficient (r) ranged from 0.85 to 0.94 and 0.07
to 0.88 for 27,507 m3.h−1 air flow rate with conventional and air injection nozzle types,
respectively, after several repetitions. Furthermore, for a 6423 m3.h−1 air flow rate with
conventional nozzle types, the correlation coefficient (r) ranged from 0.93 to 0.98 with a
number of repetitions. In this study, it was reported that the droplet size could have an
influence on drift measurements using LiDAR.

3.6.2. Different Aerosol Detection

Moreover, Eduard Gregorio et al. used a polarisation LiDAR to detect different
agricultural aerosol emissions [47]. In their study, a 355 nm polarisation Lidar system
was used to determine the emissions generated during pesticide spraying activities. The
depolarisation ratios caused by road dust, field dust, diesel exhaust and pesticide spray
drift, were 0.385, 0.220–0.268, 0.099 and 0.028–0.043, respectively. Table 6 presents the
comparison of various aspects of LiDAR data in spray drift measurement.

Table 6. Comparison of various aspects of LiDAR data in spray drift measurement.

LiDAR Type Analytical Method Features Results

Terrestrial
Signal to noise

ratio
simulations

LiDAR signal
backscatters

signal to noise
ratio

LiDAR system measured mid-range spray drift with distance
2.4 m and temporal (100 ms at maximum pulse repetition

frequency) resolution [45].

Terrestrial Linear
function

Number of
drift drops

For 34,959 m3.h−1 air flow rate:
The correlation coefficient ranged from 0.87 to 0.91 with

conventional nozzle types.
The correlation coefficient ranged from 0.88 to 0.40 with air

injection nozzle types.
For 27,507 m3.h−1 air flow rate:

The correlation coefficient ranged from 0.85 to 0.94 with
conventional nozzle types.

The correlation coefficient ranged from 0.07 to 0.88 with air
injection nozzle types.

For 6423 m3.h−1 air flow rate:
The correlation coefficient ranged from 0.93 to 0.98 with

conventional nozzle types [46].

Terrestrial
(polarisation)

Polarisation
LiDAR

methodology

Volume
depolarisation

ratio;
particle

depolarisation
ratio

The results show that particle depolarisation ratios due to field
dust (0.220–0.268) and road dust (0.385) were higher than those
caused by pesticide spray drift (0.028–0.043) or diesel exhaust

(0.099) [47].

3.7. Soil Property Detection

A LiDAR system can also be used to predict soil properties such as moisture and
roughness, as reported in the literature.

3.7.1. Soil Moisture Prediction

The applications of LiDAR data to detect soil property were also reported. Florence
Margaret Southee et al. studied three LiDAR-derived terrain surfaces generated at different
spatial resolutions to determine the resolution that best characterises measured soil moisture
patterns [48]. In their study, topographic wetness index (TWI), per cent elevation index
(PEI) and canopy height model (CHM)) at spatial resolutions 2 m, 5 m, 10 m and 20 m
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were applied to determine the resolution that best characterised the soil moisture [48].
Depression removal algorithms were also used. The coefficients of determination between
soil moisture and TWI for 0–15 cm and 0- 40 cm depths were an R2 of 0.346 and an R2 of
0.292, respectively. The presented results suggest that high-spatial-resolution variables
(2 m and 5 m) might be more effective in modelling soil moisture trends at shallow depths
(0 to 15 cm). On the other hand, coarser resolutions (10 m, 20 m) might be more suitable at
greater depths (0 to 40 cm).

On the other hand, Julia Kemppinen et al. studied the significance of soil and land
surface properties in landscape-scale soil moisture variation using LiDAR data and field
investigations [49]. In their study, GLM, generalised additive models (GAM), boosted
regression trees (BRT) and RFR were applied to model soil moisture and its temporal
variation. Figure 7 presents a plot of the predictive performances of four soil moisture
modelling methods. The horizontal and vertical segments represent the ranges of each
modelling method. Results indicate that the average model fit had R2 = 0.60 and RMSE
8.04 VWC% and predictive performances were R2 = 0.47 and RMSE 9.34 VWC%. The
temporal variation models demonstrated a fit of R2 = 0.25 and RMSE 13.11 CV% and
predictive performances were R2 = 0.01 and RMSE 15.29 CV%. Thus, it was concluded that
in high-latitude landscapes, soil and land surface properties deserve importance.
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3.7.2. Soil Roughness Prediction

In addition to modelling soil moisture, soil surface roughness could also be determined
from LiDAR data. Russell Turner et al. used an airborne LiDAR [50] to determine the
surface roughness (SR) of agricultural soil and evaluate the LiDAR data’s accuracy. In
their study, surface heights, root mean square (RMS) and correlation length (CL) over soils
with variable tillage conditions were considered. The results demonstrate the correlation
between LiDAR-estimated and ground-measured RMS estimated with R2 > 0.68 and
up to 0.88. Table 7 presents the comparison of different aspects of LiDAR data in soil
property detection.



J. Imaging 2023, 9, 57 20 of 27

Table 7. Comparison of various aspects of LiDAR data in soil property detection.

LiDAR Type Analytical Method Model/
Algorithm Features Results

Airborne

Shapiro–Wilk
test;

Brown–
Forsythe test;

repeated
measures

analysis of
variance;

SLR

Depression
removal

algorithms;
DSM;
DEM;

impact
reduction
approach
algorithm

TWI;
PEI

CHM

R2 between soil moisture and
TWI for 0–15 cm depth was 0.346.

R2 between soil moisture and
TWI for 0–40 cm depth was 0.292.

High-spatial-resolution variables (2 m and 5 m)
might be more effective in modelling soil moisture

trends at shallow depths (0 to 15 cm).
Coarser resolutions (10 m and 20 m) might be

more suitable at greater depths (0 to 40 cm) [48].

Airborne SLR

Surface
heights;

root mean
square (RMS)

Correlation between LiDAR estimated and
ground-measured (RMS) estimated had R2 > 0.68,

up to 0.88 [50].

Airborne

GLM;
GAM;
BRT;
RFR

Soil
moisture
model;

temporal
variation

model;
DTM

TWI;
system for
automated

geoscientific
analyses;

soil wetness
index;

topographic
position index

The average model fit of the soil moisture model
had R2 = 0.60.

The temporal variation model had a fit of
R2 = 0.25 [49].

3.8. Yield Prediction

The application of LiDAR data for yield estimation was also reported. James P. Un-
derwood et al. used a mobile terrestrial LiDAR scanner (MTLS) for almond orchards [51].
Canopy volume was calculated from the 3D models and a classification procedure was used
to estimate flower and fruit density. These schemes were compared to each tree harvest
weight in estimating yield. LiDAR canopy volume had a relationship for 39 tree samples to
yield with R2 = 0.77. At the same time, hand-held photography and image analysis were
employed and fruit density presented an R2 of 0.71 [51].

On the other hand, a multi-beam LiDAR sensor with forced airflow with an air-assisted
sprayer was used to detect apple fruit and predict its yield by Jordi Gené-Mola et al. [52].
Reflectance thresholding (RT) and a support vector machine (SVM) were employed to
develop an algorithm to detect fruits in their study. The experiment was based on the
assumption that using a multi-view sensor and moving the tree foliage would increase fruit
detection and reduce fruit occlusions. Figure 8 presents the effect of the forced airflow in
fruit detection. The analysis between the number of apples detected with LiDAR with the
forced airflow system and the actual number of apples per tree had RMSEs of 19.0% and
12.4 % and R2 of 0.58 and 0.54 when scanning was performed from the east and west sides,
respectively. However, when both tree sides were considered, the obtained R2 was 0.87
with an RMSE of 5.7% [52]. Table 8 presents the comparison of various aspects of LiDAR
data in yield prediction.

3.9. Crop Damage Detection

It was also reported that LiDAR could be used to detect crop damage. Longfei Zhou
et al. used LiDAR data of lodged maize using an UAV to analyse the relationship of the
plant height and degrees of lodging [53]. The effect of different degrees of lodging on
maize plant ability to recover height was also presented in their study. The CHM, DEM
and DSM were used in the analysis. The maize plant height estimated using LiDAR and
the measured plant height obtained using a telescopic levelling ruler were used to verify
the plant height estimated using UAV-LiDAR. The inaccuracy of the obtained plant height
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from LiDAR data widened with increased actual plant height. The results had R2 of 0.964,
RMSE of 0.127 and a normalised root mean square error (nRMSE) of 7.449%. The study also
found that the plant height recovered to various degrees in all lodging areas. Table 9 below
presents the various LiDAR estimations regarding the canopy heights. It was reported
that the textures varied and the plant heights differed because of the inconsistent recovery
ability of each maize lodging type [53].
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Table 8. Comparison of various aspects of LiDAR data in yield prediction.

LiDAR Type Analytical Method Model/
Algorithm Features Results

Terrestrial SLR

3D point cloud
segmentation

and
voxelization

Canopy
volume;
flower

density;
fruit

density

LiDAR canopy volume had a relationship to yield with an
R2 of 0.77.

Hand-held photography and image processing to
measure fruit density presented an R2 of 0.71 [51].

Terrestrial SLR

SVM;
RF;

density-based
scan algorithm

Mean
canopy
height;
canopy
width;

contour
cross-section

area

LiDAR with forced airflow system and the actual number
of apples per tree had RMSEs of 19.0% and

12.4 % and R2 of 0.58 and 0.54 when scanning from east
and west sides, respectively.

LiDAR with forced airflow system and the actual number
of apples per tree presented R2 of 0.87 when using data

from both tree sides [52].
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Table 9. The range of canopy height estimated using LiDAR.

No Lodging With Lodging
Stem Tilt Stem Folding Root Lodging

2.01~2.28 m 1.21~1.47 m 0.06~0.17 m 0.08~0.18 m

4. Data Processing

No review of research papers on LiDAR would be complete without referring to
the pre-processing avenues of the substantially noisy LiDAR data, which are critical to
removing unwanted information and finding the recommended value of the data’s spatial
resolution (points/m2).

4.1. Pre-Processing of LiDAR Data

Qi et al. published [54] a pre-processing strategy on 3D LiDAR data based on outlier
removal through distance normalisation to offset the effect of spatial resolution changing
with distance and wake filtering. The point cloud was shrunk through vertical attributes
of wave wake and obstacle surface, and wake plane estimation and wake point removal
were completed via the random sample consensus (RANSAC) method [55]. It was demon-
strated through experimentation that their algorithm maintained the required values while
effectively removing non-obstacle points, although with an increased average time con-
sumption of 23.3 ms. Their recall rate was 95.4%, and the F1 score, which is the balance of
non-obstacle points filtering and obstacle points preservation, was 93.7%.

Sibel Canaz Sevgen employed pre-processing on LiDAR data to clean noise and
duplicate values before generating 12 features and a subsequent random forest (RF) clas-
sification [56]. Ground truth data were subsequently obtained from aerial photographs
of a complex urban area to classify buildings, trees, asphalt roads and the ground with
respective accuracies of 77.90%, 58.37%, 72.90% and 71.53%. A ground point extraction
automated algorithm based on the height difference of ground points and non-ground
points for each point on three LiDAR data sets was proposed and evaluated quantitatively
and qualitatively by Sevgen et al. [57]. The overall accuracies were calculated to be 95%,
97%, and 98% for the three LiDAR data sets. The datasets had different point densities, veg-
etation densities and building data values. Ozdemir et al. [58] utilised a data-preprocessing
technique to extract trees from the LiDAR point cloud including the density-based spa-
tial clustering of applications with noise (DBSCAN) algorithm [59] and cloth simulation
filtering (CSF) method [60] for clustering and filtering, respectively. DBSCAN was also
employed in [61] along with the mean shift algorithm for the automated detection of sin-
gle street trees, where the ground truth data were derived through field investigations.
They achieved high completeness and correctness values for two test areas and cluster-
ing methods. There are other data filtering methods available that are slope-based [62],
mathematical-morphology-based [63], surface-based [64], etc. The performances of widely
employed filtering algorithms were compared in [65–67].

4.2. Recommended Value of the Spatial Resolution (Points/m2)

Sanchez-Diaz et al. developed [68] a canopy height model for shade trees in cocoa
agrosystems from LiDAR data with a resolution of 0.47 points/m2 and measured values
in the field. It was validated using the coefficient of determination (R2), mean absolute
error (MAE) and root mean square error (RMSE). However, [68–70] recommend that a
LiDAR point cloud with a minimum spatial resolution of ≥0.50 points/m2 be utilised
to extract better information through analysis. Better results regarding other vegetation
attributes, e.g., canopy diameter and tree species identification in addition to canopy height,
could have been produced by [68] had they used LiDAR data with a spatial resolution of
≥0.50 points/m2.
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5. Future Research Directions

This review presents different applications of LiDAR data. From a study of the
literature, there is also room for much more research in this vast field of LiDAR. It is
important to develop a LiDAR-based system that can present information closest to the
actual values. There is also demand for developing software and models to analyse LiDAR
data accurately [11], efficiently and economically.

One of the crucial factors is the resolution of images obtained from LiDAR data [40].
The angular resolution, laser beam footprint and scanning window play an essential role
in resolving resolution. High denser points and smaller laser beam width acquire greater
angular resolution. Furthermore, if the laser beam footprint’s size is smaller, the resolution
of images will be higher. When the scan window increases, the beam width enlarges and the
point density decreases. This results in the actual angular resolution being lowered [31,71].
Therefore, research can determine the optimum angular resolution, laser beam footprint,
scan window and other methods to obtain images from LiDAR data with high resolution.
Thus, accurate and precise information regarding agricultural landscaping can be obtained
from high-resolution images.

It was reported that LiDAR point density affected vegetation biophysical parameter
estimation accuracy, which was not highly accurate [72]. Therefore, researchers could
also start addressing the optimum LiDAR point density to predict optimum estimation
results. It is also essential to increase the horizontal resolution of LiDAR scanning to avoid
overestimation, for example, in determining LAI [33].

It was also found that acquiring accurate topographic information was a challenging
task [28]. Furthermore, for high-vegetation sites, there is a possibility that LiDAR cannot
capture enough ground point data to calculate height, which is a feature to distinguish
between weeds and crops [42]. Therefore, there is also room for research to develop
methods where accurate information can be obtained in high-vegetation sites.

Plant geometry is also vital in obtaining plant phenotype and biomass informa-
tion [35,39] from LiDAR data. However, complex plant geometry can cause errors and
affect the accuracy of LiDAR-based systems. Therefore, research can be focused on de-
veloping methods where phenotype and biomass information of plants with complex
geometry can be acquired accurately. Moreover, the scan window is also a critical factor in
achieving accurate information, for example, regarding landscaping [10]. The LiDAR scan
window size would vary with plant geometry, spacing and the DSM’s resolution. Hence,
determining the optimum scan window to study plants and landscaping could lead to
another research topic.

Future research could also focus on developing a LiDAR-based system where the
system is less costly, data acquisition is less time-consuming, the data analysis method
provides accurate information and the overall system is user-friendly. SiLC is designing
chips with frequency-modulated continuous wave (FMCW) LiDAR capable of velocity
detection [73]. Sony is innovating a USD 120 single chip for LiDar that houses single-photon
avalanche diode (SPAD) depth sensors [74]. Stanford University is planning to build a
commercial LiDAR system based on the piezoelectric effect that can capture megapixel-
resolution 3D depth maps using standard digital cameras [75].

6. Conclusions

This manuscript extensively reviews a number of LiDAR-based techniques in agricul-
tural applications. High-quality research papers and articles published during the last one
and a half decades (i.e., from 2008 to 2022) from academia and industry were evaluated and
reported. Before starting the discussion about real-life implementations, an overview of
LiDAR technology was presented. A total of nine application areas and their sub-areas were
presented: landscape and topography; leaf area index and canopy volume; crop biomass
estimation; canopy phenological stages and phenotype characterisation; weed, crop and
soil detection and crop growth estimation; spray drift measurement; soil property detection;
yield prediction; and crop damage detection. Nine tables, one at the end of each section,
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captured the summaries of significant aspects of the papers. These tables presented the
key features of the papers, e.g., LiDAR type, algorithms, models, classification, analytical
methods, etc. Afterwards, data processing was discussed, as this is an essential aspect of
noisy and substantial-sized LiDAR data. Future research directions pertaining to LIDAR
data in the agricultural context were presented at the end.
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