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Abstract: LiDAR-based simultaneous localization and mapping (SLAM) and online localization
methods are widely used in autonomous driving, and are key parts of intelligent vehicles. However,
current SLAM algorithms have limitations in map drift and localization algorithms based on a single
sensor have poor adaptability to complex scenarios. A SLAM and online localization method based
on multi-sensor fusion is proposed and integrated into a general framework in this paper. In the
mapping process, constraints consisting of normal distributions transform (NDT) registration, loop
closure detection and real time kinematic (RTK) global navigation satellite system (GNSS) position
for the front-end and the pose graph optimization algorithm for the back-end, which are applied
to achieve an optimized map without drift. In the localization process, the error state Kalman filter
(ESKF) fuses LiDAR-based localization position and vehicle states to realize more robust and precise
localization. The open-source KITTI dataset and field tests are used to test the proposed method. The
method effectiveness shown in the test results achieves 5–10 cm mapping accuracy and 20–30 cm
localization accuracy, and it realizes online autonomous driving in complex scenarios.

Keywords: LiDAR SLAM; autonomous vehicle; localization; multi-sensor fusion

1. Introduction

With the development of intelligent and connected vehicle technology, the intelligent
transportation system with autonomous driving passenger cars, commercial vehicles and
taxis has undergone tremendous changes in the perception of the complex scenarios.
Vehicle localization is the key issue that should be solved in autonomous driving and how
to realize high-precise vehicle localization under the condition of unavailable satellites or
unstructured roads is one of the technical problems to be solved urgently. The localization
technique based on the vision [1] and satellites observations can achieve centimeter-level
localization but heavily rely on satellite signals, traffic signs, and initialization [2]. LiDAR-
based localization techniques are largely invariant to illumination and satellite signal
changes. Therefore, high precision maps with denser point clouds are required, and the
map-based multi-sensor fusion localization should be widely used to cover different driving
conditions [3].

LiDAR SLAM is widely used in the construction of 3D point cloud maps [4]. The
architecture of a simultaneous localization and mapping (SLAM) system consists of the
front-end and the back-end. The front-end seeks to interpret the sensor data to obtain
constraints as the basis for optimization approaches, such as point cloud registration,
loop closure detection, or Global Navigation Satellite System (GNSS) pose. The back-end
focuses on computing the best map result based on optimization techniques with the given
constraints [5]. Many registration methods have been proposed for the front-end, such
as the iterative closest point (ICP) [6], normal distribution transformation (NDT) [7], and
feature-based [8]. However, typical registration methods suffer from drift in large-scale
tests, due to the poor performance in the loop closure detection and the position correction
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with absolute measurements. The back-end optimization process can reduce the drift based
on the typical back-end algorithms, such as the early-used extended Kalman filter (EKF) [9]
or the current commonly pose graph optimization [10]. Besides the accuracy and efficiency
performance advantages, the back-end optimization process provides a framework that is
more amenable to analysis as well.

Multi-sensor fusion localization for autonomous vehicles is mainly based on the GNSS,
inertial measurement unit (IMU), camera, LiDAR, and vehicle states [11,12]. LiDAR-based
methods can provide precise localization under the condition of weak satellite signals [13].
However, global localization and environmental degradation are still important issues for
LiDAR-based methods. Complementary sensor fusion is an effective method to solve these
issues. LiDAR shows good performance in scenarios with full 3D or texture features, real
time kinematic (RTK) GNSS provides a precise absolute position, and IMU and vehicle
states provide the position and orientation of the vehicle getting rid of the external scenarios.

Taking the above-mentioned into consideration, LiDAR-based SLAM and localization
still have problems to be solved. A SLAM and localization method based on multi-sensor
fusion is proposed and integrated into a general framework in this paper, to solve the map
drift and localization failure and meet the demand of high-precision localization under
the condition of unavailable satellites, extreme climate, or road structure changes. A pose
graph considering the loop closure and RTK-GNSS position is used to optimize the map.
The LiDAR-based localization result and vehicle states are integrated into an error state
Kalman filter (ESKF) to obtain robust and precise localization.

Figure 1 is the framework of this article. In the process of offline mapping, a pose-
graph optimization LiDAR SLAM is proposed based on NDT registration, loop closure
detection and RTK-GNSS position constraints to generate an optimized 3D point cloud
map. In the online localization process, the inertial navigation system (INS) is used as a
prediction model in the Kalman filter propagation phase, LiDAR localization and vehicle
velocity are used by an error-state Kalman filter as the measurements.
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Figure 1. The framework that estimates the optimal position and attitude (PA) for the autonomous
vehicle by combining offline mapping and online localization. NDT: normal distributions transform,
RTK-GNSS: real time kinematic-global navigation satellite system, IMU: inertial measurement unit,
INS: inertial navigation system.

The main contributions of this paper are summarized as follows.

• The NDT registration, scan context-based loop closure detection and RTK-GNSS
are integrated into a LiDAR SLAM framework and innovative use of pose graph to
combine multiple methods to optimize position and reduce map drift.

• LiDAR matching localization position and vehicle states are fused by ESKF, which
takes full advantage of the vehicle velocity constraints of ground autonomous vehicles
to optimize localization results and provide robust and accurate localization results.
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• A general framework with mapping and localization is proposed, which is tested on
the KITTI dataset [14] and real scenarios. Results demonstrate the effectiveness of the
proposed framework.

The rest of the paper is structured as follows. The related work about mapping and
localization is presented in Section 2. The offline mapping process is introduced in Section 3
and the online localization method introduced in Section 4. The experiment evaluation is
given in Section 5. The discussion is given in Section 6. Finally, the conclusion and future
work are presented in Section 7.

2. Related Work

In this section, a brief overview of algorithms related to LiDAR SLAM and multi-
sensor fusion localization methods are introduced, including the point cloud registration
algorithms, loop closure detection algorithms, pose graph algorithms, filter-based sensor
fusion algorithms, and their interaction.

With the development of LiDAR SLAM, various registration algorithms have been
proposed. The ICP algorithm is widely used in the registration of point cloud. Due to the
improvement of computational efficiency and accuracy requirements, a variety of variant
ICP algorithms have been derived [15]. However, the ICP is very sensitive to the initial
guess. Different from the ICP, the NDT registration algorithm builds a statistical probability
model of the point cloud, which is more efficient and accurate. Study [16] proposed a
3D-NDT registration algorithm as the improvement of the 2D-NDT algorithm [17] and
compares qualitatively and quantitatively with the standard ICP algorithm. Results show
that the method is faster and more reliable. Study [7] proposed an NDT-based SLAM
method, which can achieve long-range high-precision map establishment and localization
in dynamic scenarios. Li et al. [18] improved the accuracy of stereo visual SLAM by
removing dynamic obstacles. Wen et al. [19] compared the performance of NDT-based
graph optimization SLAM under complex urban conditions; the results show that the
performance of the NDT SLAM algorithm is positively related to the traffic environment.

Loop closure is essential for correcting drift error and building a globally consistent
map [5]. Visual-based loop closure detection is often limited by illumination variance and
environment changes. The early LiDAR-based methods for place recognition focus on
descriptors from structural information [20]. However, the descriptor method is limited by
rotational invariance and poor point cloud resolution. Study [21] proposed a histogram
method to address these problems but still causes false recognition. To address the afore-
mentioned issues, studies [22,23] proposed the scan context method, which proposed a
more efficient bin encoding function for place recognition and is widely used in LiDAR
SLAM currently; in addition, the loop closure detection method based on deep learning
has also been gradually applied to SLAM [24].

Graph-based optimization [25], which optimizes the full trajectory and map of the
vehicle from the full set of measurements, has received attention in many studies in recent
years. Some general frameworks and open-source implementation of a pose-graph method
are proposed by [26,27]. Study [28] proposed a tutorial for the reader to implement graph-
based SLAM. To improve the robustness of pose-graph SLAM, study [29] proposed a
novel formulation that allows the back-end to change parts of the topological structure
of the graph during the optimization process and progress experiments by loop closure
constraints. To obtain accurate positions for mapping in large-scale environment, study [30]
proposed global positioning system (GPS) and LiDAR odometry (GLO)-SLAM, which uses
LiDAR to verify the reliability of GNSS, and the LiDAR odometry also will be optimized by
means of reliable GPS data. In addition, study [31] added IMU/odometry pre-integration
results under the framework of graph optimization, which effectively reduced navigation
drift. With the development of deep learning, related technologies have also been applied
to the field of SLAM [32,33].

The multi-sensor fusion method is usually used in SLAM and localization areas.
Fusing multiple sensors and making the whole system accurate, robust, and applicable
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for various scenes is a challenging task. Study [34] integrated 2D LiDAR/IMU/GPS into
a localization system for urban and indoor scenarios, IMU and RTK-GNSS for full scene
localization, and vehicle velocity is good complementary information for localization,
especially in satellites denied and environmental degradation conditions.

3. The Offline Mapping

The online LiDAR localization module relies on a pre-build map. The offline mapping
aims to obtain a 3D point cloud map representation of the scenario. The NDT-based point
cloud registration and scan context-based loop closure detection are innovatively combined
into the front-end and the pose-graph is used in the back-end to optimize the map.

3.1. LiDAR SLAM Front-End
3.1.1. NDT Based Registration

Comparing with the ICP algorithm, the NDT divides the point cloud space into
cells and each cell is continuously modeled as a Gaussian distribution. Taking the better
calculation efficiency and registration accuracy of NDT into account, the NDT is chosen as
the point cloud registration method. The process of NDT can be expressed as follows.

In the point cloud, point sets X and Y are the consecutive frames, X is the frame at the
previous moment, Y is the frame at the next moment:

X = {x1, x2, . . . , xn} (1)

Y = {y1, y2, . . . , yn} (2)

Assuming that the transformation between X, Y can be expressed as follow:

p = [Tx Ty Tz Rx Ry Rz]
T (3)

where T is the translation vector, R is the rotation vector.
The mean of all points in X can be expressed as:

µ =
1

Nx

Nx

∑
i=1

xi (4)

where Nx is the number of points in the X. The covariance of X can be expressed as follow:

∑ =
1

Nx − 1

Nx

∑
i=1

(xi − µ)(xi − µ)T (5)

Assuming that the transformation p makes point yi transform to yi
′, the transformation

process can be expressed as the followed:

yi
′ = T(p, yi) = Ryi + T (6)

After transformation, the point yi
′ is in the same coordinate system as the target point

set X, and its coincidence degree can be expressed as a Gaussian distribution:

f (X, yi
′ ) = f (X, T(p , yi)) =

1√
2π
√
|∑|

exp
(
− (yi

′−µ)T ∑−1(yi
′−µ)

2

)
(7)

The joint probability distribution of Y and X can be expressed as follows:

ψ =
Ny

∏
i=1

f (X, T(p , yi)) (8)
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where Ny is the number of points in the Y.
The objective function can be expressed as follow:

maxψ = max
Ny

∏
i=1

f (X, T(p , yi)) (9)

Therefore, the maximize of the joint probability ψ means that the transformation has
the highest degree of coincidence and the optimization variables T and R represent the
translation and rotation between two consecutive frames, respectively.

3.1.2. Scan Context Based Loop Closure Detection

Comparing with the feature descriptors of the environment, few studies focus on the
structural information to describe scenes. Scan context proposes a non-histogram method
of global descriptors, which directly records the 3D structure of the visible space and can
be deployed in LiDAR-based place recognition effectively. The lightweight and efficient
encoding method, which can improve the accuracy of loop closure detection, is conducive
to storing point cloud information. The scan context method is applied for the offline
mapping process. Firstly, scan context is used to detect the loop closure frame. After
detecting the candidate frame in the historical frame, NDT is used to register the loop
closure frame with the current point cloud frame to obtain the precise loop pose.

Figure 2 shows the flow chart of scan context and loop closure detection. In the point
cloud segmentation process, the point cloud space is cut into Nr rings along the increasing
radius and the rings are cut into Ns sectors:

dr =
Lmax

Nr
(10)

where dr represents the width of the ring, Lmax represents the maximum measurement
distance of LiDAR, Nr is numbers of rings.
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Figure 2. Scan context-based loop closure detection, current 3D point cloud scan is the start of this
process. Which can provide loop closure detection position for offline mapping position optimization.

After segmentation, the segmented bin cells can be represented as a set P:

P = ∪
i∈[Nr ],j∈[Ns ]

pij (11)

where pij represents the set of midpoints of the ith circle segmentation unit of the jth sector.
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In the generation of scan context process, the scan context I is represented as a Nr ×
Ns matrix, each element in the matrix represents the maximum value of all 3D points in the
z-direction.

The distance function between two frames of point cloud scan context is defined as:

d(Iq, Ic) =
1

Ns

Ns

∑
j=1

1−
cq

j · c
c
j∥∥∥cq

j

∥∥∥∥∥∥cc
j

∥∥∥
 (12)

which can be used for similarity score, where Iq is the current frame scan context, cq
j is the

jth of Iq, Ic is the historical frame scan context, and cc
j is the jth of Ic.

To solve the problem that the current frame is rotated relative to the historical frame,
the order of the column vectors in the scan context obtained at the current time is changed
and causes a large-distance function between the two frames, the historical frame Ic is
translated by column, which will obtain Ns scan contexts, calculate the distance from the
scan context of the current frame in turn, and select the one with the smallest distance,
which can be expressed as follows:

D(Iq, Ic) = minn∈[Ns ]d(Iq, Ic
n) (13)

The loop frame can be found by comparing the similarity of scan contexts between the
current frame and the historical frame point cloud; when the distance function is less than
a certain threshold, the historical frame is considered to be a loop frame.

In the precise position calculation process, scan context is used to calculate the ro-
tation angle ϕ between the current frame and the loop frame to improve the calculation
efficiency and accuracy of the NDT, and ϕ is used as the initial position for the NDT
registration process:

n∗ = argmind(Iq, Ic
n)

n∈[Ns ]

(14)

ϕ =
2π

Ns
· n∗ (15)

3.1.3. RTK-GNSS Based Localization

Real time kinematic localization is a satellite navigation technique used to enhance
the precision of localization data derived from satellite-based navigation systems. RTK
relies on a single reference station to provide real-time corrections for the rover providing
up to centimeter-level accuracy. There are indeed many situations with severe multipath
and signal blockage under urban buildings or in forests. A stable and precise position and
attitude can be provided for autonomous vehicles by combining RTK-GNSS and IMU.

3.2. Back-End Optimization

After interframe association and submap matching, there are inevitable cumulative
errors in the point cloud map. The method of pose-graph optimization is used to further
eliminate the cumulative errors, and the loop closure position and RTK-GNSS position will
be used as constraints, the back-end optimization step is summarized in Algorithm 1.
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Algorithm 1. The process of back-end optimization

Input:
LiDAR odometry position xi, xj
RTK-GNSS position zi
Loop closure position zi,j

′

Output:
Optimized vehicle position xopt
1: Trajectory alignment for xi, zi and zi,j

′

2: for each position xi do
3: if meet optimization cycle times h then
4: execute optimization process:
5: xopt = arg min F(xi, xj, zi, zi,j

′)
6: else
7: add RTK-GNSS position zi constraint
8: if loop closure position detected then
9: add loop closure position zi,j

′ constraint
10: end if
11: end if
12: end for
13: return optimized vehicle position xopt

3.2.1. Graph Generation

The graph consists of edges and nodes, as shown in Figure 3; xi represents nodes
from LiDAR odometry, zi represents prior position from RTK-GNSS, ei represents the edge
between xi and zi. zij represents the transformation of xj and xi, zij

′ represents expected
observation from loop closure, and eij represents the edge between zij and zij

′.
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3.2.2. Graph Optimization

Graph optimization takes all the constraints into a non-linear optimization problem,
which will consider all the observation measurements:

F(x) = ∑
i,j

e(xi, xj,
∧
zij)

T
Ωije(xi, xj,

∧
zij) (16)

where F(x) represents errors between all edges. Ωij is the matrix indicating the importance
of each constraint in the global graph optimization. To adjust the state quantity x to
minimize the value of the residual, it is necessary to obtain the Jacobian of the residual
relative to state quantity, and then use the gradient descent method to optimize. The
solution of this optimization is the xopt which satisfying the following function:

xopt = argminF(x) (17)

To integrate the RTK-GNSS into the graph optimization, the error between LiDAR
odometry xi and RTK-GNSS position zi can be represented as follows:

ei = ln (zi
−1xi)

∨
(18)
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The residual ei after adding disturbance term to the xi can be expressed as follows:

∧
ei = ln (zi

−1 exp(δξi
∧)xi)

∨
(19)

The error between zij and zij
′ can be represented as follows:

eij = ln (zij
−1xi

−1xj)
∨

(20)

The residual eij after adding disturbance to the xi and xj can be expressed as follows:

∧
eij = ln (zij

−1xi
−1 exp((−δξi)

∧) exp(δξ j
∧)xj)

∨
(21)

The residual is expanded after adding disturbance term, and the Jacobian matrix J of
the residual with respect to the state quantity can be obtained.

A first-order taylor expansion on the residuals can be expressed as follows:

e(x + ∆x) ≈ e + J∆x (22)

F(x + ∆x) ≈ (e + J∆x)TΩij(e + J∆x) (23)

The state quantity xopt after correction can be expressed as follows:

xopt = x + ∆x (24)

4. The Online Localization

A multi-sensor fusion localization method based on the ESKF is proposed, which will
estimate the vehicle position and attitude (PA) jointly by fusing vehicle states and LiDAR
localization pose.

4.1. LiDAR Localization Based on 3D Point Cloud Map

The LiDAR localization based on a 3D point cloud map estimates the position of the
vehicle in real-time, and the position can be used for the Kalman filter observation update.
In this process, the RTK-GNSS position is used as the initial position for LiDAR localization
to improve matching accuracy and efficiency. The NDT algorithm is used as registration
method to match the real-time point cloud with the local map, the LiDAR localization step
is summarized in Algorithm 2.

Algorithm 2. LiDAR localization in prior 3D point cloud map

Input:
RTK-GNSS position zi
Point cloud pi
Prior 3D point cloud global map M
Output:
LiDAR localization position xlidar
1: Load 3D point cloud map M
2: if get the initial position zi then
3: load local submap Msub from global map M
4: if need update submap Msub then
5: update submap Msub
6: else
7: calculate position between pi and Msub:
8: NDT registration xlidar = pi ∝ Msub
9: end if
10: else
11: wait for initial position zi
12: end if
13: return LiDAR localization position xlidar
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4.2. Filter State Equation

In the filter, the state variables error is expressed as follows:

X = [δPT, δVT, ϕT, εT,∇T]
T

(25)

where δP is the position error, δV is the velocity error, φ is the attitude error, ε is the
gyroscope bias error, and ∇ is the accelerometer bias error. The state transition equation in
continuous time can be expressed as follows:

X = FtX + BtW (26)

According to the derivation of the IMU kinematics model, where

Ft =


03X3 I3X3 03X3 03X3 03X3
03X3 03X3 F23 03X3 Cn

b
03X3 03X3 F33 Cn

b 03X3
03X15
03X15

 (27)

F23 =

 0 − fU − fN
fU 0 − fE
− fN fE 0

 (28)

The east-north-up (ENU) and right-forward-up (RFU) are chosen as the navigation
reference frame n, and the body frame b, respectively, where fE is the acceleration in the
east direction, fN is the acceleration in the north direction, fU is the acceleration in the up
direction, and Cn

b is the direction cosine matrix from b frame to n frame:

F33 =

 0 w sin L −w cos L
−w sin L 0 0
w cos L 0 0

 (29)

where ω is the angular velocity of the earth’s rotation, L is the latitude, W includes the
gyroscope noise ωg and accelerometer noise ωa:

W = [wgx wgy wgz wax way waz]
T (30)

Bt =


03X3 03X3
03X3 Cn

b
−Cn

b 03X3
06X3 06X3

 (31)

4.3. Filter Measurement Update Equation

To compensate the loss of localization signal under complex driving scenarios and
enhance the robustness of the localization system, LiDAR localization position and vehicle
velocity are used as observation inputs:

Y =
[
δPT

L ϕT
L δVT

v

]
(32)

where δPL is the LiDAR localization position error, ϕL is the attitude error, and δVv is the
vehicle velocity error.

The observation equation is as follows:

Y = GtX + CtN (33)
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where

Gt =

 I3X3 03X3 03X3 03X6
03X3 03X3 I3X3 03X6
03X3 I3X3 03X3 03X6

 (34)

N is the observation noise and can be expressed as follows:

N =
[
nPE

L
nPN

L
nPU

L
nϕE

L
nϕN

L
nϕU

L
nVE

v
nVN

v
nVU

v

]T
(35)

Ct =

 I3X3 03X3 03X3
03X3 I3X3 03X3
03X3 03X3 I3X3

 (36)

5. Experimental Verification and Performance Analysis

This section introduces experiments with the KITTI dataset and field tests based on
the proposed method.

5.1. The Experiment Based on KITTI Dataset

The KITTI dataset was jointly founded by the Karlsruhe Institute of Technology in
Germany and the Toyota American Institute of Technology. It is currently the world’s
largest autonomous driving localization and computer vision algorithm evaluation dataset.
It contains LiDAR data, IMU data, RTK-GNSS data, velocity data, and the localization
groundtruth, which is used to evaluate the mapping and localization accuracy. KITTI has
multiple sequence datasets for various scenarios; sequence 00 was used in this study. The
mapping and localization result is shown in Figure 4.
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Figure 4. Optimized map and LiDAR localization result based on KITTI dataset.

5.1.1. Mapping Performance Analysis Based on KITTI Dataset

Back-end optimization plays an important role in the process of mapping; Figures 5 and 6
show the results of optimization performance, the abscissa in the figure represents the index
of the data frame where the position is saved; in the following, the abscissa is represented by
Index, which has the same meaning. In Figure 6, it can be seen that the optimized longitudinal,
lateral and altitude error are reduced to centimeter-level, which effectively eliminates the
cumulative error of the front-end odometry and improves the mapping accuracy.
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localization performance test is conducted based on the prior KITTI point cloud map. 

 

Figure 6. The optimized position error in longitudinal, lateral, and altitude directions of KITTI
dataset, respectively; the error is significantly reduced after optimization.

Figure 7 shows the coincidence degree between the groundtruth estimated trajectory.
It can be seen that there is a large deviation between the unoptimized trajectory and the
groundtruth, the optimized trajectory error is significantly reduced. Table 1 shows the
trajectory accuracy after optimization is significantly improved and basically coincides
with the groundtruth, and the average error is about 10 cm.
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Table 1. Mapping performance comparison before and after optimization [35] (units: meter).

Max Min Mean RMSE STD

Before optimization 34.31 0.02 13.61 16.61 9.53
After optimization 0.23 0.01 0.11 0.13 0.09

5.1.2. Localization Performance Analysis Based on KITTI Dataset

The LiDAR localization result is fused with IMU and vehicle velocity to improve the
localization accuracy in the case of scenario degradation. As shown in Figures 8 and 9, a
localization performance test is conducted based on the prior KITTI point cloud map.
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the groundtruth is provided by RTK-GNSS system. 

Figure 9. The comparison of fused trajectory and groundtruth. The fused localization data basically
coincides with the groundtruth, indicating that the online localization results meet expectations.

As shown in Figure 10 and Table 2, the maximum position error on the KITTI dataset
is within 35 cm, the average position error is within 20 cm, and a stable localization result
is maintained.
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Figure 10. The position error of localization result in longitudinal, lateral, and altitude directions,
respectively.

Table 2. Localization error compared with groundtruth (units: meter).

Max Min Mean RMSE STD

0.35 0.08 0.18 0.16 0.07

5.2. The Field Test Vehicle and Test Results

To further verify the effectiveness of the proposed method, a four-wheel steering and
four-wheel hub motor drive vehicle is developed by our team. It is equipped with sensors
for data collection and can feedback vehicle states information through the controller area
network (CAN) bus.

5.2.1. Test Vehicle and Sensor Configuration

A 32 beams LiDAR, an RTK-GNSS system and an IMU are equipped on the testing
intelligent electric vehicle. Sensor specifications of the test vehicle are shown in Figure 11
and Table 3. Gyro and accelerometer bias stability of IMU are 5 deg/h and 0.5 mg, respec-
tively. In addition, the vehicle velocity can be obtained from the on-board CAN bus, and
the groundtruth is provided by RTK-GNSS system.



J. Imaging 2023, 9, 52 13 of 23J. Imaging 2023, 9, x FOR PEER REVIEW 14 of 24 
 

 

 

Figure 11. Test vehicle and sensors configuration. 

Table 3. Sensor specifications of test vehicle (Velodyne HDL-32E from Velodyne, San Jose, CA, 

USA. StarNeto, Newton-M2 from StarNeto Technology, Beijing, China). 

Sensors Specifications No. Frequency/Hz Accuracy 

3D LiDAR 
Velodyne, HDL-32E, 

32 beams 
1 10 

2 cm, 

0.09 deg 

RTK-GNSS system 
StarNeto, Newton-M2, 

L1/L2 RTK 
1 50 

2 cm, 

0.1 deg 

IMU Newton-M2 1 100 
5 deg/h, 

0.5 mg 

Vehicle velocity On-board CAN bus 1 100 0.1 m/s 

5.2.2. Field Test Mapping Performance Analysis 
The proposed mapping method was tested in a real scenario to verify its perfor-

mance. In the field test, the dataset was collected in the industrial park with scenario 

change.  

As shown in Figures 12 and 13, two point cloud maps were constructed by offline 

mapping process, and the map drift was effectively eliminated after optimization. As 

shown in Figures 14 and 15, due to the use of graph optimization algorithm, the optimized 

trajectory basically coincides with the groundtruth. It can be seen from Figures 16 and 17 

that the position error of the three axes before optimization gradually increases over 1 m, 

and the average error before the optimization is 1.6 m. As shown in Figures 18 and 19, the 

error of the three axes is reduced to centimeter-level after optimization, and the average 

error is 8 cm. It can be seen from the above analysis that the proposed mapping method 

can reduce the position error significantly and construct a globally consistent map. 

 

Figure 12. The map drift in small scale scenario is eliminated by back-end optimization. The figure 

on the left is unoptimized, and the right one is optimized. It can be seen that the map drift of the 

optimized map is significantly reduced. 

Figure 11. Test vehicle and sensors configuration.

Table 3. Sensor specifications of test vehicle (Velodyne HDL-32E from Velodyne, San Jose, CA, USA.
StarNeto, Newton-M2 from StarNeto Technology, Beijing, China).

Sensors Specifications No. Frequency/Hz Accuracy

3D LiDAR Velodyne, HDL-32E,
32 beams 1 10 2 cm,

0.09 deg

RTK-GNSS system StarNeto, Newton-M2,
L1/L2 RTK 1 50 2 cm,

0.1 deg

IMU Newton-M2 1 100 5 deg/h,
0.5 mg

Vehicle velocity On-board CAN bus 1 100 0.1 m/s

5.2.2. Field Test Mapping Performance Analysis

The proposed mapping method was tested in a real scenario to verify its performance.
In the field test, the dataset was collected in the industrial park with scenario change.

As shown in Figures 12 and 13, two point cloud maps were constructed by offline
mapping process, and the map drift was effectively eliminated after optimization. As
shown in Figures 14 and 15, due to the use of graph optimization algorithm, the optimized
trajectory basically coincides with the groundtruth. It can be seen from Figures 16 and 17
that the position error of the three axes before optimization gradually increases over 1 m,
and the average error before the optimization is 1.6 m. As shown in Figures 18 and 19, the
error of the three axes is reduced to centimeter-level after optimization, and the average
error is 8 cm. It can be seen from the above analysis that the proposed mapping method
can reduce the position error significantly and construct a globally consistent map.
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Figure 12. The map drift in small scale scenario is eliminated by back-end optimization. The figure
on the left is unoptimized, and the right one is optimized. It can be seen that the map drift of the
optimized map is significantly reduced.
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Figure 13. The map drift in large scale scenario is eliminated by back-end optimization. The figure
on the upper left is unoptimized, and the upper right one is optimized. It can be seen that the map
drift of the optimized map is significantly reduced. The bottom figure is the complete large-scale map
after optimization.
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scale scenario.
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Figure 16. Small scale scenario unoptimized mapping trajectory position error in longitudinal, lateral,
and altitude directions. Before optimization, the error is at the meter level.
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Figure 18. Small scale scenario optimized mapping trajectory position error in longitudinal, lateral,
and altitude directions. After optimization, the error is at the centimeter level.
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5.2.3. Field Test Localization Performance Analysis 

Based on the prior point cloud map, five different field tests were implemented to 

verify the localization performance. The field tests included different driving conditions 

and scenarios. 
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Table 4. Average errors from 5 field test scenarios. 

Field Test Sequence Test Scenario Average Error RMSE 

01 Normal driving, 1 lap 21.6 cm 23.2 cm 

02 Curve driving, 1 lap 22.5 cm, 24.3 cm 

03 Normal driving, 2 laps 28.3 cm 29.2 cm 

04 Curve driving, 2 laps 25.5 cm 27.1 cm 

05 Large scale, 1 laps 29.2 cm 29.6 cm 

Figure 19. Large scale scenario optimized mapping trajectory position error in longitudinal, lateral,
and altitude directions. After optimization, the error is at the centimeter level.

5.2.3. Field Test Localization Performance Analysis

Based on the prior point cloud map, five different field tests were implemented to
verify the localization performance. The field tests included different driving conditions
and scenarios.

Five sets of field tests represent different driving conditions and travel distances.
As shown in Figures 20–25, due to the small changes in the scenario, the fused trajec-
tory basically coincides with the groundtruth under the normal driving scenario and the
curve driving scenario of one lap, and the maximum error does not exceed 45 cm. From
Figures 26–31, we conducted another two sets of experiments under different scenarios,
due to changes in the environment, the LiDAR localization position has drifted, but the
maximum positioning error after fusing the IMU and the vehicle velocity can still be
controlled within 55 cm. From Figures 32–34, in the large-scale scenario, the localization
performance is still robust. It can be seen from Table 4 that the average position error is
within 30 cm, which meets the autonomous driving lane-level localization requirements.
Field tests scenarios results show that the localization algorithm based on the prior point
cloud map can achieve good performance.
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Figure 20. Field test NO.1. One lap under normal driving scenario localization test in prior point
cloud map. The white points in the figure are the point cloud map built by the offline mapping
process, the red line is the trajectory of LiDAR matching results, the orange line is groundtruth, and
the blue line is the fused trajectory.
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comparison. The comparison of fused trajectory with groundtruth.
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lateral, and altitude directions, respectively; the localization error is at the centimeter level.
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Figure 23. Field test NO.2. One lap under curve driving scenario localization test in prior point cloud
map. The white points in the figure are the point cloud map built by the offline mapping process, the
red line is the trajectory of LiDAR matching results, the orange line is groundtruth, and the blue line
is the fused trajectory.
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Figure 26. Field test NO.3. Two laps under normal driving scenario localization test in prior point
cloud map. The white points in the figure are the point cloud map built by the offline mapping
process, the red line is the trajectory of LiDAR matching results, the orange line is groundtruth, and
the blue line is the fused trajectory.



J. Imaging 2023, 9, 52 19 of 23

J. Imaging 2023, 9, x FOR PEER REVIEW 20 of 24 
 

 

 

Figure 26. Field test NO.3. Two laps under normal driving scenario localization test in prior point 

cloud map. The white points in the figure are the point cloud map built by the offline mapping 

process, the red line is the trajectory of LiDAR matching results, the orange line is groundtruth, and 

the blue line is the fused trajectory. 

 

Figure 27. Field test NO.3. Two laps under normal driving scenario localization test trajectory com-

parison. The comparison of fused trajectory with groundtruth. 

 

Figure 28. Field test NO.3. Two laps under normal driving scenario localization error in longitudi-

nal, lateral, and altitude directions, respectively; the localization error is at the centimeter level. 
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comparison. The comparison of fused trajectory with groundtruth.

J. Imaging 2023, 9, x FOR PEER REVIEW 20 of 24 
 

 

 

Figure 26. Field test NO.3. Two laps under normal driving scenario localization test in prior point 

cloud map. The white points in the figure are the point cloud map built by the offline mapping 

process, the red line is the trajectory of LiDAR matching results, the orange line is groundtruth, and 

the blue line is the fused trajectory. 

 

Figure 27. Field test NO.3. Two laps under normal driving scenario localization test trajectory com-

parison. The comparison of fused trajectory with groundtruth. 

 

Figure 28. Field test NO.3. Two laps under normal driving scenario localization error in longitudi-

nal, lateral, and altitude directions, respectively; the localization error is at the centimeter level. 
Figure 28. Field test NO.3. Two laps under normal driving scenario localization error in longitudinal,
lateral, and altitude directions, respectively; the localization error is at the centimeter level.
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Figure 29. Field test NO.4. Two laps under curve driving scenario localization test in prior point
cloud map. The white points in the figure are the point cloud map built by the offline mapping
process, the red line is the trajectory of LiDAR matching results, the orange line is groundtruth, and
the blue line is the fused trajectory.



J. Imaging 2023, 9, 52 20 of 23

J. Imaging 2023, 9, x FOR PEER REVIEW 21 of 24 
 

 

 

Figure 29. Field test NO.4. Two laps under curve driving scenario localization test in prior point 

cloud map. The white points in the figure are the point cloud map built by the offline mapping 

process, the red line is the trajectory of LiDAR matching results, the orange line is groundtruth, and 

the blue line is the fused trajectory. 

 

Figure 30. Field test NO.4. Two laps under curve driving scenario localization test trajectory com-

parison. The comparison of fused trajectory with groundtruth. 

 

Figure 31. Field test NO.4. Two laps under curve driving scenario localization error in longitudinal, 

lateral, and altitude directions, respectively; the localization error is at the centimeter level. 
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comparison. The comparison of fused trajectory with groundtruth.
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lateral, and altitude directions, respectively; the localization error is at the centimeter level.
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6. Discussion 

From the experimental results, this can all be summarized as the following: 

Figure 32. Field test NO.5. Large-scale scenario localization test in prior point cloud map. The white
points in the figure are the point cloud map built by the offline mapping process, the red line is
the trajectory of LiDAR matching results, the orange line is groundtruth, and the blue line is the
fused trajectory.
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Table 4. Average errors from 5 field test scenarios.

Field Test Sequence Test Scenario Average Error RMSE

01 Normal driving, 1 lap 21.6 cm 23.2 cm
02 Curve driving, 1 lap 22.5 cm 24.3 cm
03 Normal driving, 2 laps 28.3 cm 29.2 cm
04 Curve driving, 2 laps 25.5 cm 27.1 cm
05 Large scale, 1 laps 29.2 cm 29.6 cm

6. Discussion

From the experimental results, this can all be summarized as the following:
The offline mapping method proposed in this paper can effectively eliminate map

drift, provide a mapping accuracy of 5–10 cm, and can be used in localization work to
provide a stable and reliable map data source.

In the online localization process, we use the multi-sensor fusion method to achieve a
positioning accuracy of 20–30 cm, which benefits from the good mapping accuracy and the
design of the multi-sensor fusion model.

7. Conclusions and Future Work

This paper presented a LiDAR-based sensor fusion SLAM and localization method for
autonomous vehicle offline mapping and online localization. In the mapping process, NDT
registration, scan context loop closure detection and RTK-GNSS position are considered in
front-end and back-end, innovative use of the pose graph to combine multiple methods
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to optimize position and reduce map drift, which realizes 5–10 cm mapping accuracy,
and the map drift is eliminated effectively. In the online localization process, the ESKF is
used to fuse complementary sensor information, such as LiDAR, IMU and vehicle velocity
to achieve good localization accuracy in various challenging scenarios, which takes full
advantage of the vehicle velocity constraints of ground autonomous vehicles to optimize
localization results, and reaches 20–30 cm localization accuracy and shows environmental
robustness. Such good and stable mapping and localization results can assist autonomous
vehicles to safely complete navigation tasks in the lane. Furthermore, the proposed method
can be used to fuse more sensors for offline mapping and online localization, respectively,
facing different applications. In the future work, we will try to tightly couple the IMU and
LiDAR to the mapping system, which can reduce the drift of the front-end, and improve
the quality of the mapping.
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