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Abstract: A novel method is proposed to estimate surface-spectral reflectance from camera responses
using a local optimal reflectance dataset. We adopt a multispectral imaging system that involves
an RGB camera capturing multiple images under multiple light sources. A spectral reflectance
database is utilized to locally determine the candidates to optimally estimate the spectral reflectance.
The proposed estimation method comprises two stages: (1) selecting the local optimal reflectance
dataset and (2) determining the best estimate using only the local optimal dataset. In (1), the camera
responses are predicted for the respective reflectances in the database, and then the prediction errors
are calculated to select the local optimal dataset. In (2), multiple methods are used; in particular,
the Wiener and linear minimum mean square error estimators are used to calculate all statistics,
based only on the local optimal dataset, and linear and quadratic programming methods are used to
solve optimization problems with constraints. Experimental results using different mobile phone
cameras show that the estimation accuracy has improved drastically. A much smaller local optimal
dataset among spectral reflectance databases is enough to obtain the optimal estimates. The method
has potential applications including fields of color science, image science and technology, computer
vision, and graphics.

Keywords: surface-spectral reflectance; reflectance estimation; multispectral imaging; local optimal
dataset; statistical estimation method; mathematical programming method

1. Introduction

Surface-spectral reflectance is typically defined as the ratio of light reflected from
an object’s surface to the incident light as a function of wavelength. It provides physical
features that are inherent and discriminative to the surfaces of objects composed of differ-
ent materials, such as natural and man-made objects. Hence, knowledge regarding the
spectral reflectance of objects can be applied extensively to color science, image science
and technology, computer vision, and computer graphics. Problems in estimating the
surface-spectral reflectance from camera responses have been investigated concurrently
with the development of cameras and imaging systems; consequently, many methods have
been proposed.

Spectral reflectance estimation methods based on camera responses can be classified
into two primary approaches: model-based approach [1–13] and training (or learning)-
based approach [14–26].

In the model-based approach, camera responses are described using camera spectral
sensitivities, surface-spectral reflectance, and illuminant spectral power distributions. This
approach is the more typically used approach and includes finite-dimensional modeling
methods [1,3] and Wiener estimation methods [4–12]. The Wiener estimation methods
are based on a statistical approach, in which noise in the imaging system and a certain
statistic of the spectral reflectance are considered. The Wiener estimation methods are one
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of the most typically used and reliable methods when the spectral sensitivity functions of
the imaging system are known. Recently, an improved estimation method, known as the
“linear minimum mean square error (LMMSE)” method [13] was proposed to minimize the
estimation error of spectral reflectance. Its estimation accuracy was theoretically verified to
be better than that of the conventional Wiener method.

The training-based approach is typically constructed without knowledge regarding
the camera spectral sensitivities and illuminant spectral distributions; instead, a large
training dataset, which is a large table comprising a pair of camera responses and the
corresponding spectral reflectances, is used. Regression methods directly establish the
relationship between RGB responses and spectral reflectances and include support vec-
tor regression [17,18], kernel regression [19,20], linear regression [21,22], and neural net-
works [26]. This method does not necessitate the assumption of a linear relationship
between RGB values and the spectral sensitivity function and allows the camera response
to be mapped nonlinearly to the spectral sensitivity function. Therefore, raw camera data
are not required. However, this approach requires a significant amount of training data to
establish reliable mapping and can be utilized solely for a specific imaging system. The
camera responses are acquired under specific conditions of the illumination environment
and imaging geometries, and the corresponding spectral reflectances are measured using a
spectrometer or obtained using a spectral imaging device. Thus, the training data depend
on the illumination environment, unless an additional operation such as white balance is
implemented [24,25].

Recently, software that can store images captured as raw data has become publicly
available when using digital single-lens reflex (DSLR) cameras and mobile phone cameras.
The spectral sensitivity function represents the image sensor output per unit of incident
light energy at each wavelength within the spectral range in which the camera system
operates. This function results in a linear relationship between the camera inputs and
outputs using raw image data [27]. Under these conditions, spectral sensitivity can be
measured using monochromatic light. The measured spectral sensitivities for different
cameras have been published [27,28]; for instance, databases for 28 DSLR cameras [29]
and 20 mobile phone cameras [30] are currently available. Considering recent imaging
environments on software development and database availability, as the model-based
approach does not require prior training, it can be a more direct estimation method for
estimating surface-spectral reflectances.

In this paper, we propose a novel method to effectively use a reflectance database
and significantly improve the estimation accuracy of spectral reflectance from image data
acquired using an RGB digital camera. The imaging system is a multispectral image acqui-
sition system extended from a simple RGB system, where an RGB camera captures multiple
images of an object scene under multiple light sources with different illuminant spectra
in the visible range. We adopt a general imaging model, in which the camera responses
are described by combining the camera spectral sensitivities, surface-spectral reflectance,
illuminant spectral power distributions, additive noise terms, and gain parameters.

We do not use the entire data of the spectral reflectance database, but effectively select
a subset of the database to optimally estimate the spectral reflectance. Similar ideas were
proposed for recovering spectral reflectance from tristimulus values [31] and for adaptively
reconstructing spectral reflectance based on the Wiener estimator from image data [7,11].
In this study, we estimate the spectral reflectance from image data in two stages. In the
first stage, a set of the most reliable candidates for the optimal estimation of the spectral
reflectance is selected from the reflectance database based on observations of a target object
surface, which is known as the local optimal reflectance dataset. In the second stage, the
best reflectance is estimated using only the local optimal dataset. We present multiple
estimation algorithms that can provide the best estimates, i.e., those that minimize the
estimation error. One class of algorithms comprises the statistical method, where the
mean values, autocorrelation matrices, and covariance matrices are calculated from locally
extracted optimal data only and then used as the statistical characteristics to describe the
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best estimate. Another class comprises a mathematical programming method that uses
local optimal reflectances and solves the optimization problem to minimize the prediction
error under weight constraints.

In the following, Section 2 describes an observation model for a multispectral image
acquisition system that uses an RGB camera and multiple light sources. The model is
constructed with three spectral functions, i.e., known camera spectral sensitivities, known
illuminant spectra, and unknown surface-spectral reflectance, and includes two parameters,
i.e., gain and independent noise.

Section 3 describes the selection of a local optimal reflectance dataset. The camera
responses recorded from an actual object are compared with observations predicted from
the respective spectral reflectance in the reflectance database. The prediction errors cal-
culated for all reflectances in the database are arranged in ascending order, and only a
certain number of spectral reflectances from the beginning are selected as the local optimal
candidates for spectral reflectance estimation.

Section 4 describes the method used to determine the best reflectance estimate using
the local optimal dataset. The Wiener and LMMSE estimators are proposed as first-class
statistical methods based on a limited number of local optimal reflectance data. Linear
programming and quadratic programming methods are proposed as second-class methods
for solving optimization problems under constraints imposed.

Section 5 presents the experiments performed to validate the proposed methods for
estimating surface-spectral reflectance. Different mobile phone cameras, LED light sources,
a standard spectral reflectance database, and standard test samples are used in those
experiments. The performances of the proposed methods are examined in detail and
compared with those of other methods.

2. Observation Model

The observation model for our multispectral image acquisition system is depicted
schematically in Figure 1. It is constructed using an RGB camera with three color channels
(c = 1, 2, 3) and multiple light sources with L different illuminant spectra (l = 1, 2, ...,
L). Therefore, we obtain m = 3 L observations for a single target object. Because a linear
relationship exists between the camera responses and surface-spectral reflectance (see [27]),
we express the observations yi as

yi = g
∫ 700

400
x(λ)el(λ)rc(λ)dλ + ni, (i = 1, 2, . . . , m), (1)

where x(λ) is the surface-spectral reflectance of the target object, el(λ) (l = 1, 2, . . . , L)
represents the spectral power distribution of the light sources, rc(λ) and (c = 1, 2, 3) denotes
the spectral sensitivity functions of the camera. The wavelength λ is in the visible range of
400–700 nm. The additive noise ni in the imaging system is assumed to be white noise with
zero mean and variance a and is uncorrelated with x(λ). Here, yi represents the digital
camera outputs, while x(λ), el(λ), and rc(λ) are physical quantities.
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The coefficient g in Equation (1) is the weight used to convert the model outputs to
the practical digital outputs, called the gain parameter. The parameter g is unique to the
imaging system and depends on the conditions of the imaging system, such as the locations
of the camera and light sources, including illumination intensities. How to determine the
noise variance a and the gain parameter g was shown in [13].

The spectral functions of reflectance, illuminants, and sensitivities are sampled at n
wavelength points with equal intervals in the range of 400–700 nm and described using
n-dimensional column vectors as follows:

x =


x(λ1)
x(λ2)

...
x(λn)

, el =


el(λ1)
el(λ2)

...
el(λn)

, rc =


rc(λ1)
rc(λ2)

...
rc(λn)

, (2)

where l = 1, 2, . . . , L and c = 1, 2, 3. The discrete representation of the observation model is
expressed as follows:

y = gAx + n, (3)

where

y =


y1
y2
...

ym

, A =


(e1. ∗ r1)

t∆λ

(e2. ∗ r2)
t∆λ

...
(eL. ∗ r3)

t∆λ

, n =


n1
n2
...

nm

 (4)

The symbol (.*), superscript t, and ∆λ represent elementwise multiplication, matrix
transposition, and the wavelength sampling interval, respectively. Therefore, A is an
(m × n) matrix defined by the illuminant spectra and the spectral sensitivities, and n is an
n-dimensional noise vector.

3. Selection of Local Optimal Reflectance Dataset

Previously, adaptive Wiener estimation methods were proposed to improve the esti-
mation accuracy of spectral reflectance, where training samples were adaptively selected to
perform autocorrelation matrix calculation in the Wiener estimator [7,11]. Although the
original Wiener estimator uses all data of a spectral reflectance database, the basic idea of
the adaptive method is as follows: if the training reflectance samples for calculating the
autocorrelation matrix are close to the target reflectance and close to each other, then the

estimation may be reliable. Therefore, first, the spectral reflectance estimate
^
xall is calculated

from observation y using the original Wiener estimator. Second, the spectral similarity or

distance
∥∥∥∥^

xall − xi

∥∥∥∥2
is calculated between the estimated spectral reflectance

^
xall and each

spectral reflectance xi in the original database. Third, a set of spectral reflectances xi is
selected based on the similarity or distance from the reflectance database. However, we

should note that because the estimate
^
xall obtained in the first step is contaminated with the

estimation error, the most similar reflectances or the reflectances with the shortest distance

to
^
xall are not necessarily the best estimates.

Herein, we propose a more direct method for selecting a local optimal reflectance
dataset. Let N be the number of spectral reflectances in the database. First, we predict the
observations using Equation (3) in the form of gAxi for each spectral reflectance xi (i = 1, 2,
..., N) in the database, as shown in Figure 2. Second, we calculate the prediction error for
observation y as follows:

Li = ‖y− gAxi‖
2
2 (i = 1, 2, ..., N), (5)
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where the norm ‖•‖2
2 is defined as ‖z‖2

2 = z2
1 + z2

2 + . . . + z2
m. Third, the prediction errors

are arranged in the ascending order as L(1) ≤ L(2) ≤ · · · ≤ L(N), and the corresponding
spectral reflectances are x(1), x(2), . . . , x(N). Finally, the first K spectral reflectances x(1), x(2),
. . . , x(K) are selected as the local optimal candidates to estimate the spectral reflectance.
The superiority of this method is demonstrated in subsequent experiments.
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4. Determination of Reflectance Estimate Using Local Optimal Dataset

The best spectral reflectance estimate can be obtained using only the local optimal
reflectance dataset. We herein propose four algorithms that can yield the best estimates,
which minimize the estimation error. The Wiener estimator and LMMSE estimator are used
as first-class statistical methods based on a limited number of local optimal reflectance data.
Linear programming and quadratic programming are applied as second-class methods for
solving optimization problems under constraints imposed.

4.1. Local Wiener Method

The estimate of x,
^
x, is written in the form

^
x = By, where B is an (n × m) matrix. The

matrix B is determined to minimize the mean-square error (MSE) between the estimate
^
x

and original x, which is defined as

J = E

[∥∥∥∥x − ^
x
∥∥∥∥2

2

]
= tr

(
E
[
(x − ^

x)(x − ^
x)

t])
, (6)

where the expectation operator E[x] denotes the mean or average of x, and tr(X) represents
the trace of a square matrix X. Consequently, the estimate is solved as

^
x = gRAt

(
g2ARAt + aI

)−1
y, (7)

where R is the autocorrelation matrix E
[
xxt] , and I is the (n × n) identity matrix, with 1’s

in the diagonal and 0’s elsewhere.
Although the autocorrelation matrix is typically calculated using all available datasets

of various spectral reflectances, in this study, R is calculated using only the K local optimal
reflectances. When we define an (n × K) matrix X as

X =
[
x(1) x(2) · · · x(K)

]
(8)

we have
R = XXt/K (9)

The autocorrelation matrix can be more statistically precise compared with using a
dataset that includes many other reflectances.
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4.2. Local LMMSE Method

In LMMSE estimation, the estimate
^
x is determined in the more general form

^
x = By +b,

where b is an n-dimensional constant vector. Because the average surface-spectral reflectance
is not zero, we set the averages of x and y as E[x] = x0 and E[y] = y0 = gAx0, respectively,
and the optimal estimate to minimize the MSE is expressed as

^
x = x0 + gPAt

(
g2APAt + aI

)−1
(y− gAx0), (10)

where P is the covariance matrix of x, defined as P = E
[
(x− x0)(x− x0)

t
]

[13]. When
we compare the estimation error J2 of the LMMSE estimator to the error J1 of the Wiener
estimator, a clear relationship exists, i.e., J1 ≥ J2 (see [13]). In other words, the estimation
accuracy of the LMMSE estimator always exceeds that of the Wiener estimator.

In this study, the average of surface-spectra reflectance is calculated as

x0 = ∑K
i=1 x(i)

/
K (11)

The covariance matrix is calculated using only the K local optimal reflectances and the
average as

P = R− x0xt
0 (12)

Notably, because the covariance matrix is approximated using a small number of
spectral reflectances, the relationship J1 ≥ J2 does not necessarily hold.

4.3. Linear Programming Method

The spectral reflectance is estimated in a linear combination of K local optimal data as

^
x = α1x(1) + α2x(2) + · · · + αKx(K), (13)

where αi (i = 1, 2, . . . , K) are weighting coefficients. Let
(

^
x
)

j
be the j-th element of

the estimate, (
^
x
)

j
= α1

(
x(1)

)
j
+ α2

(
x(2)

)
j
+ · · · + αK

(
x(K)

)
j
. (14)

Because of the physical constraint of spectral reflectance, we have

0 ≤
(

x(i)
)

j
≤ 1. (i = 1, 2, . . . , K) (j = 1, 2, . . . , n) (15)

As a sufficient condition to satisfy this constraint, we define a constraint on αi as fol-
lows:

K

∑
i=1

αi = 1, αi ≥ 0. (i = 1, 2, . . . , K) (16)

Next, we consider the L1-norm minimization problem as follows:

‖y− Fα‖1 =
m

∑
i=1
|yi − (Fα)i| => min, (17)

where
F = gAX, (18)

α =
[
α1 α2 · · · αK

]t. (19)
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This minimization is equivalent to the following linear programming problem (see [32]):

min

{
m

∑
i=1

ui

}
subject to− ui ≤ yi − (Fα)i ≤ ui. (i = 1, 2, . . . , m), (20)

In addition, when we define a K-dimensional column vector p with all elements equal
to 1, we can rewrite the constraint on the weights in Equation (16) as ptα = 1, which
is equivalent to ptα ≤ 1 and −ptα ≤ −1. The constraint of αi ≥ 0 (i = 1, 2, . . . , K) is
expressed as −lKα ≤ 0, where lK demotes a (K × K) identity matrix. Let u be an (m × 1)
vector whose i-th component is ui.

Therefore, the linear programming problem above can be summarized as

min
{
[0 0 · · · 0 1 1 · · · 1]

[
α

u

]}
subject to


F −lm
−F −lm
−lK 0
pt 0
−pt 0


[
α

u

]
≤


y
−y
0
1
−1

, (21)

where [0 0 · · · 0 1 1 · · · 1] denotes a (1 × (K + m)) matrix comprising K 0’s and m 1’s, and lm
denotes an (m×m) identity matrix. The MATLAB function “linprog” is available for solving
the present problem [33]. To utilize this function, we introduce the following matrices:

H =


F −lm
−F −lm
−lk 0
pt 0
−pt 0

, h =


y
−y
0
1
−1

, f =



0
0
...
0
1
1
...
1


. (22)

Subsequently, we can use z = linprog(f, H, h) to solve the linear programming
problem. The solution is given as

z =
[
α̂1 α̂2 · · · α̂K û1 û2 · · · ûm

]t, (23)

where
^
α =

[
α̂1 α̂2 · · · α̂K

]t is the optimal estimate of the weights. The spectral re-

flectance estimate is written as
^
x = X

^
α.

4.4. Quadratic Programming Method

Next, we consider the following L2-norm minimization problem:

‖y− Fα‖2
2 => min, (24)

where F and α are defined in Equations (18) and (19), respectively. Quadratic programming
is the optimization problem of identifying a vector z that minimizes a quadratic function

min
{

1
2

ztHz + ftz
}

subject to constraint (25)

Dz ≤ d (inequality constraint) or Deqz = deq (equality constraint).
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The current L2-norm minimization problem can be rewritten to fit the quadratic
programming problem as follows:

min
{

1
2
αtFtFα−

(
Fty
)t
α

}
subject to α ≥ 0, ptα = 1. (26)

The MATLAB function “quadprog” is available for solving the present problem [34].
To utilize this function, we define the function arguments as

z = α, H = FtF, f = −Fty, D = −IK, d = 0, Deq = pt, deq = 1. (27)

Then, z = quadprog(H, f, D, d, Deq, deq) solves the quadratic programming problem.

The solution is z =
^
α, and the spectral reflectance estimate is written as

^
x = X

^
α.

5. Overall Flow of Estimation Procedure

Figure 3 depicts the overall flow of the proposed methods for estimating spectral
reflectance in two stages, where the first stage is to select the local optimal dataset suitable
for the observed camera outputs from the original reflectance database and the second
stage is to determine the reflectance estimate using the local optimal dataset only.
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6. Experimental Results
6.1. Experimental Setup

Experiments were conducted to validate the superiority of the proposed method for
estimating surface-spectral reflectance from image data. We used different mobile phone
cameras, LED light sources, a standard spectral reflectance database, and standard test
samples. Three mobile phone cameras selected from iOS and Android phone cameras
were (1) Apple iPhone 6s (Protek, Shanghai, China), (2) Apple iPhone 8 (Protek, Shanghai,
China)), and (3) Huawei P10 lite (Huawei, Shenzhen, China). Figure 4 shows the relative
RGB spectral sensitivity functions, where the solid, broken, and dash-dot curves correspond
to curves correspond to (1), (2), and (3), respectively. The numerical data of the spectral
sensitivity functions are available at http://ohlab.kic.ac.jp/ (accessed on 10 January 2023).
The camera images were captured in a lossless raw image format in Adobe digital negative
format. The dark response was measured on all selected cameras and discarded from the
camera output. The depth of the cameras employed was 12 bits.

http://ohlab.kic.ac.jp/
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Figure 4. Relative RGB spectral sensitivity functions of three mobile phone cameras, where red,
green, and blue curves correspond to Apple iPhone 6s, Apple iPhone 8, and Huawei P10 lite cameras,
respectively.

The illumination light sources were seven (L = 7) LED light sources, the spectral power
distributions of which are shown in Figure 5. The standard spectral reflectance database
used in this paper is available at http://ohlab.kic.ac.jp/ (accessed on 10 January 2023),
which is a dataset of 1776 (=N) spectral reflectances and comprised of Dupont spectral data,
Munsell spectral data, and various object spectral data, including man-made objects and
natural objects. All spectral curves were sampled at 61 (=n) points with 5-nm intervals
in the visible range of 400–700 nm and represented by 61-dimensional column vectors.
The X-Rite Color Checker Passport Photo (X-Rite, Grand Rapids, MI, USA) was used as
the standard test target to validate reflectance estimation. This target comprised 24 color
checkers whose spectral reflectance values were measured using a spectral colorimeter.
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Spectralon (Labsphere, North Sutton, NH, USA) was used as a white reference stan-
dard and was placed near the target samples. The cameras were placed close to the target,
and the light sources were placed a little apart from the target. These positions are the same
as in the previous paper. [13]. The parameters g and a of the gain and noise variance in
the observation model, respectively, were determined using the calibration method in [13]
based on the Spectralon data and L1-norm minimization.

6.2. Performances of Proposed Methods

First, we examined the performances of the proposed Wiener and LMMSE methods
using the local optimal reflectance dataset. Figure 6 shows the average root-mean-square

http://ohlab.kic.ac.jp/
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errors (RMSEs) for the 24 color checkers as a function of the number K of the local optimal
reflectances when the two methods were applied to the image data using the Apple iPhone
6s. In the figure, “L_Wiener” and “L_LMMSE” represent the local Wiener and LMMSE
methods using the local optimal dataset in Sections 4.1 and 4.2, respectively, and “Wiener”
and “LMMSE” represent the respective original methods using all data. Because the
original methods use all the spectral reflectances in the database, the average RMSEs are
constant values of 0.03537 and 0.03479 for the Wiener and LMMSE methods, respectively,
independently of K. The average RMSE is calculated as the root of the average of the
squared norm of the estimation error per wavelength over the 24 color checkers, i.e.,

E[RMSE] =

{(
∑24

i=1

∥∥∥∥xi −
^
xi

∥∥∥∥2
/61

)
/24

}1/2

(28)J. Imaging 2023, 9, x FOR PEER REVIEW 11 of 20 
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Figure 6. Average RMSEs of the proposed Wiener and LMMSE methods for 24 color checkers as a
function of number K of local optimal reflectances when the methods are applied to the image data
using Apple iPhone 6s.

This calculation was changed from the calculation presented in [13].
Figure 6 clearly suggests that the estimation accuracies of L_Wiener and L_LMMSE

approach the accuracies of the original methods as the number K of the local optimal
reflectances used in the reflectance estimation increases. Based on our observations, the
estimation improves as K decreases, as compared with the case in the original methods. In
other words, the proposed methods are more effective for smaller K values. The results
yielded by the Apple iPhone 6s are similar to those yielded by the mobile phone cameras,
Apple iPhone 8, and Huawei P10 lite.

Small values of K are preferred to simplify the estimation. Figures 7–9 depict the
average RMSEs yielded by each of the four proposed methods for the 24-color check-
ers in the range of small K of 5–50, when applying the methods to the image data ac-
quired using the Apple iPhone 6s, Apple iPhone 8, and Huawei P10 lite. The symbols
Lp and Qp denote the linear programming and quadratic programming methods in
Sections 4.3 and 4.4, respectively. As shown in each figure depicting the results of the
mobile phone cameras, all the proposed methods in this range are significantly more ac-
curate than the original Wiener and LMMSE methods. We disregarded the performance
curves of the average RMSEs in the range of K < 5 owing to their instability. Among
the proposed methods, the best one cannot be determined within this range. However,
the quadratic programming method appears to be significantly better than the others, as
its error in the large range of K for all cameras used remains low. As can be seen from
Figures 7–9, the average RMSEs using Huawei P10 lite are significantly worse. We inves-
tigated this point, and found that, although the first part in the local optimal reflectance
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dataset x(1), x(2), ..., x(K) was the same for both Apple iPhones 6s and 8, the corresponding
part selected for Huawei P10 lite was different from iPhones. This difference in the selected
optimal dataset was reflected in the estimation results.
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Next, we comprehensively examined the estimation results for a specific spectral
reflectance. The second patch among the color checkers represents light skin. We choose
K = 23 as a representative value of K in the range 5–50. Suppose we use the image data of the
iPhone 6s. Figures 10 and 11 show the estimation results for the second spectral reflectance
for the 24 color checkers. The spectral curves of the 23 local optimal reflectances are shown
in Figure 10, where the broken red curve represents the measured spectral reflectance x2. A
set of spectral reflectances close to x2 was selected from the database as the local optimal
dataset. The spectral curves estimated using the four proposed methods for x2 are depicted
in Figure 11, where the brown curves represent the spectral reflectances estimated via the
original Wiener and LMMSE methods, and the two curves are overlapped and visually
indistinguishable; the red curves represent the two estimates yielded by the proposed
L_Wiener and L_LMMSE methods, and the blue curves represent the two estimates yielded
by the proposed linear and quadratic programming methods based on the local optimal
reflectances shown in Figure 10. In this case, the quadratic programming method achieved
the best performance, although the estimated reflectance presented a spectral curve similar
to that presented by the linear programming method.
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Furthermore, it should be noted that the proposed methods based on the local optimal
dataset increase obviously in computation time, in comparison with the direct Wiener and
LMMSE methods based on the original dataset. All computations in experiments were
executed using MATLAB (R2022b) on the PC of Panasonic CF-LX6 (Panasonic, Osaka,
Japan). The average computation time for the direct Wiener and LMMSE methods was
about 0.0045 s. Also, the computation time was compared using the L_Wiener method,
L_LMMSE method, linear programming method, and quadratic programming method.
The average computation times when using K = 23 local optimal reflectances were 0.1958,
0.1932, 0.5325, and 0.3425 s, respectively. The determination of the local optimal dataset in
the first stage took a lot of time.

6.3. Comparisons with Other Methods
6.3.1. Local Optimal Reflectance Dataset

We changed the selection of a local optimal reflectance dataset. Although we here
proposed using the prediction error (y− gAxi) for the observation, the previous adaptive

Wiener estimation methods were based on the estimation error
(

^
xall − xi

)
[7,11]. The

estimate
^
xall was calculated using the original Wiener estimator based on all the spectral

reflectances in the database. Subsequently, the local optimal spectral reflectances were
selected based on (1) a similarity measure, e.g., the spectral angle, or (2) a distance measure,
e.g., the MSE.

First, we examined the spectral angle, which represents the spectral similarity between
two vectors in a high-dimensional spectral space. In our case, the spectral angle θ is defined

as θi = cos−1
(

^
x

t

allxi/
(∥∥∥∥^

xall

∥∥∥∥‖xi‖
))

(i = 1, 2, . . . , N). As θi decreases, the two vectors
^
xall

and xi become increasingly similar. The angles θi for all reflectances were arranged in
descending order, and the first K spectral reflectances were selected as the locally optimal
dataset. However, the average RMSEs were greater than the error of the original Wiener
estimator; in other words, the spectral angle did not yield the expected result.

Second, we examined the MSE
∥∥∥∥^

xall − xi

∥∥∥∥2

2
, (i = 1, 2, . . . , N). We calculated the estimate

^
xall by the Wiener and LMMSE estimators using all the reflectance data. The MSEs for all
reflectances were arranged in ascending order, and the first K spectral reflectances were
selected. Figure 12 shows a comparison of the average RMSEs for the 24-color checkers
along with the results yielded by the proposed method shown in Figure 7, when using the
iPhone 6s. In Figure 12, AL_Wiener (AL_LMMSE) on the cyan curve represents the adaptive

local Wiener (LMMSE), where
^
xall was calculated using the original Wiener (LMMSE), and

then the best estimates
^
x based on the selected dataset, L_Wiener, L_LMMSE, Lp, and Qp

were calculated using the methods in Sections 4.1–4.4. Thus, the proposed method for
selecting the local optimal reflectances based on the prediction error ‖y− gAxi‖2

2 of the

observation is superior to the previous method related to
∥∥∥∥^

xall − xi

∥∥∥∥2

2
.
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; AL_Wiener (AL_LMMSE) represents the adaptive local

Wiener (LMMSE), where
^
xall was calculated using the original Wiener (LMMSE), and then the best

estimates
^
x based on the selected dataset, L_Wiener, L_LMMSE, Lp, and Qp were calculated using

the methods in Sections 4.1–4.4.

6.3.2. Single RGB-Based Spectral Estimation

Spectral reflectance estimation was often performed using RGB image data from a
single-color camera instead of a multispectral imaging system, particularly in the training-
based approach. This is because the imaging system is easy to use without modification
and eliminates the need for camera spectral sensitivity functions. A broadband light source
was preferred in the single RGB imaging system.

Typical methods for efficiently determining reflectance estimates from local opti-
mal training samples were (1) nonlinear expansion of RGB data and (2) introduction of
weighting factors (see [16,22]). For (1), consider an example that [r g b] is expanded to[
1 r g b r2 g2 b2 rg gb br

]
. Our experimental results suggested that the nonlinear expan-

sion method did not perform well because of its instability. For (2), consider an example

where inverse distances such as 1/
(
‖y− yi‖

2
2

)1/2
(i = 1, 2, . . . , K) are applied to the local

optimal reflectances as weighting coefficients.
We performed experiments for the single RGB-based spectral estimation based on

method (2), where an incandescent lamp with the spectral power distribution shown in
Figure 13 was used as a broadband light source. The experimental results are shown in
Figure 14, where the RGB images for the 24-color checkers were acquired using the iPhone
6s. Because the camera spectral sensitivities were known in our case, we first predicted the
camera outputs for each of the training reflectance samples as yi = gAxi without capturing
actual images; subsequently, we calculated an (n × K) reflectance matrix X and a (3 × K)
observation matrix Y in the forms X =

[
x(1) x(2) · · · x(K)

]
and Y = gAX. We defined a

(K × K) weighting matrix as

W = diagonal
(
w11 w22 · · · wKK

)
, (29)

where
wii = 1/

(
‖y− yi‖

2
2

)1/2
(i = 1, 2, . . . , K). (30)
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Figure 14. Reflectance estimation results for single RGB-based spectral estimation, where RGB images
for 24 color checkers were acquired using iPhone 6s. Pseudo_inv represents the average RMSEs
yielded by the pseudo-inverse method using the weights as a function of the number of the selected
local optimal reflectances. L_Wiener, L_MMSE, Lp, and Qp denote the proposed methods using
the local optimal dataset without using the weights, respectively. Four spectral curves at bottom of
the figure show the average RMSEs in Figure 7 reconstructed using a multispectral imaging system
for comparison.

Based on the previous pseudo-inverse method (see [16,22]), the estimate
^
x based on

the local optimal dataset was calculated as

^
x = Qy, (31)

where
Q = XW(YW)+. (32)

The symbol + denotes the pseudo-inverse of a matrix.
The broken brown curve with Pseudo_inv in Figure 14 shows the average RMSEs

obtained using the pseudo-inverse method as a function of the number of selected local
optimal reflectances. The accuracy is similar to that of L_Wiener without using the weights
presented in Section 4. A. In the figure, L_MMSE, Lp, and Qp denote the proposed LMMSE,
linear programming, and quadratic programming methods for the single RGB images
without using weights, respectively. In addition, the estimation accuracies of the linear and
quadratic programming methods exceed those of L_Wiener and L_LMMSE.
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The four bold curves at the bottom of Figure 14 depict the average RMSEs in Figure 7
reconstructed using the multispectral imaging system for comparison. The multispectral
imaging system is clearly superior to the single RGB imaging system. From the viewpoint
of the estimation procedure, we should note that the statistical methods require the variance
of the system noise, whereas mathematical programming methods do not require such
statistical knowledge.

Using the single-exposure method, there are other methods than using the local
optimal dataset. Here, we applied two methods to the present problem and examined
the performances; one was the interpolation method [35] and another was the weighted
principal component analysis (PCA) method [36]. In the interpolation method, all spectral
reflectances in the original database xi (i = 1, 2, . . . , N) were first mapped into the three-
dimensional RGB space by yi = gAxi, where four vertices with the RGB values defined
a tetrahedron and the RGB space was partitioned by many different tetrahedrons. Next,
we found a tetrahedron containing the observation y and estimated the RGB coordinates
of y using the four vertices. This linear interpolation was applied to the corresponding
four spectral reflectances in the database to obtain the reflectance estimate. The MATLAB
function “delaunayTriangulation” was used for the tetrahedrization procedure.

In the weighted PCA method, the spectra reflectances were represented as the weighted
sum of three orthogonal basis functions. The basis functions are called the principal com-
ponent vectors, which are obtained by the singular value decomposition of the original
reflectance data matrix or the eigendecomposition of the data covariance matrix. We used
the same weights as Equation (30) and the (N × N) weighting matrix W in Equation (29)
was applied to the original data matrix.

In experimental results for the interpolation method, we could not find suitable
tetrahedrons for the 17th (green) and 19th (white) patches among the X-rite color checkers.
This was because the coordinates of these patches were out of the gamut determined by
the original reflectance database, which was a disadvantage of the interpolation method.
The average RMSE except for the two patches was 0.0642. The average RMSE for 24 color
patches using the weighted PCA method was 0.0629. For comparison, when we applied the
Wiener method to the same RGB values of the observations yi (i = 1, 2, ..., 24), the average
RMSE was 0.0618. Thus, both interpolation and weighted PCA methods were inferior to
the Wiener method and also to any results shown in Figure 14. The reason for this may be
that the interpolation and weighted PCA methods neglected the system noise.

7. Conclusions

We have proposed a novel method to estimate the surface-spectral reflectance from
camera responses using a local optimal reflectance dataset. The imaging system was a
multispectral image acquisition system, where an RGB camera was used to capture multiple
images of an object scene under multiple light sources with different illuminant spectra.
The camera responses in the multispectral imaging system were described by combining
the camera spectral sensitivities, surface-spectral reflectance, illuminant spectra, additive
noise terms, and gain parameters.

The proposed spectral estimation method was constructed in two stages. In the first
stage, the local optimal reflectance dataset was selected as a set of the most reliable candi-
dates for the optimal estimation of the spectral reflectance from the reflectance database. We
predicted the observations of the camera responses for the respective spectral reflectances
in the database, which were then compared with the camera responses observed from an
actual object. The optimal reflectance dataset was selected so that the prediction error was
minimized. In the second stage, the best reflectance was estimated using only the local
optimal dataset. We proposed multiple estimation methods of two statistical methods
using the Wiener and LMMSE estimators and two mathematical programming methods
using linear and quadratic programming.

Experiments were conducted using three mobile phone cameras, seven LED light
sources, and a standard spectral reflectance database. First, we examined the performances



J. Imaging 2023, 9, 47 17 of 18

of the proposed methods. All the proposed methods were significantly more accurate than
the methods without using the local optimal reflectance dataset. In particular, the quadratic
programming method performed much better than the other three methods. Next, we
compared the proposed method with the previous methods. Our method, which involved
selecting the local optimal reflectance dataset, is superior to the previous adaptive method.
Additionally, we performed a comparison with the single RGB-based approach, the result
of which demonstrated the superiority of the multispectral imaging approach.

We point out that the proposed approach has good features. The estimation algorithm
is simple and effective. A much smaller local optimal dataset consisting of about 20 re-
flectances among 1776 spectral reflectance data is enough to obtain the optimal estimates.
Also, the mathematical programming methods based on linear and quadratic programming
without requiring noise covariance enable simpler estimations.

As the parameters of gain and noise are imaging condition dependent and multiple
exposures are required, the present multispectral imaging system may not be easy to apply
in open or uncontrolled illumination/lighting environments, such as the normal natural
scene. Full development of an imaging system and spectral estimation method available in
an open environment remains as future work.
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