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Abstract: Smartphones with an in-built camera are omnipresent today in the life of over eighty
percent of the world’s population. They are very often used to photograph documents. Document
binarization is a key process in many document processing platforms. This paper assesses the
quality, file size and time performance of sixty-eight binarization algorithms using five different
versions of the input images. The evaluation dataset is composed of deskjet, laser and offset printed
documents, photographed using six widely-used mobile devices with the strobe flash off and on,
under two different angles and four shots with small variations in the position. Besides that, this paper
also pinpoints the algorithms per device that may provide the best visual quality-time, document
transcription accuracy-time, and size-time trade-offs. Furthermore, an indication is also given on
the “overall winner” that would be the algorithm of choice if one has to use one algorithm for a
smartphone-embedded application.

Keywords: document binarization; photographed documents; DIB-dataset; smartphone; binariza-
tion algorithms

1. Introduction

The current number of smartphone users in the world today is over 6.6 billion (Source:
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world, last visited
on 29 December 2022), which means that over 83% of the world’s population owns a
smartphone. The omnipresence of smartphones with in-built cameras made most people
(91%) take photos with smartphones, while only 7% use digital cameras or tablets (2%).
According to that same website, the forecast figures by Ericsson and the Radicati Group,
that percentage is expected to grow from 91% in 2022 to 94% in 2026. Consumers see
the quality of the camera as a key factor in choosing a smartphone model. Thus, since
cameras became the most significant selling point on smartphones, manufacturers have
been putting much effort into improving their quality. At first, they paid more attention
to the amount of megapixels a smartphone camera could pack. In the last few years,
smartphone manufacturers have opted to add more cameras to their phones to improve
photo quality and optical zoom functionality while keeping the device thin. Each camera
has a lens that can yield either a wide shot or a zoomed-in shot. Some phones have
additional black and white cameras for increased light sensitivity, while others offer depth
information. Data from the different cameras can be combined into a clear photo with
seemingly shallow depth-of-field and good low-light capability.

Taking photos of documents with smartphone cameras, an attitude that started almost
two decades ago [1–4], became of widespread use today. It is extremely simple and
saves photocopying costs, allowing the document image to be easily stored and shared
using computer networks. However, smartphone cameras were made to take family and
landscape photos or make videos of such subjects and were not targeted at document image
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acquisition. Smartphone document images have several problems that bring challenges
to processing them. The resolution and illumination are uneven, there are perspective
distortions, and often the interference of external light sources [4]. Even the in-built strobe
flash may add further difficulties if activated by the user or automatically. Besides all that,
the standard file format used by smartphone cameras to save the images is jpeg, which
inserts the jpeg noise [5], a light white noise added to prevent two pixels of the same color
from appearing next to each other. This noise makes the final image more pleasant to the
human eye glancing at a landscape or family photo, but it also means a loss in sharpness in
a document image, bringing difficulties to any further processing.

The conversion of a color image into its black-and-white version is called thresholding
or binarization. It is a key step in the pipeline of many document processing systems,
including document content recovery [6]. The binarization of scanned document images is
far from being a simple task as the physical noises [7], such as paper aging, stains, fungi,
folding marks, etc., and back-to-front interference [8] increase the complexity of the task.
In the case of scanned documents, some recent document binarization competitions [9,10]
show that no single binarization algorithm is efficient for all types of text document images.
Their performance depends on a wide number of factors, from the digitalization device,
image resolution, the kind of physical noises in the document [7], the way the document
was printed, typed or handwritten, the age of the document, etc. Besides that, those
competitions showed that the time complexity of the algorithms also varies widely, making
some of them impossible to be used in any document processing pipeline. Thus, instead of
having an overall best, those competitions pointed out the top quality-time algorithms in
several categories of documents.

The binarization of photographed documents is far more complex than scanned ones
and, as already mentioned above, the resolution and illumination are uneven, among sev-
eral other problems. Besides that, each smartphone model has different camera features.
The first competition to assess the quality and time of the binarization of smartphone
camera-acquired text documents, the type of document that is most often photographed,
comparing new algorithms with previously published and more classical ones was [11]. In
2021, that same competition occurred with several new competitors and devices [12].

Binary images also are much smaller than their color counterparts, thus their use may
save storage space and computer bandwidth [13]. This means that assessing the resulting
image file size using a lossless compression scheme is also relevant for comparison among
binarization algorithms. Besides that, the binary image may be the key for generating
colored synthetic images, which are visually indistinguishable from the original document
whenever printed or visualized on a screen [14]. Run-length encoding [15] the sequences
of black and white pixels is the key to several schemes for compressing monochromatic
images. Suppose the binarization process leaves salt-end-pepper noise in the final image,
sometimes imperceptible to the human eye. In that case, that noise will break the sequence
of similar pixels, degrading the performance of the image compression scheme. Indirectly,
that can also be observed as a measure of the quality of the monochromatic image. The
third venue [16] of the ACM DocEng Competition on the binarization of photographed
documents assessed five new and sixty-four algorithms, and it was possibly the first time
the size of the monochromatic image was considered in the assessment of the binarization
algorithms, ever.

Reference [17] shows that feeding the binarization algorithms with the different red,
green and blue (RGB) channels, instead of the whole image, may yield a better quality
two-tone image, besides saving processing time. This paper largely widens the scope of [16]
as, due to the restricted time to produce the final report, it was impossible to process and
assess the quality, time, and file size of the almost 350 binarization schemes. Besides that,
also due to processing time limitations, the file-size assessment was ranked based on the
quality of the optical character recognition (OCR) transcription based on the Levenshtein
distance to the ground-truth text. In contrast, here, one ranks the algorithms based on a
new image quality measure introduced here, possibly a more adequate measure.
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The recent paper [18] presents a methodology to pinpoint which binarization algorithm
would provide the best quality-time trade-off either for printing or for OCR-transcription.
It also proposes an overall winner if one would choose one single algorithm capable of
being embedded in applications in a smartphone model. The present paper also makes
such choices for each of the smartphones assessed.

2. Materials and Methods

Six different models of smartphones from three different manufacturers, widely used
today, were used in this assessment. Their camera specification is described on Table 1.
Their in-built strobe flash was set on and off to acquire images of offset, laser, and deskjet
printed text documents photographed at four shots with small variations in the position and
moments, to allow for different interfering light sources. The document images captured
with the six devices were grouped into two separate datasets:

• Dataset 1: created for 2022 DocEng contest [16], the photos were taken with devices
Samsung N10+ (Note 10+) (Samsung Electronics, Suwon-si, South Korea) and Sam-
sung S21U (Ultra 5G) (Samsung Electronics, Suwon-si, South Korea). It has challenging
images with natural and artificial light sources and with strong shadows;

• Dataset 2: created for 2021 DocEng contest [19], the photos were taken with devices
Motorola G9 (Motorola Mobility, Chicago, IL, USA), Samsung A10S (Samsung Electronics,
Suwon-si, South Korea), Samsung S20 (Samsung Electronics, Suwon-si, South Korea) and
Apple iPhone SE 2 (Apple Inc., Cupertino, CA, USA). It also has challenging images,
but they are less complex than Dataset 1.

Table 1. Summary of devices camera specifications.

Samsung N10+ Samsung S21U Moto. G9 Plus Samsung A10 Samsung S20 iPhone SE2

Megapixels 16 12 12 13 12 12
Aperture F 1.5–2.4 F 1.5 F 1.8 F 1.9 F 1.8 F 1.8
Sensor size 1/2.55 inch 1/1.8 inch 1/1.73 inch - 1/2.55 inch 1/3 inch
Pixel size - 1.4 µm 1.4 µm - 1.4 µm 1.4 µm
Release year 2019 2021 2020 2020 2020 2020
Camera Count 3 4 4 2 3 1

The test images were incorporated to the IAPR (International Association for Pattern
Recognition) DIB - Document image binarization platform (https://dib.cin.ufpe.br, ac-
cessed on 17 January 2023)), which focuses on document binarization. It encompasses
several datasets of document images of historical, bureaucratic, and ordinary documents,
Which were handwritten, machine-typed, offset, laser, and ink-jet printed, both scanned
and photographed, several of them with their corresponding ground-truth images. Besides
being a document repository, the DIB-platform encompasses a synthetic document image
generator, which allows the user to create over 5.5 million documents with different fea-
tures. As already mentioned, reference [17] shows that binarization algorithms, in general,
yield different quality images whenever fed with the color, gray-scale-converted, and R, G,
and B-channels. Here, 68 classical and recently published binarization algorithms are fed
with the five versions of the input image, totaling 340 different binarization schemes. The
complete list of the algorithms used is presented in Table 2, along with a short description
and the approach followed in each of them.

https://dib.cin.ufpe.br
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Table 2. Tested binarization algorithms.

Method Year Category Description

Percentile [20] 1962 Global threshold Based on partial sums of the histogram levels

Triangle [21] 1977 Global threshold Based on most and least frequent gray level

Otsu [22] 1979 Global threshold Maximize between-cluster variance of pixel intensity

IsoData [23] 1980 Global threshold IsoData clulstering algorithm applied to image histogram

Pun [24] 1981 Global threshold Defines an anisotropy coefficient related to the asymmetry of the histogram

Johannsen-Bille [25] 1982 Global threshold Minimizes formula based on the image entropy

Kapur-SW [26] 1985 Global threshold Maximizes formula based on the image entropy

Moments [27] 1985 Global threshold Aims to preserve the moment of the input picture
Niblack [28] 1985 Local threshold Based on window mean and the standard deviation

Bernsen [29] 1986 Local threshold Uses local image contrast to choose threshold

MinError [30] 1986 Global threshold Minimum error threshold

Mean [31] 1993 Global threshold Mean of the grayscale levels

Shanbhag [32] 1994 Global threshold Improves Kapur-SW by viewing the two pixel classes as fuzzy sets

Huang [33] 1995 Global threshold Minimizes the measures of fuzzines

Yen [34] 1995 Global threshold Multilevel threshold based on maximum correlation criterion

RenyEntropy [35] 1997 Global threshold Uses Renyi’s entropy similarly as Kapur-SW method

Sauvola [36] 1997 Local threshold Improvement on Niblack

Li-Tam [37] 1998 Global threshold Minimum cross entropy

Wu-Lu [38] 1998 Global threshold Minimizes the difference between the entropy of the object and the background

Mello-Lins [13] 2000 Global threshold Uses Shannon Entropy to determine the global threshold. Possibly the first
to properly handle back-to-front interference

Wolf [39] 2002 Local threshold Improvement on Sauvola with global normalization

ISauvola [40] 2004 Local threshold Uses image contrast in combination with Sauvola’s binarization

Ergina-Global [41] 2005 Global threshold Average color value and histogram equalization

Ergina-Local [42] 2006 Local threshold Detects where to apply local thresholding after a applying a global one

Intermodes [43] 2006 Global threshold Smooth histogram until only two local maxima

Minimum [43] 2006 Global threshold Variation of Intermodes algorithm

dSLR [44] 2006 Global threshold Uses Shannon entropy to find a global threshold

Bradley [45] 2007 Local threshold Adaptive thresholding using the integral image of the input

Nick [46] 2009 Local threshold Adapts Niblack based on global mean
ElisaTV [47] 2010 Local threshold Background estimation and subtraction

Lu-Su [48] 2010 Edge based Local thresholding near edges after background removal

Bataineh [49] 2011 Local threshold Based on local and global statistics

Singh [50] 2011 Global threshold Uses integral sum image prior to local mean calculation

Howe [51] 2013 CRF Laplacian Unary term and pairwise Canny-based term

Su-Lu [52] 2013 Edge based Canny edges using local contrast
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Table 2. Cont.

Method Year Category Description

iNICK [53] 2017 Local threshold Adaptively sets k in Nick method based on the global standard deviation

CNW [54] 2018 Local threshold Combination of Niblack and Wolf’s algorithm

DocDLinkNet [55] 2018 Deep Learning D-LinkNet architecture with document image patches

Gattal [56] 2018 Clustering Automatic Parameter Tuning of K-Means Algorithm

Jia-Shi [57] 2018 Edge based Detecting symmetry of stroke edges

Robin 2018 Edge based U-net model trained with several datasets
(https://github.com/masyagin1998/robin, accessed on 17 January 2023)

WAN [58] 2018 Global threshold Improves Sauvola’s method by shifting up the threshold

Akbari_1 [59] 2019 Deep Learning Segnet network architecture fed by multichannel images (wavelet sub bands)
Akbari_2 [59] 2019 Deep Learning Variation of Akibari_1 with multiple networks

Akbari_3 [59] 2019 Deep Learning Variation of Akibari_1 where fewer channels are used

CLD [60] 2019 Local threshold Contrast enhancement followed by adaptive thresholding and artifact removal

Calvo-Zaragoza [61] 2019 Deep learning Fully convolutional Encoder–decoder FCN with residual blocks

DeepOtsu [62] 2019 Deep Learning Neural networks learn degradations and global Otsu generates binarization map

DocUNet [9] 2019 Deep Learning Hybrid pyramid U-Net convolutional network fed with morphological
bottom-hat transform enhanced document images

Michalak21a [63] 2019 Image Processing Downsample image to remove low-frequency information and apply Otsu

Michalak21b [64] 2019 Image Processing Equalize illumination and contrast, apply morphological dilatation
and Bradley’s method

Michalak21c [65] 2019 Local threshold Average brightness corrected by two parameters to apply local threshold

Michalak [63] 2019 Image Processing Downsample image to remove low-frequency information and apply Otsu

Yasin [9] 2019 Image Processing Gradient descent optimization followed by Otsu thresholding

Yuleny [9] 2019 Shallow ML A XGBoost classifier is trained with features generated from Otsu, Niblack,
Sauvola, Su and Howe algorithms

DiegoPavan [66] 2020 Deep Learning Downscale image to feed a DE-GAN network

DilatedUNet [11] 2020 Deep Learning Downsample to smooth image and use a dilated convolutional layer to
correct the feature map spatial resolution

YinYang [11] 2020 Image Processing Detect background with median of small overllaping windows, extract it and
apply Otsu

YinYang21 [11] 2020 Image Processing A faster and more effective version of YinYang algorithm

DE-GAN [66] 2020 Deep Learning Uses a conditional generative adversarial network

Gosh [67] 2021 Clustering Clustering applied to a superset of foreground estimated by Niblack’s algorithm

HuangBCD [10] 2021 Deep Learning BCD-Unet based model to binarize and combine image patches

HuangUNet [10] 2021 Deep Learning Unet based model binarize and combine image patches

Vahid [10] 2021 Deep Learning A pixel-wise segmentation model based on Resnet50-Unet

HBUT [68] 2021 Image Processing Morphological operations using minimum entropy-based stroke width transform
and Laplacian energy-based segmentation

DPLinkNet [69] 2021 Deep Learning Fully dilated convolutional network using atrous convolutions

Vahid22 [16] 2022 Deep Learning Pixel-wise segmentation combining a CNN with a transformer model

YinYang22 [16] 2022 Image Processing Uses maximum color occurrence to detect and subtract background, then nor-
malize and apply Otsu

The quality of the final monochromatic image is the most important assessment
criterion. Once one has the top-quality images, one may consider the mean size of the

https://github.com/masyagin1998/robin
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monochromatic files and the mean time elapsed by each of the assessed algorithms through
the dataset. This paper proposes a novel quality measure for photographed document
images called PL, it is a combination of the previously proposed Perr [70] and [Ldist] [11]
measures. Two quality measures were used to evaluate the quality of the binarization
algorithms: the [Ldist] and the PL.

2.1. The Quality Measure of the Proportion of Pixels (Perr)

Assessing image quality of any kind is a challenging task. The quality of photographed
documents is particularly hard to evaluate as the image resolution is uneven, it strongly
depends on the features of the device, the distance between the document and the camera
and it even suffers from perspective distortion. Creating a ground-truth (GT) binary
image for each photographed document would require a non-viable paramount effort. An
alternative method [70] was used: the paper sheet or book page is scanned at 300 dpi,
binarized with several algorithms, visually inspected, and manually selected and retouched
to provide the best possible binary image of that scanned document, which will generate the
reference proportion of black pixels for that document image. The Perr measure compares
the proportion between the black-to-white pixels in the scanned and photographed binary
documents, as described in Equation (1):

Perr = abs(PBbin − PBGT), (1)

where PB = 100 × (B/N) is the proportion of black pixels in the image, B is the total
number of black pixels and N is the total number of pixels in the image. Thus, PBbin is the
proportion of black pixels in the binary image and PBGT is the proportion of black pixels in
the scanned ground-truth image.

In order to provide a fair assessment, the photographed image must meet several
requirements. The resolution of the output document photo must be close to 300 dpi (which
correspond to the scanned one). To meet such a requirement, the camera should have
around 12 Mpixel resolution and the document should fill nearly all the photographed
image; the photo must be cropped to remove any reminding border. Here, the cropping is
manually done, as the focus is to assess specifically the binarization algorithms. Figure 1
describes the preparation of the images and an example of Perr calculation. The Perr was
used by the last DocEng contests [11,12,16] to evaluate the quality of the binary images for
printing and human reading.

Paper
Document

Scanner

Mobile
Phone

Binarize &
Retouch 

Perr = 3.18 Generates 
Final GT

Manual
Crop Binarize

PBbin = 8.13%

PBGT = 4.95%

Figure 1. Perr measure example (GT: ground-truth, bin: binary).



J. Imaging 2023, 9, 41 7 of 24

2.2. Normalized Levenshtein Distance ([Ldist])

The second quality measure is the Optical Character Recognition (OCR) correctness
rate measured by [Ldist] [11], which is the Levenshtein [71] distance normalized by the
number of characters in the text. Google Vision OCR was used to obtain the machine-
transcribed text. It is important to note that Google Vision automatically detects the input
language and applies post-processing based on dictionary, which cannot be deactivated.
The Levenshtein distance, here denoted by Ldist, expresses the number of character insertion,
deletion and replacements that would be necessary to convert the recognized text into the
manually transcribed reference text for each image. Thus, the Ldist depends on the length
of the text and cannot be used to measure the performance across different documents as
an absolute value. In [11], a normalized version of the Ldist was proposed, calculated as:

[Ldist] =
#char − Ldist

#char
, (2)

where #char is the number of characters in the reference text.
The DocEng 2022 binarization competition for photographed documents presented a

new challenging dataset in which complex shaded areas were introduced. Although the Perr
quality measure worked well whenever the shaded area was more uniformly distributed,
in those more complex multi-shaded documents, some algorithms may concentrate the
pixels around some characters (e.g. by dilatation) while completely removing other parts of
the document. This could generate an image that has the same proportion of black pixels
as the ground-truth, a clear background with no evident noise, but its text is unreadable.
Taking, for instance, an example image taken with Apple iPhone SE2 of a deskjet printed
document with the strobe flash off (Figure 2a), the algorithm with the closest black pixel
proportion would be DiegoPavan provided the original color image. The result is presented
in Figure 2b. Note that even the remaining dilated letters are nearly unreadable, giving a
[Ldist] of nearly zero, meaning almost no text was transcribed. The Perr close to zero means
the proportion of black pixels is very close to the ground-truth.

 
 

(a) (b)

 
 

(c) (d)

Artificial Light
Flash OFF

Dataset 2
Deskjet

iPhone SE Ranking by Perr
DiegoPavan-C

[Ldist] = 0.057
Perr = 0.200

PL = 5.697 
 

Time = 1.48s
PL = 84.825 

 

Time = 0.17s

Ranking by [Ldist]
dSLR-C

[Ldist] = 0.930
Perr = 8.790

 
 
 

Ranking by PL
Yasin-R

[Ldist] = 0.916 
Perr = 1.500

PL = 90.226
 

Time = 2.19s

Figure 2. Comparison between different measures: PL, [Ldist], Perr. For each case, the full image is
shown on the top and an example region bellow, where the red boxes indicates the crop position
for the example region. (a) Original image; (b) Ranking by Perr only, DiegoPavan-C binarized
image; (c) Ranking by [Ldist] only, dSLR-C binarized image; (d) Ranking by PL measure, Yasin-R
binarized image.
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If one ignores the Perr and only sorts the results by [Ldist], the most recommended
algorithm would be dSLR, having the original color image as input. The result of such
binarization is presented in Figure 2c for the same image. Nearly all the text was successfully
transcribed ([Ldist] close to 1.0), however, there is a large noisy area in the bottom-left corner,
which only did not significantly affected the transcription due to the large margins of the
document. Such a noise was generated by a shadow of the mobile phone and could not
be detected by [Ldist] measure, but checking Perr it is clear that a large amount of noise is
present. A printed document usually has nearly 5% of text pixels (in this image, it was
3.77%), thus a difference of 8.79 from the ground-truth is a large one. If one would want just
to transcribe the text, it could be enough to use such an algorithm for that image; however,
if the margins were smaller or the binarized document would be printed, such a large noise
blurb would be unacceptable.

2.3. Pixel Proportion and Levenshtein Measure (PL)

In order to obtain the best OCR quality while providing visually pleasant human-
readable binary document images, a new quality measure is proposed here:

PL = [Ldist]× (100 − Perr). (3)

Applying such a new measure to the already presented examples of document images
would yield PL = 5.69 for DiegoPavan-C and PL = 84.82 for dSLR-C, while the best
algorithm, according to the proposed quality measure, Yasin-R, yields PL = 90.22. The
corresponding image is presented in Figure 2d, and it has a better overall visual quality
and OCR transcription rate, although the dSLR algorithm is an order of magnitude faster
than the other two algorithms.

2.4. TIFF Group 4 Compression Rate (CRG4)

This work also assessed the size of the monochromatic image files compressed using
the Tag Image File Format Group 4 (TIFF_G4) with Run-length encoding (RLE), a new
quality measure for monochromatic images recently introduced in [16]. Such a compression
scheme is part of the Facsimile (FAX) recommendation and was implemented in most FAX
systems at a time when transmitting resources were scarce. The TIFF_G4 file format is
possibly the most efficient lossless compression scheme for binary images [5]. One central
part of such an algorithm is to apply run-length encoding [15]. Thus, the less salt-and-
pepper noise present in the binary image, the longer the sequences of the same color bits,
yielding a smaller TIFF_G4 file, which claims for less bandwidth for network transmission
and less storage space for archiving. The compression rate is denoted by CRG4 and is
calculated by:

CRG4 = 100 × SG4

SPNG
, (4)

where SG4 denotes the size of the compressed TIFF G4 file and SPNG is the size of the
Portable Network Graphics (PNG) compressed file with compression level 4. It is impor-
tant to remark that such a measure should be used not as an isolated quality measure,
but only to re-rank the algorithms with the best PL, as it provides a secondary fine-grained
quality measure.

2.5. Processing Time Evaluation

The viability of using a binarization algorithm in a document processing pipeline
depends not only on the quality of the final image, but also on the processing time elapsed
by the algorithm and the maximum amount of memory claimed during the process. To the
best knowledge of the authors, the first assessment of binarization algorithms to take the
average processing time into account was [9]. The assessed algorithms were implemented
by their authors using several programming languages and operating systems, running in
different platforms, thus the processing time figures presented here provide the order of
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magnitude of the time elapsed for binarizing the whole dataset. The training times for the
AI-based algorithms were not computed. Two processing devices were used:

• Device 1 (CPU algorithms): Intel(R) Core(TM) i7-10750H CPU @ 2.60 GHz, with
32 GB RAM and a GPU GeForce GTX 1650 4 GB.

• Device 2 (GPU algorithms): Intel(R) Core(TM) i9-9900K CPU @ 3.60 GHz, with 64 GB
RAM and a GPU NVIDIA GeForce RTX 2080 Ti 12 GB.

The algorithms were implemented using two operating systems and different pro-
gramming languages for specific hardware platforms such as GPUs:

• Device 1, Windows 10 (version 1909), Matlab (version 9.4): Akbari_1, Akbari_2,
Akbari_3, CLD, CNW, ElisaTV, Ergina-Global, Ergina-Local, Gattal, Ghosh, HBUT,
Howe, iNICK, Jia-Shi, Lu-Su, Michalak, MO1, MO2, MO3, Yasin;

• Device 1, Linux Pop!_OS (version 20.10): Bataineh, Bernsen, Bradley, Calvo-Zaragoza,
daSilva-Lins-Rocha, DiegoPavan, Huang, Intermodes, ISauvola, IsoData, Johannsen-
Bille, Kapur-SW, Li-Tam, Mean, Mello-Lins, MinError, Minimum, Moments, Niblack,
Nick, Otsu, Percentile, Pun, RenyEntropy, Sauvola, Shanbhag, Singh, Su-Lu, Triangle,
Vahid22, WAN, Wolf, Wu-Lu, Yen, YinYang, YinYang21, YinYang22;

• Device 2, Linux Pop!_OS (version 22.04): DE-GAN, DeepOtsu, DilatedUNet, Doc-
DLinkNet, Doc-UNet, DPLinkNet, HuangBCD, HuangUnet, Robin, Vahid, Yuleny.

The algorithms were executed on different operating systems (OS), but on the same
hardware. For those that could be executed on both OS types, the processing times for
each OS was measured and no significant difference was noticed. This is expected based
on previous experimentation [11]. The mean processing time was used in the analysis. As
already mentioned, the primary purpose is to provide the order of magnitude time of the
processing time elapsed.

2.6. Quality, Space and Time Evaluation

For each of the six devices studied, this paper assesses the performance of the 340 bi-
narization schemes listed applied to photographed documents, with the strobe flash on
and off, in two different ways:

1. Best quality-time and compression: applies the ranking by summation, followed by
sorting by processing time, but clustering by device and observing the compression
rate for the top-rated algorithms.

2. Image-specific best quality-time: makes use of PL and [Ldist]. The ranking is per-
formed by first sorting according to the quality measure and when the quality results
are the same, sorted by processing time. This is illustrated in Figure 3.

The ranking summation applied to binarization was first applied on the series of
competitions Document Image Binarization Competition (DIBCO) [72] and has been then
used in many subsequent competitions and assessments [9]. In Figure 4 a visual description
of this criterion is presented. First, the algorithms are ranked in the context of each
image individually, then the ranking position is summed up across the images, composing
the score for each algorithm. The final ranking is determined by sorting the algorithms
by the score, and the global mean of all images is presented to provide a quantitative
overall ordering.

Sorting directly by the mean of the quality measure gives less precise results, as one
seeks here the algorithm that most frequently appears at the top of the ranking, which
not necessarily means that it is the best quality all the time. In the example of Figure 4,
if one would sort by the [Ldist] mean alone, the Li-Tam algorithm would be the top-ranked,
as for Image 2 its [Ldist] is higher than most of the other algorithms, raising its mean value.
However, it only appears as the top algorithm for that single image. For most images,
Moments is better ranked, indicating that for any given image in such a data set, Moments
may provide better results.

The simple mean sorting method is applicable to the first way of assessing the algo-
rithms, as the aggregated images have very similar features (capturing device and print
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type). As for the second way, the different printing types are aggregated to give an over-
all result for each device, increasing the variability and making the ranking summation
more appropriate.

Aggregate images
with similar features

Sorting by Quality Mean

Rank Algorithm [Ldist] Time

1 jia-shi-R 0.971 22.39

2 ISauvola-B 0.971 0.45

3 Bradley-L 0.970 0.35

4 CNW-R 0.970 5.51

5 ISauvola-C 0.970 0.45

6 WAN-B 0.970 1.20

Sorting by Quality-Time

Rank Algorithm [Ldist] Time

1 ISauvola-B 0.971 0.45

2 jia-shi-R 0.971 22.39

3 Bradley-L 0.970 0.35

4 ISauvola-C 0.970 0.45

5 WAN-B 0.970 1.20

6 CNW-R 0.970 5.51

Figure 3. Example of ranking by the quality-time criteria. The algorithms are first sorted by quality
([Ldist]) and then by time. The red and blue boxes highlight that the first two algorithms have the
same quality results and thus are sorted separately from the other four.

Ranking Summation Sorting

Image 1 Image 2 Image 3 Overall Best Mean

Algorithm [Ldist] Algorithm [Ldist] Algorithm [Ldist] Algorithm Score [Ldist]

1 Moments-R 0.90 Li-Tam-R 0.95 Otsu-R 0.70 Moments-R 1+3+2 = 6 0.753

2 Mean-G 0.80 IsoData-R 0.75 Moments-R 0.68 Li-Tam-R 3+1+4 = 8 0.767

3 Li-Tam-R 0.75 Moments-R 0.68 IsoData-R 0.62 IsoData-R 9 0.657

4 IsoData-R 0.60 Otsu-R 0.62 Li-Tam-R 0.60 Otsu-R 10 0.607

5 Otsu-R 0.50 Mean-G 0.55 Mean-G 0.53 Mean-G 12 0.627

Rank

Figure 4. Example of sorting by the ranking summation criterion. The algorithm marked in red
(Moments-R) is the overall best according to this criterion.

3. Choosing the Best Channel

The recent paper [17] showed that there may be a quality difference in feeding a
binarization algorithm with the original color image, its grayscale equivalent (using the
luminance formula), or the red, green or blue channel. That fact is important, as having
one of the input channels as the best-quality result would save processing space and,
consequently, processing time, while the grayscale image demands extra processing time,
which may be significant for the faster algorithms. Ideally, one would analyze the best
channel for each different type of image; however, for the sake of simplicity, in this study,
only the input channel which provided the best PL summation ranking was chosen for
each algorithm. In several cases, there was a nearly equal quality result between the red or
blue channels and the color image. In some other cases, providing a single channel actually
increased the final quality and the channel that more often provided better quality was the
red channel. Thus, whenever an algorithm yields similar quality results having the full
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color image and one of the channels as input, the red channel is chosen, as that often means
less processing time and space.

Six of the best-ranked algorithms are presented in Table 3 with their respective average
PL and the score of the ranking summation, stressing that the lower the score, the better
the algorithm. The algorithm by Singh was one of the few that the blue channel offered
better results. Among the best algorithms, Sauvola was the one with the greatest difference
between applying a single channel or the original color image.

Table 3. Example of the choice of a channel with some of the best algorithms.

Team Best
Channel

Best Channel Color Image Luminance

Score Mean PL Score Mean PL Score Mean PL

Michalak21a Red 632 96.10 817 96.11 727 96.16
YinYang22 Red 649 93.03 825 93.42 687 93.42
Singh Blue 658 96.14 846 95.42 694 94.98
Wolf Red 635 94.53 844 93.09 687 95.07
Sauvola Red 644 93.37 897 90.37 650 93.03

4. Results

For each device model, with the in-built strobe-flash on and off, the binarization
algorithms were evaluated in two contexts: clustering by the specific image characteristics;
and aggregating the whole dataset (global evaluation). In all results, the letter after the
original algorithm indicates the version of the image used: R—red; G—green; B—blue;
L—luminance; C—original color image. The mean processing time was taken to evaluate
the order of magnitude of the time complexity of the algorithms, thus minor time differences
are not relevant to this study. The grayscale conversion time was not considered here.

Table 4 presents the results for each device using the ranking summation strategy.
YinYang22 and Michalak21a are often among the top 5 for any of the tested devices.
For Samsung Note 10+, only HuangUNet presented significant improvement using a
single channel other than red. For Samsung S21 Ultra 5G, ElisaTV presented good results
compared to recent efficient ones such as YinYang22. For Motorola G9, Michalak21a would
be recommended either with flash on or off, due to high quality and low processing time.
For Samsung A10S, Michalak21a would also be the one recommended. For Samsung S20,
even the most classical algorithm (Ostu) could properly binarize photos taken with flash on.
It is important to notice that Dataset 2 has less complex images than Dataset 1. For Apple
iPhone SE 2 and flash on, which also used Dataset 2, Otsu again appeared as recommended.

The detailed results for each device are presented in Tables 5–8. The quality-time
criteria was used (Figure 3), as the variation in image characteristics is lower, and thus the
standard variation is small enough to allow a fair assessment. It is important to remark
that the standard deviation (SD) of the [Ldist] for the Laser and Deskjet dataset was, for all
the top 5 and nearly all the other algorithms, approximately 0.04, and for book dataset
it was of 0.01, being in some cases close to zero. Only for devices Samsung S21 Ultra 5G
and Samsung Note 10+ there was a more significant variation, with the standard deviation
varying from 0.1 to 0.3. Those results demonstrate that the top five algorithms for all test
datasets provide excellent binarization results for OCR in general.

The PL standard variation was higher due to a higher variation of the Perr measure,
which is part of it. For all devices, the SD of the Deskjet and Laser dataset was approximately
4.00, while for book dataset, it was under 1 for the devices Motorola G9, Samsung S20,
Samsung A10S and between 1 and 3 for devices Samsung Note 10+, Apple iPhone SE 2,
Samsung S21 Ultra 5G. The overall quality perceived by visually inspecting the resulting
images produced by the top-ranked algorithms is good.

In order to choose the most suitable algorithm for some specific application, the first
thing to consider is the intrinsic characteristics of the printing, as different types of ink
and printing methods imply entirely different recommendations, as shown in the tables
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of results. If the document was printed with a deskjet device, it is recommended to
check whether the strobe flash should be on or off prior to the image acquisition. After
that, the binarization algorithm with the best quality-time balance must be applied. If
an application has no significant time constraint, but the quality is so crucial that even a
small amount of lost information is not acceptable, one should choose the top quality-time.
However, if the image binarization is part of an embedded application, its processing time
is a crucial factor, thus the best quality-time trade-off must be chosen.

Two quality measures were used to support the decision of two types of applications:
OCR transcription and printing, archiving or transmission through computer networks.
For the first application (OCR transcription), the [Ldist] measure should be used, as it does
not take into account the visual quality, but only the OCR precision, giving the algorithms
with the best chance to provide the best transcription possible. For the second application,
the visual quality is also important, thus the PL measure is used, which allows the choice of
the best algorithm for OCR transcription and, at the same time, for printing or transmitting.

In general, keeping the strobe flash on or off does not imply any significant difference
in the quality of the best-ranked algorithms; however, in most cases, the set of recom-
mended algorithms varies across the devices. For instance, using Samsung S21 Ultra 5G,
the algorithms recommended for deskjet printed documents are similar if one keeps the
flash on or off, but they are completely different for book offset-printed documents. The
same happens for most other devices, either using the [Ldist] or the PL measure when
comparing different setups. This fact highlights the importance of considering as many
more algorithms as possible, as in some cases, one algorithm that offers excellent results
with one configuration may have totally different results with a different set of capturing
conditions, devices and setup.

In the results table for [Ldist] measure, the first red line represents the performance of
applying the original color image directly on Google Vision OCR without prior binarization.
In most cases, the results are equivalent to the performance of providing a binary image.
However, for the Motorola G9 and Apple iPhone SE 2, no OCR output is given for most of
the captured images. The standard deviation in all cases was nearly zero, which means
there were almost no results for the images. This shows that general-purpose OCR engines
can be greatly improved when provided with a clean binary image.

In several cases, the recommended algorithms for OCR ([Ldist]) match the recommen-
dations using the PL measure with the same input channel or a different one. For instance,
using Wolf-R to binarize laser documents with flash off captured by the Samsung S21 Ultra
5G yields not only excellent OCR results, but also good visual quality images. If one checks
the example binary image using that algorithm at Figure 5b, it is possible to observe how
well this algorithm went, generating a clear binary image with nearly no noise.

It is remarkable how classical global algorithms such as Otsu, dSLR and WAN were
quality-time top-ranked, but only when using the in-built strobe flash on. This happened
because the flash was sufficient to diminish the shadows and allow those global algorithms
to work well and highlights that very simple and fast algorithms can still be used for
uniform images, even if photographed in different places and by different smartphones.

Figures 5 and 6 present some example images. For each input color image, one of the
most recommended algorithms is used, according to the global ranking of Table 4. The
cropped portion of the image shows the critical regions where shadows and the flash light
reflex can be noticed. For nearly all images, an almost perfect binary image was generated.
Only in Figure 5c it is possible to see some noise due to the strong flash light reflected on
the printed laser page. The laser printing process creates a surface that reflects more light
than other types of printing, thus even on the color image, some pixels inside the text stroke
are very close to the background ones, making it almost impossible to generate a perfect
binary image. No algorithm tested here did better than that, which highlights a possible
problem to be solved by future proposals.
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Table 4. Overall results by capturing device sorted according to the ranking summation criterion.

FLASH OFF FLASH ON

Rank Algorithm Score PL CRG4 Time (s) Algorithm Score PL CRG4 Time (s)

Dataset 1

Samsung Note 10+

1 HuangUNet-B 245 96.46 75.22% 58.67 YinYang22-R 261 96.43 79.99% 5.85
2 YinYang22-R 263 96.25 80.25% 6.50 HuangUNet-B 266 96.37 74.79% 58.05
3 Yasin-R 263 96.18 65.60% 1.90 ElisaTV-R 315 95.79 47.36% 8.82
4 iNICK-R 266 96.11 49.26% 3.46 HuangBCD-R 321 96.04 74.88% 249.90
5 Michalak-R 283 96.22 49.17% 0.06 Yasin-R 329 95.65 64.91% 1.76

Samsung S21 Ultra 5G

1 ElisaTV-R 235 96.30 47.81% 10.38 YinYang22-R 273 91.36 80.20% 5.54
2 YinYang22-R 243 96.13 80.05% 6.36 Michalak21a-R 276 95.98 48.40% 0.04
3 Yasin-R 265 95.95 65.02% 1.78 Singh-B 285 95.45 76.03% 0.34
4 Michalak21a-R 269 91.51 48.02% 0.05 Nick-R 286 95.26 76.07% 0.16
5 Singh-B 289 94.34 75.68% 0.32 ElisaTV-R 310 95.74 48.06% 10.07

Dataset 2

Motorola G9

1 Michalak21a-R 218 96.92 47.51% 0.05 Gattal-R 138 97.23 63.09% 53.09
2 ElisaTV-R 230 96.75 45.83% 12.47 Michalak21a-R 150 97.26 47.83% 0.05
3 Michalak-R 230 96.88 47.51% 0.05 YinYang-R 164 97.23 78.48% 1.81
4 YinYang21-R 231 96.83 69.14% 1.71 ElisaTV-R 181 97.18 47.18% 12.21
5 Michalak21c-R 231 96.90 46.71% 1.48 YinYang21-R 214 97.12 69.33% 1.64

Samsung A10S

1 YinYang22-R 232 97.08 80.84% 4.63 Wolf-R 140 97.24 75.19% 0.16
2 Michalak21a-R 247 97.03 44.06% 0.03 Singh-B 147 97.23 75.19% 0.24
3 Michalak-R 248 97.01 44.13% 0.03 Yasin-R 149 97.26 62.78% 1.30
4 Michalak21c-R 265 96.99 44.07% 0.84 Michalak21a-R 155 97.17 44.03% 0.03
5 YinYang21-R 282 96.85 66.65% 1.08 Nick-R 174 97.21 75.11% 0.11

SamsungS20

1 Michalak21c-R 199 97.00 47.97% 1.09 Gattal-R 170 97.20 63.78% 52.14
2 Michalak-R 216 96.86 48.16% 0.04 Otsu-R 189 97.11 75.93% 0.02
3 Michalak21a-R 230 96.88 48.13% 0.04 YinYang-R 210 97.08 77.29% 1.42
4 Bradley-R 251 96.82 76.34% 0.29 YinYang22-R 226 97.13 81.39% 5.07
5 YinYang-R 266 96.82 78.03% 1.45 Li-Tam-R 246 97.04 75.89% 0.12

Apple iPhone SE 2

1 Yasin-R 156 95.44 63.18% 1.59 Otsu-R 192 97.03 75.11% 0.01
2 Sauvola-R 162 96.93 75.49% 0.14 YinYang22-R 211 96.94 81.19% 5.29
3 Singh-B 163 96.94 75.47% 0.23 Yasin-R 229 96.89 62.80% 1.40
4 YinYang22-R 167 96.87 81.32% 5.51 YinYang21-R 235 96.88 67.15% 1.14
5 Nick-R 173 96.90 75.46% 0.14 Gattal-R 235 96.88 62.28% 51.36
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Table 5. Summary of results with PL measure and flash OFF sorted according to the quality-time criteria.

DESKJET LASER BOOK

Rank Algorithm PL Time (s) Algorithm PL Time (s) Algorithm PL Time (s)

Dataset 1—Flash OFF

Samsung Note 10+

1 iNICK-R 96.47 3.48 Sauvola-R 96.59 0.19 Vahid22-C 98.41 29.22
2 Sauvola-R 96.07 0.19 Nick-R 96.58 0.19 HuangUNet-B 98.18 50.22
3 Yasin-R 95.99 1.77 iNICK-R 96.57 3.49 CNW-R 97.97 3.60
4 Nick-R 95.88 0.19 Yasin-R 96.50 1.94 DPLinkNet-C 97.87 9.10
5 Singh-B 95.78 0.40 ElisaTV-R 96.50 11.66 DocDLink-C 97.81 7.01

Samsung S21 Ultra 5G

1 Sauvola-R 96.59 0.19 Wolf-R 96.75 0.26 Michalak-R 97.78 0.04
2 iNICK-R 95.89 3.43 Nick-R 96.54 0.19 CNW-R 97.75 3.37
3 Wolf-R 95.81 0.25 Singh-B 96.45 0.38 ElisaTV-R 97.65 8.73
4 Singh-B 95.66 0.37 Yasin-R 96.22 1.85 Vahid22-C 97.45 29.14
5 Nick-R 95.62 0.18 iNICK-R 96.14 3.49 Jia-Shi-R 97.44 18.45

Dataset 2—Flash OFF

Motorola G9

1 Nick-R 96.20 0.21 YinYang21-R 96.52 1.67 Michalak21b-R 99.10 3.13
2 iNICK-R 95.63 3.53 YinYang-R 96.51 1.74 Michalak21c-R 99.06 1.48
3 YinYang21-R 95.56 1.73 iNICK-R 96.46 3.50 CNW-R 99.01 3.55
4 Singh-B 95.48 0.51 Nick-R 96.34 0.20 Michalak-R 98.99 0.05
5 Yasin-R 95.44 2.13 Michalak21a-R 96.28 0.05 DPLinkNet-C 98.86 11.86

Samsung A10S

1 Sauvola-R 96.31 0.12 YinYang22-R 96.70 4.59 ISauvola-R 99.14 0.31
2 Singh-B 96.23 0.26 ElisaTV-R 96.55 7.39 Michalak21c-R 98.97 0.84
3 Nick-R 96.15 0.12 YinYang-R 96.51 1.08 Michalak-R 98.80 0.03
4 Yasin-R 95.90 1.30 Michalak21a-R 96.41 0.03 Vahid22-C 98.80 17.47
5 iNICK-R 95.80 3.27 YinYang21-R 96.36 1.04 WAN-R 98.77 0.78

Samsung S20

1 Nick-R 96.10 0.15 YinYang-R 96.10 1.41 Michalak21c-R 99.10 1.04
2 Singh-B 95.83 0.34 Michalak21c-R 96.07 1.14 DocUNet-L 99.07 45.50
3 iNICK-R 95.63 3.35 Michalak21a-R 95.98 0.04 Michalak-R 99.06 0.04
4 Yasin-R 95.31 1.63 Bradley-R 95.98 0.31 ISauvola-R 99.05 0.38
5 YinYang-R 95.19 1.37 Michalak-R 95.95 0.04 Bradley-R 99.04 0.28

Apple iPhone SE 2

1 Yasin-R 95.51 1.67 Yasin-R 96.65 1.60 Singh-B 98.70 0.17
2 Nick-R 95.40 0.14 YinYang22-R 96.52 6.02 YinYang21-R 98.66 1.11
3 Sauvola-R 95.35 0.15 ElisaTV-R 96.50 7.38 Sauvola-R 98.59 0.12
4 YinYang22-R 95.31 5.76 Nick-R 96.37 0.16 Wolf-R 98.53 0.17
5 iNICK-R 95.30 3.31 Sauvola-R 96.28 0.16 Nick-R 98.42 0.12
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Table 6. Summary of results with PL measure and flash ON state sorted according to the quality-time
criteria.

DESKJET LASER BOOK

Rank Algorithm PL Time (s) Algorithm PL Time (s) Algorithm PL Time (s)

Dataset 1—Flash ON

Samsung Note 10+

1 Sauvola-R 96.25 0.19 YinYang22-R 96.69 6.35 HuangUNet-B 97.62 48.25
2 Yasin-R 96.07 1.98 ElisaTV-R 96.68 11.88 Calvo-Z-R 97.59 1.26
3 Nick-R 96.01 0.19 Yasin-R 96.65 1.82 DocDLink-C 97.29 6.55
4 Singh-B 95.94 0.37 Sauvola-R 96.60 0.20 DocUNet-L 97.27 39.87
5 Yen-CC-C 95.92 0.16 YinYang21-R 96.52 1.55 Vahid22-C 97.24 27.96

Samsung S21 Ultra 5G

1 Nick-R 96.11 0.18 Singh-B 96.66 0.41 HuangBCD-R 98.12 202.48
2 Singh-B 96.09 0.40 Nick-R 96.58 0.18 WAN-R 97.78 0.87
3 Wolf-R 95.68 0.25 Michalak21a-R 96.02 0.05 HuangUNet-B 97.65 47.00
4 Michalak21a-R 95.27 0.05 Yasin-R 95.97 1.91 CNW-R 97.62 3.35
5 Yasin-R 95.27 1.80 YinYang21-R 95.91 1.55 DocDLink-C 97.48 6.28

Dataset 2—Flash OFF

Motorola G9

1 Sauvola-R 96.66 0.22 Nick-R 96.74 0.20 Michalak21a-R 99.29 0.05
2 Nick-R 96.08 0.21 YinYang-R 96.62 1.69 ElisaTV-R 99.28 11.42
3 Singh-B 95.81 0.49 Gattal-R 96.60 53.34 Bradley-R 99.24 0.35
4 Wolf-R 95.57 0.29 Singh-B 96.58 0.45 Michalak21c-R 99.15 1.30
5 YinYang-R 95.56 1.83 YinYang21-R 96.44 1.59 Michalak-R 99.06 0.05

Samsung A10S

1 Sauvola-R 96.23 0.12 Nick-R 96.40 0.11 Wolf-R 99.46 0.16
2 Yasin-R 95.68 1.25 Yasin-R 96.38 1.27 Michalak21c-R 99.41 0.80
3 ElisaTV-R 95.62 5.95 YinYang-R 96.18 1.05 Michalak21a-R 99.35 0.03
4 Nick-R 95.56 0.12 Wolf-R 96.12 0.16 Singh-B 99.32 0.23
5 Singh-B 95.56 0.25 Singh-B 96.12 0.25 YinYang22-R 99.20 4.47

Samsung S20

1 Shanbhag-R 96.36 0.13 Sauvola-R 96.67 0.16 ErginaL-L 99.42 0.56
2 Nick-R 95.77 0.15 Yasin-R 96.66 1.59 Michalak21c-R 99.36 0.95
3 Singh-B 95.57 0.33 Otsu-R 96.57 0.02 Michalak21a-R 99.35 0.04
4 Gattal-R 95.30 52.04 YinYang22-R 96.51 5.27 Bradley-R 99.35 0.26
5 Sauvola-R 95.26 0.16 Gattal-R 96.49 52.64 ErginaG-L 99.28 0.42

Apple iPhone SE 2

1 ElisaTV-R 96.11 3.18 Otsu-R 96.57 0.02 YinYang21-R 98.74 1.09
2 Gattal-R 95.93 51.76 Nick-R 96.55 0.15 ErginaG-L 98.60 0.36
3 Li-Tam-R 95.87 0.12 ElisaTV-R 96.54 4.07 YinYang-R 98.58 1.34
4 Nick-R 95.83 0.15 Singh-B 96.53 0.26 ErginaL-L 98.56 0.49
5 Singh-B 95.79 0.26 YinYang22-R 96.51 5.51 YinYang22-R 98.56 4.26
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Table 7. Summary of results with Ldist measure and flash OFF sorted according to the quality-time
criteria. Note that Google Vision (in red) is not a binarization algorithm, but an OCR platform.

DESKJET LASER BOOK

Rank Algorithm [Ldist] Time (s) Algorithm [Ldist] Time (s) Algorithm [Ldist] Time (s)

Dataset 1—Flash OFF

Samsung Note 10+

0 Google Vision 0.971 – Google Vision 0.971 – Google Vision 0.984 –
1 HuangUNet-B 0.971 64.271 HuangUNet-B 0.971 64.329 iNICK-R 0.990 3.421
2 Michalak-R 0.970 0.051 Michalak-R 0.970 0.051 Vahid22-C 0.990 29.224
3 Nick-R 0.970 0.188 Michalak21a-R 0.970 0.052 Singh-B 0.988 0.255
4 Sauvola-R 0.970 0.194 Nick-R 0.970 0.188 Yasin-R 0.986 1.967
5 Bradley-R 0.970 0.352 Singh-B 0.970 0.408 HuangUNet-B 0.986 50.216

Samsung S21 Ultra 5G

0 Google Vision 0.971 – Google Vision 0.971 – Google Vision 0.982 –
1 Jia-Shi-R 0.971 22.391 Wolf-R 0.971 0.259 Niblack-C 0.988 0.133
2 Wolf-R 0.970 0.254 CNW-R 0.971 3.506 ElisaTV-R 0.986 8.726
3 ISauvola-R 0.970 0.453 Jia-Shi-R 0.971 22.470 Michalak-R 0.985 0.038
4 WAN-R 0.970 1.209 Nick-R 0.970 0.187 Bradley-R 0.984 0.266
5 Michalak21c-R 0.970 1.328 Robin-L 0.970 0.979 WAN-R 0.984 0.913

Dataset 2—Flash OFF

Motorola G9

0 Google Vision 0.000 – Google Vision 0.000 – Google Vision 0.001 –
1 Bradley-R 0.968 0.401 iNICK-R 0.970 3.503 WAN-R 0.997 1.226
2 CNW-R 0.968 3.595 ISauvola-R 0.969 0.491 CNW-R 0.997 3.547
3 YinYang22-R 0.968 6.636 YinYang21-R 0.969 1.672 Jia-Shi-R 0.997 23.597
4 Michalak21a-R 0.967 0.055 CNW-R 0.969 3.578 Michalak21a-R 0.996 0.050
5 Michalak-R 0.967 0.056 YinYang22-R 0.969 6.486 Singh-B 0.996 0.391

Samsung A10S

0 Google Vision 0.970 – Google Vision 0.971 – Google Vision 0.995 –
1 dSLR-R 0.971 0.030 YinYang22-R 0.969 4.588 Michalak21a-R 0.996 0.033
2 WAN-R 0.970 0.795 CNW-R 0.968 3.240 ISauvola-R 0.996 0.308
3 ISauvola-R 0.969 0.294 Vahid22-C 0.968 16.820 WAN-R 0.996 0.776
4 Michalak21c-R 0.969 0.849 Vahid-B 0.968 17.314 Michalak21c-R 0.996 0.838
5 YinYang21-R 0.969 1.050 Michalak21a-R 0.967 0.032 ElisaTV-R 0.996 5.948

Samsung S20

0 Google Vision 0.971 – Google Vision 0.971 – Google Vision 0.995 –
1 ISauvola-R 0.970 0.376 Michalak21c-R 0.968 1.141 Nick-R 0.996 0.147
2 YinYang22-R 0.970 5.789 CNW-R 0.968 3.441 WAN-R 0.996 0.973
3 Vahid22-C 0.970 21.839 Vahid22-C 0.968 22.565 DE-GAN-G 0.996 3.334
4 WAN-R 0.969 1.032 Michalak-R 0.967 0.043 CNW-R 0.996 3.410
5 Michalak21c-R 0.969 1.103 Bradley-R 0.967 0.307 ElisaTV-R 0.996 8.087

Apple iPhone SE 2

0 Google Vision 0.804 – Google Vision 0.000 – Google Vision 0.990 –
1 ErginaG-L 0.972 0.409 Otsu-R 0.971 0.017 WAN-R 0.991 0.798
2 Gattal-R 0.972 50.697 WAN-R 0.971 1.027 CNW-R 0.991 3.416
3 Otsu-R 0.971 0.015 DPLinkNet-C 0.971 9.845 Singh-B 0.990 0.173
4 Li-Tam-R 0.971 0.105 Vahid-B 0.971 22.857 Bradley-R 0.990 0.214
5 Moments-R 0.970 0.106 Gattal-R 0.971 50.781 ISauvola-R 0.990 0.312
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Table 8. Summary of results with Ldist measure and flash ON sorted according to the quality-time
criteria. Note that Google Vision (in red) is not a binarization algorithm, but an OCR platform.

DESKJET LASER BOOK

Rank Algorithm [Ldist] Time (s) Algorithm [Ldist] Time (s) Algorithm [Ldist] Time (s)

Dataset 1—Flash ON

Samsung Note 10+

0 Google Vision 0.971 – Google Vision 0.971 – Google Vision 0.984 –
1 DocDLink-C 0.971 8.926 Michalak21b-R 0.970 3.230 Nick-R 0.984 0.134
2 DPLinkNet-C 0.971 12.102 Yasin-R 0.969 1.822 YinYang22-R 0.983 5.227
3 Jia-Shi-R 0.971 23.264 Vahid-B 0.969 29.386 Calvo-Z-R 0.981 1.256
4 DilatedUNet-G 0.971 36.097 HuangUNet-B 0.969 65.967 HuangUNet-B 0.981 48.253
5 Michalak-R 0.970 0.049 Akbari3-L 0.969 79.356 WAN-R 0.979 0.890

Samsung S21 Ultra 5G

0 Google Vision 0.971 – Google Vision 0.971 – Google Vision 0.983 –
1 ISauvola-R 0.971 0.434 Vahid-B 0.969 27.036 HuangBCD-R 0.987 202.484
2 Michalak21a-R 0.970 0.049 Singh-B 0.968 0.414 Michalak21a-R 0.982 0.037
3 WAN-R 0.970 1.183 Nick-R 0.967 0.181 Singh-B 0.982 0.245
4 CNW-R 0.970 3.502 Michalak21c-R 0.967 1.318 WAN-R 0.982 0.865
5 DocDLink-C 0.970 8.442 Vahid22-C 0.967 38.140 HuangUNet-B 0.982 47.002

Dataset 2—Flash ON

Motorola G9

0 Google Vision 0.000 – Google Vision 0.000 – Google Vision 0.001 –
1 Michalak21a-R 0.971 0.055 Michalak21a-R 0.970 0.053 Vahid-B 0.997 26.296
2 Bataineh-R 0.971 0.153 Michalak-R 0.970 0.053 Yen-CC-C 0.996 0.170
3 Nick-R 0.971 0.209 Bataineh-R 0.970 0.147 Singh-B 0.996 0.360
4 Sauvola-R 0.971 0.216 ISauvola-R 0.970 0.478 ErginaG-L 0.996 0.562
5 Bradley-R 0.971 0.396 WAN-R 0.970 1.314 WAN-R 0.996 1.201

Samsung A10S

0 Google Vision 0.967 – Google Vision 0.971 – Google Vision 0.997 –
1 ElisaTV-R 0.970 5.952 Michalak21a-R 0.968 0.032 Michalak21a-R 0.998 0.034
2 HuangBCD-R 0.970 171.542 Michalak-R 0.968 0.032 Nick-R 0.998 0.115
3 dSLR-R 0.969 0.025 Bradley-R 0.968 0.218 WAN-R 0.998 0.754
4 Moments-R 0.969 0.026 Singh-B 0.968 0.254 Jia-Shi-R 0.998 15.750
5 Michalak21a-R 0.969 0.032 YinYang22-R 0.968 4.308 HuangUNet-B 0.998 39.811

Samsung S20

0 Google Vision 0.967 – Google Vision 0.971 – Google Vision 0.997 –
1 Nick-R 0.970 0.154 ISauvola-R 0.970 0.362 Otsu-R 0.997 0.014
2 ISauvola-R 0.970 0.372 YinYang22-R 0.970 5.271 dSLR-R 0.997 0.098
3 CNW-R 0.970 3.419 Bataineh-R 0.969 0.111 Li-Tam-R 0.997 0.098
4 YinYang22-R 0.970 5.221 Jia-Shi-R 0.969 20.096 Wolf-R 0.997 0.186
5 Triangle-C 0.969 0.148 Vahid22-C 0.969 21.402 Bradley-R 0.997 0.257

Apple iPhone SE 2

0 Google Vision 0.638 – Google Vision 0.000 – Google Vision 0.987 –
1 WAN-R 0.971 0.992 ISauvola-R 0.969 0.347 YinYang21-R 0.991 1.087
2 Otsu-R 0.970 0.016 WAN-R 0.969 0.958 Michalak21b-R 0.991 2.254
3 Michalak-R 0.970 0.041 DE-GAN-G 0.969 3.181 DE-GAN-G 0.991 2.860
4 Bataineh-R 0.970 0.114 YinYang22-R 0.969 5.508 Vahid22-C 0.991 16.958
5 Moments-R 0.970 0.122 DocDLink-C 0.969 7.026 Li-Tam-R 0.990 0.034



J. Imaging 2023, 9, 41 18 of 24

(a)

(b)

(c)

Figure 5. Dataset 1 example images. The red boxes indicates the crop region for the zoomed example
next to each image. (a) Samsung Note 10+, book offset page, strong natural light, flash off with strong
shadow, binarized by HuangUNet-B; (b) Samsung S21, laser printed, artificial light, medium shadow,
flash off, binarized by Wolf-R; (c) Same as (b), but with flash on and binarized by YinYang22-R.
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(a)

(b)

(c)

Figure 6. Dataset 2 example images. The red boxes indicates the crop region for the zoomed example
next to each image. (a) Apple iPhone SE 2, book offset page, artificial light, flash off with medium
shadow; (b) Samsung S20, deskjet printed, artificial light, medium shadow, flash off; (c) Same as (b),
but with flash on, note that on deskjet printed pages no flash reflex interfere on the photo.
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5. Conclusions

Document binarization is a key step in many document processing pipelines, de-
manding for quality and time performance. This paper analyses the performance of
68 binarization algorithms in images acquired using six different models of smartphones
from three different manufacturers, widely used today. The quality, size and processing
time of the binarization algorithms are assessed. A novel quality measure is proposed that
combines the Levenshtein distance with the overall visual quality of the binary image. The
mean compression rate of the TIFF G4 file with RLE compression was also analyzed; it
also provides a quality analysis as the quantity of salt-and-pepper noise in the final image
degrades file compression performance.

The results were presented through two perspectives: a detailed evaluation consider-
ing the device, the in-built strobe flash state (on or off), and the printing technology (deskjet,
laser, or offset); a device-based evaluation considering the visual quality and compressed
binary image file size.

Several conclusions may be drawn from the presented results:

1. Keeping the strobe flash on or off may not imply in a better quality image, but one
needs to make the right choice of the binarization algorithm in order to have the best
monochromatic image.

2. The ranking order is nearly completely different through all the different possible
setups, thus it reinforces the claim that no binarization algorithm is good for all
document images.

3. The quality of the images yielded by the top-rated algorithms with the offset-printed
documents (book) dataset is almost perfect if considering the OCR transcriptions precision.

4. In several cases, as for Apple iPhone SE 2, some global algorithms had the best
performance. They are much faster than the newer algorithms and, in some rare cases,
even generate cleaner images (better PL).

5. Even when not in the top rank, newer algorithms such as Michalak or YinYang
algorithms and their variants are dominant in the results. It is important to stress
that they were developed having as target photographed documents, while most of
the other algorithms, overall the global ones, were developed aiming at the scanned
document images.

6. If the compression rate is a priority, YinYang22, with any of the input versions of
the image, would be the most recommended algorithm overall, as it offers the best
compression rates while maintaining high quality.

7. If processing time is a priority, Michalak21a with the red channel would be the most
recommended algorithm overall, as it requires a small processing time, comparable to
one of the classical algorithms, while providing high-quality binary images.

8. This paper also shows that the PL measure provides a better overall quality evaluation
of binarization algorithms.

9. Analyzing the TIFF G4 compression rate with RLE has also proved valuable, as,
on several occasions, two algorithms provided similar quality results, but one may be
two times more efficient in this compression scheme.

10. None of the tested algorithms could perfectly binarize the regions of the laser-printed
documents in which the strobe flash (whenever on) created a strong noise in the
central region of the image, which suggests that such a set-up should be avoided
when photographing laser printed documents.

The recent paper [18] changes the outlook from the document to the device, in such
a way that if one had to in-built one binarization algorithm in an embedded application
handling document images, which would that be? That algorithm would have to be light
and fast enough to yield good quality-space-time performance. Following that approach
and looking at Table 4, one could recommend the following algorithms for each device:

Samsung Note 10+: YinYang22-R, Yasin-R, Michalak-R or HuangUNet-B.

Samsung S21 Ultra 5G: ElisaTV-R, YinYang22-R, Michalak21a-R or Singh-B.
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Motorola G9: Michalak21a-R, Michalak-R, YinYang-R, ElisaTV-R.

Samsung A10S: Michalak21a-R, YinYang22-R, Wolf-R, Singh-B.

Samsung S20: Michalak21c-R, Michalak-R, YinYang22-R, YinYang-R.

Apple iPhone SE 2: Yasin-R, YinYang22-R, YinYang21-R, Singh-B.

No doubt the list above may suffer variations as visual inspection carries some degree
of subjectivity amongst time performances of around the same order of magnitude.

The authors of this paper recently became aware of the reference [73], in which the
authors look at the impact on binarization of the color-to-gray conversion algorithms.
Besides the binarization performance of the color-to-gray CIE Y (International Commission
on Illumination luminance channel) conversion algorithm (assessed here), reference [73]
looks at five other algorithms. It proposes two new schemes focusing on the quality of the
final monochromatic image and makes a global assessment of scanned documents. The
analysis of the performance of such color-to-gray conversion algorithms on photographed
documents is left for further work.

Another important point also left as line for further work is setting in-built the strobe
flash in auto mode, which means that the device itself will decide, depending overall on
the quantity of light in the environment, if the flash will be activated or not.
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