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Abstract: In this study, we aimed to enhance the contouring accuracy of cardiac pacemakers by
improving their visualization using deep learning models to predict MV CBCT images based on kV
CT or CBCT images. Ten pacemakers and four thorax phantoms were included, creating a total of
35 combinations. Each combination was imaged on a Varian Halcyon (kV/MV CBCT images) and
Siemens SOMATOM CT scanner (kV CT images). Two generative adversarial network (GAN)-based
models, cycleGAN and conditional GAN (cGAN), were trained to generate synthetic MV (sMV) CBCT
images from kV CT/CBCT images using twenty-eight datasets (80%). The pacemakers in the sMV
CBCT images and original MV CBCT images were manually delineated and reviewed by three users.
The Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and mean surface distance
(MSD) were used to compare contour accuracy. Visual inspection showed the improved visualization
of pacemakers on sMV CBCT images compared to original kV CT/CBCT images. Moreover, cGAN
demonstrated superior performance in enhancing pacemaker visualization compared to cycleGAN.
The mean DSC, HD95, and MSD for contours on sMV CBCT images generated from kV CT/CBCT
images were 0.91 ± 0.02/0.92 ± 0.01, 1.38 ± 0.31 mm/1.18 ± 0.20 mm, and 0.42 ± 0.07 mm/
0.36 ± 0.06 mm using the cGAN model. Deep learning-based methods, specifically cycleGAN and
cGAN, can effectively enhance the visualization of pacemakers in thorax kV CT/CBCT images,
therefore improving the contouring precision of these devices.

Keywords: CT/CBCT artifacts; machine learning; generative adversarial networks; pacemaker
visualization

1. Introduction

Cancer and heart disease stand as the two leading causes of death in the United
States [1]. As the incidence of both diseases continues to rise, more radiation oncology
patients will present with cardiac-implantable electronic devices (CIEDs), posing challenges
for radiation therapy workflows. One challenge is the image quality of the computed
tomography (CT) and cone beam CT (CBCT) images used for radiation planning and
daily adaptive planning. The presence of metallic devices, characterized by a high atomic
number and density, significantly attenuates X-ray beams, resulting in beam-hardening.
This phenomenon entails the preferential absorption of lower-energy X-rays, leading
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to an overestimation of tissue density and the formation of streaks or shadows around
the device. Moreover, metal objects can scatter X-rays, contributing to streak artifacts
and distorting the representation of surrounding tissues. The artifacts introduced by
Cardiovascular Implantable Electronic Devices (CIEDs) have the potential to impede
anatomical clarity, increasing variability in device contouring among different experts.
Contouring these devices and overriding their density is a crucial step in the radiotherapy
treatment planning process, ensuring accurate dose calculations, precise treatment delivery,
and overall patient safety. This impact is further influenced by the diverse shapes and sizes
of CIEDs used in medical procedures, leading to varying degrees of severity. Extensive
research across multiple disease sites in radiation oncology has thoroughly explored the
negative effects of CT artifacts on contouring and dose calculation [2–4]. In a study by
DiFilippo et al., implantable cardioverter defibrillators caused streaking artifacts that
spanned across 30–50 mm of tissue equivalent [5]. In addition, the presence of metal
artifacts in CT scans hinders the diagnostic accuracy and overall image quality, affecting the
visualization of various tissues and their surroundings [6]. Addressing and resolving these
artifacts are pivotal steps for ensuring the reliability and efficacy of CT imaging, affecting
not only diagnostic and treatment planning but overall patient care.

Current solutions for reducing artifacts in CT imaging utilize a combination of ad-
vanced techniques. One such technology is dual-energy CT, which is characterized by
data capture at two distinct energy spectra. Virtual monochromatic pictures created at
high-kiloelectron volt levels are known to lessen beam-hardening effects. In addition, ap-
proaches to the commercial reduction in metal artifacts have been developed and tested for
their efficacy. One study compared the quantitative measures of four manufacturers’ metal
artifact reduction (MAR) approaches to CT imaging with a self-made acrylic phantom; the
effect was substantial with three types of metal implants but not with dental fillings because
of their high density. These results demonstrate the importance of selecting the right metal
artifact reduction approach based on the type and size of the metal implant for optimal
artifact reduction in CT imaging [7]. Some of the latest advancements in this domain
involve deep learning-based tools. Lu et al. employed a novel reinforced transformer
network model to enhance vessel imaging in coronary CT angiography, showcasing the
adaptability of deep learning architectures to address specific challenges [8]. Other work
involves the use of convolutional neural networks to eliminate motion-induced artifacts
and dental artifacts on CT scans [9,10]. While state-of-the-art commercial MAR methods
are known for their accuracy, recent research by Huang et al. has revealed that deep
learning MAR methods like generative adversarial networks (GANs) surpass these tools in
performance [11].

In recent years, GANs have been investigated to address the problem of medical image
artifacts in dose calculation for treatment planning. Research has been conducted into the
use of GANs in the accurate generation of synthetic CTs [12,13]. GANs have also been
investigated for multi-modal medical image generation (e.g., MR to CT, CT to PET, or
CBCT to CT), dose reduction, and image artifact removal [14–18]. Gomi et al. reported
adequate artifact removal in digital tomosynthesis at up to 55% radiation dose reduction
after the extensive model optimization of GAN architectures to minimize the mean squared
error and structural similarity [19]. Another study by Liao et al. reduced metal artifacts
on CT and CBCTs by correcting the affected regions through joint projection–sinogram
correction and adversarial learning [20]. While GANs have been employed in various MAR
research contexts, their application to addressing artifacts caused by cardiac pacemakers in
CT/CBCT images, which obscure the outlines of these devices, has not been explored.



J. Imaging 2023, 9, 245 3 of 11

In this study, we propose a novel method for improving the visualization of pacemak-
ers on kV CT/CBCT images using megavoltage (MV) CBCT to synthetically produce scans
of similar quality. While CT provides the golden standard of image quality, cone-beam CT
(CBCT) is more effective for patient positioning and verifying radiation dose because it is
faster. It can also be incorporated in a linear accelerator that delivers radiation treatment
which reduces misalignment issues when moving from imaging to treatment units. MV
CBCT is more accurate for imaging high Z materials than kilovoltage (kV) CBCT is; the
higher energy leads to less scatter from the devices and therefore the absence of streaking
artifacts on the scan. To the best of our knowledge, this is the first feasibility investigation
of the use of GAN-based models to produce synthetic MV (sMV) CBCT images from kV
CT/CBCT images to help visualize pacemakers on CT images and hence better contour
them. The primary contributions of this paper include (a) investigating and demonstrating
the efficacy of GAN-based deep learning models in enhancing the visualization of pacemak-
ers on kV CT/CBCT images; (b) introducing MV CBCT for model development, enabling
improved pacemaker visualization through the generation of synthetic MV CBCT images.

2. Materials and Methods

In this study, we created, trained, and compared two deep learning models. The goal
was to improve the visualization of pacemakers on kV CT/CBCT images with streaking
artifacts caused by this type of device. For this purpose, we collected and matched kV
CT, MV CBCT, and kV CBCT images. The following sections detail the specifics on data
acquisition, pre-processing, and model training and evaluation.

2.1. Data Acquisition

CT images were acquired using a Siemens SOMATOM CT scanner (USA) with a
2 mm slice thickness, 120 kVp, and 52.5 mAs. Chest CT images were reconstructed using
SAPHIRE strength 3, kernel Qr40, and artifacts were suppressed with iterative metal artifact
reduction (iMAR) on the pacemaker setting. A Varian Halcyon was used to acquire MV
CBCT and kV CBCT images. The MV CBCT images were acquired under high-quality
mode (10 MU delivered) via continuous gantry rotation from 260◦ to 100◦. The kV CBCT
images were acquired under thorax mode enhanced with iterative reconstruction.

Ten pacemakers from seven vendors, EliTE II (Medtronic, Minneapolis, MN, USA),
Discovery II (Guidant Corporation, Indianapolis, IN, USA), InSync Sentry (Medtronic,
USA), INSIGINIA I Plus (Guidant Corporation, USA), VENT AK (Medtronic, USA), AC-
TIVITRAX(Medtronic, USA), and St. Jude Medical (Saint Paul, MN, USA), and four thorax
phantoms, Rando, CIRS [21,22], and two 3D-printed chest wall phantoms [23], were in-
cluded in our study. Thirty-five pacemaker/phantom combinations were imaged with MV
CBCT, kV CBCT, and CT, resulting in 3 images, with a total of 105 images. Each of the
pacemakers were placed flat on the chest area of the phantoms, securely covered by a 5 mm
bolus (Figure 1 shows the setups for the different phantoms). A phantom and a pacemaker
were assembled before obtaining the CBCT scans and then transferred to the CT room
to acquire CT images. Maintaining consistent and accurate setup positions between the
CBCT and CT scans was of paramount importance. To achieve this, a systematic approach
was employed. Firstly, during the initial setup, both sides of the phantoms were metic-
ulously marked to serve as reference points. This marking procedure ensured a reliable
and reproducible setup. Subsequently, to minimize disturbances and maintain alignment
integrity, the phantoms, each with their associated pacemaker, were transported to the CT
room using specialized carts. Upon reaching the CT room, the phantoms were arranged in
accordance with the previously established markings, ensuring a seamless transition from
CBCT to CT imaging.
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Figure 1. Setups of each phantom: (a) CIRS, (b) 3D-printed phantom, and (c) Rando at the
Halcyon table.

2.2. Data Preprocessing

Although the phantoms were marked and placed carefully to ensure minimal differ-
ences in setup between CBCT and CT acquisitions, misalignments between the MV CBCT
and CT images were unavoidable. Therefore, rigid registration between MV CBCT and CT
images was needed to obtain paired data for the conditional GAN model training. On the
other hand, the kV CBCT and MV CBCT images were acquired at the same position without
moving the phantoms, and the kV CBCT images had similar image intensities as the CT
images. Therefore, registration between the kV CBCT and MV CBCT was not needed.

To improve the accuracy of the registration, we registered CT to kV CBCT images.
We utilized SimpleITK [17] to implement a rigid registration method that minimizes the
Mattes Mutual Information between kV CBCT and CT scans through the application of
a gradient optimization algorithm. A multi-resolution framework with a shrink factor of
4, 2, and 1 was employed to speed up the registration process. The aligned CT, kV CBCT,
and MV CBCT images were then cropped to the overlapped region. Subsequently, the CT
and kV CBCT images were clipped with CT numbers of −1000 to 2000 Hounsfield Units
(HU), and the MV CBCT image was clipped with −1000 to 400 HU.

To generate image patches for training the deep learning models, body masks were
generated on MV CBCT images using a thresholding method. To limit the air region and
maximize the amount of the patient’s body in each patch, the patch centers were restricted
to within the body, using the body mask as a guide. The 2D 256 × 256 patches were
extracted for model training.

2.3. Model Training

In this study, two deep learning models, conditional GAN (cGAN) [24] and cycle-
GAN [25,26], were used to translate the CT/kV CBCT images to MV CBCT. Their frame-
works are shown in Figure 2. The generator and discriminator networks in GANs work in
opposition to each other, with the generator aiming to generate realistic synthetic images
and the discriminator trying to distinguish them from real images. The training process
involves improving the ability of generators to create realistic synthetic images while si-
multaneously improving the ability of discriminators to accurately differentiate between
synthetic and real images.
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As shown in Figure 2, the cGAN model consists of one generator (generator G) and
one discriminator (discriminator G), while the cycleGAN model consists of two genera-
tors (generator G and F) and two discriminators (discriminator G and F). In the training
stage, the generators and discriminators were trained simultaneously to achieve an optimal
solution in an adversarial manner. The generators used in this study are Residual Neu-
ral Network (ResNet) [27] consisting of three convolutional layers, nine residual blocks,
and three transposed convolutional layers. The purpose of this network is to generate
synthetic MV CBCT images of the same dimensions as the input (CT/kV CBCT). The
layers are sequentially followed by instance normalization and Leaky Rectified Linear Unit
(ReLU) activation [28]. In addition, the discriminator networks consist of five convolutional
layers, each of which is followed by Leaky ReLU activation to estimate the authenticity
of images at a sub-regional level. After the models have been trained, the generator can
directly generate sMV CBCT images by inputting CT/kV CBCT images.

2.4. Model Evaluation

To evaluate the performance of the cGAN and cycleGAN models, 28 datasets (80%)
were randomly selected for training and validation, and the remaining 7 (20%) were used
for model testing. In total, four models were trained to generate the sMV CBCT images,
including (1) cycleGAN (CT-to-MV CBCT), (2) cGAN (CT-to-MV CBCT), (3) cycleGAN
(kV CBCT-to-MV CBCT), and (4) cGAN (kV CBCT-to-MV CBCT). In this study, paired
data were utilized to train cycleGAN and cGAN to ensure a fair comparison, even though
cycleGAN does not necessitate such paired data.

For each test patient, two sMV CBCT images were generated from their corresponding
CT or kV CBCT image using the cGAN and cycleGAN models. To evaluate and compare the
performance of the two models, a comprehensive analysis was carried out involving both
quantitative and qualitative assessments of the sMV CBCT images generated by each model.
To be more specific, the pacemakers in the sMV CBCT images and original MV CBCT image
were manually delineated and reviewed by three users. The Dice similarity coefficient
(DSC), surface DSC (1 mm), 95 percentile Hausdorff distance (HD95), and mean surface
distance (MSD) were calculated to quantify the similarities between contours derived from
the sMV CBCT images and original MV CBCT image.

The Dice similarity coefficient measures the region of overlap relative to the union of
the contour on the original image and the one delineated on the synthetic image, with a
perfect match indicated by a value of 1. In contrast, the Surface Dice Coefficient compares
surfaces, considering points within 1 mm as in agreement. The Hausdorff distance captures
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the maximum distance from one point in one contour to its closest point in the other
contour, and the 95th percentile accounts for outliers, offering a representative measure of
the bulk of the data. The mean surface distance is the average of all distances from points
on the ground truth contour to the evaluated one. These geometric metrics collectively
provide a comprehensive evaluation, with high DSC and SDSC of 1 mm (close to 1) and
low HD95 and MSD (close to 0) indicating favorable results.

To statistically compare the performance of the cGAN versus the CycleGAN models
and determine the superior model’s performance, a two-tailed Wilcoxon rank-sum test was
performed. A p-value lower than 0.05 suggests that there is enough evidence to conclude
that there is a statistically significant difference between the two models. This analysis
aimed to provide a rigorous assessment and insight into the effectiveness of the models in
generating sMV CBCT images.

3. Results
3.1. Visual Inspection

The efficacy of the trained models in enhancing the visualization of pacemakers
was evaluated by comparing the sMV images generated by cGAN and cycleGAN with
the ground-truth MV CBCT images. The results of the visual comparison are presented
in Figure 3, including the axial views of the original CT/kV CBCT images (a1, a2),
the corresponding real MV CBCT image (d), and the synthetic images generated by cycle-
GAN (b1, b2) and cGAN (c1, c2).
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Figure 3. Visual inspection of the artifact correction in synthetic images. The synthetic images gener-
ated by different models were compared with the ground-truth real MV CBCT images. Axial views
of (a1, a2) original CT or kV CBCT images, (b1, b2) synthetic images generated by cGAN models,
(c1, c2) synthetic images generated by cycleGAN models, and (d) ground-truth MV CBCT image.

The visual inspection demonstrated a considerable improvement in the visualization
of pacemakers on the sMV CBCT images generated by both the cycleGAN and cGAN
models compared to the original kV CT/CBCT images. As shown in Figure 3, it was
challenging to discern the actual shape of pacemakers in the original CT (a1) and kV CBCT
(a2) images.

The synthetic images generated by cycleGAN (b1, b2) and cGAN (c1, c2) depicted
the pacemakers more distinctively, making their shape and presence more easily recog-
nizable. Although minor artifacts remained in the synthetic images, especially on the
cycleGAN-generated images, the overall visualization of the pacemakers was substantially
enhanced. The results suggest that the use of cycleGAN and cGAN models can effectively
improve the visualization of pacemakers, allowing easier identification and segmentation
in radiation therapy.
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3.2. Model Comparison

As depicted in Figure 3, the results of the visual comparisons indicate that the cGAN
model outperforms the cycleGAN model in improving the visualization of pacemakers.
Specifically, the cGAN models generate sMV CBCT images (c1, c2) that more closely
resemble the actual shapes of pacemakers, as seen in the original MV CBCT image (d).
To effectively compare the performance of cGAN and cycleGAN, the pacemakers were
manually delineated on both sMV and real CBCT images. The comparison of these contours
is shown by the red lines in Figure 4. The results show that, for the same input kV CT/CBCT
images, cGAN models consistently generated more accurate pacemaker shapes in sMV
CBCT images, as illustrated by the comparison of their contours.

Figure 4. Comparison between the contours on synthetic and real MV CBCT imagesRed lines indicate
the pacemaker contours delineated and reviewed by three users. The Dice similarity coefficient (DSC)
results comparing the contours between the original and synthetic images are included for reference.

To further evaluate the performance of the two models, a quantitative analysis was
conducted that involved computing the DSC, surface DSC (1 mm), HD95, and MSD
between the manual contours of the pacemakers in the sMV CBCT images and the original
MV CBCT images. The DSC values of corresponding cases are presented in Figure 4 for
reference. Table 1 provides a summary of the average results over all test cases. cGAN
models achieved DSCs of 0.91 and 0.92 for CT-to-MV and kV-to-MV, while cycleGAN
only achieved 0.89 and 0.91, respectively. The results revealed that cGAN outperformed
cycleGAN in all evaluation metrics for both CT-to-MV and kV CBCT-to-MV scenarios,
which was consistent with the results of the visual comparison. However, the two-tailed
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Wilcoxon rank-sum test showed no significant improvement in the quantitative results of
the cGAN model (p > 0.05).

Table 1. Quantitative comparison of cGAN and cycleGAN for artifact correction. The averaged
results over all test patients are summarized for each model. CT-to-MV model indicates the model
that was trained on kV CT and outputs MV CBCT, and kV-to-MV indicates kV CBCT to MV CBCT.
DSC: Dice similarity coefficient; HD95: 95th percentile Hausdorff distance; MSD: mean surface
distance; cGAN: conditional GAN.

Model DSC Surface DSC HD95/mm MSD/mm

cycleGAN CT-to-MV 0.89 ± 0.03 0.93 ± 0.04 1.99 ± 1.08 0.48 ± 0.10
kV-to-MV 0.91 ± 0.02 0.94 ± 0.06 1.75 ± 0.70 0.45 ± 0.17

cGAN CT-to-MV 0.91 ± 0.02 0.95 ± 0.03 1.38 ± 0.31 0.42 ± 0.07
kV-to-MV 0.92 ± 0.01 0.97 ± 0.01 1.18 ± 0.20 0.36 ± 0.06

4. Discussion

In this study, GAN-based models were shown to be effective tools for improving
pacemaker visualization in kV imaging, facilitating simplified contouring of the device.
Furthermore, through quantitative analysis and visual inspection, cGAN models demon-
strated superior performance compared to cycleGAN models. This was mainly attributed to
the use of paired data during the development of the models. The cGAN models benefitted
from the paired data as the models were able to learn direct mapping from kV CBCT/CT
to MV CBCT images, which led to a more effective correction of pacemaker visualization in
the final sMV CBCT images. However, acquiring such data can be challenging in clinical
practices. In such cases, the cycleGAN model can be trained to provide adequate results in
the enhancement of the pacemaker visualization in thorax kV CT/CBCT images.

One advantage of our findings is that the models used in this study may be translatable
to actual patients’ scans. By using GAN-based models to produce synthetic MV CBCT from
kV CTs in a clinical setting, experts might be able to easily contour the pacemaker and its
surroundings with fewer streaks obstructing the outline of the device; Figure 5 illustrates
this process.
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Consequently, this approach can reduce the time required for implant delineation and
enhance the accuracy of the process, thereby improving patient outcomes. Another advan-
tage of this method is its potential benefit in adaptive treatment planning; the enhanced
visualization of the implant on daily CBCT scans might make it easier and faster to re-plan
when needed. This work can also be easily translatable to different implant devices, such as
defibrillators, cardiac loopers, and breast expanders.
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In a study similar to ours, Gao et al. aimed to enhance CBCT image quality by generat-
ing synthetic CT images, enabling their use in dose calculations and adaptive treatment [29].
They conducted a comparative analysis of deep learning models, including U-Net, cycle-
GAN, cycAT, and cascadeGAN. Their findings indicated that while cycleGAN effectively
reduced artifacts, some streaking artifacts persisted. In contrast, our work focuses directly
on mitigating pacemaker-induced artifacts, eliminating the need for artificial artifact cre-
ation, thus achieving greater realism. Moreover, our approach addresses artifact correction
not only in CT but also in CBCT images. Another study by Cao et al. explored the use
of cycleGAN for synthetic CT generation to reduce denture artifacts [30]. However, their
approach used artifact-free CT data paired with MVCBCT, which may not adequately
replicate pacemaker-induced artifacts in the thorax region due to significant anatomical
differences compared to the head and neck region. Pennig et al. conducted research on
reducing artifacts caused by cardiac implantable devices in CTs [31]. They experimented
with various reconstruction kernels and determined that a combination of virtual mo-
noenergetic images and metal artifact reduction kernels yielded the best quantitative and
subjective artifact reduction results. However, the requirement for dual CT imaging limits
the widespread applicability of virtual monoenergetic images in clinical settings.

It is important to note that our work primarily focuses on synthesizing MV CBCTs.
This makes direct dosimetric comparisons unfeasible due to the inherent inaccuracies in
Hounsfield Unit (HU) values in synthetic CBCTs. Our evaluation methods are tailored to
improve the visualization of pacemakers in both CT and kV CBCT images, enhancing their
suitability for contouring during treatment planning and daily adaptive planning, without
requiring scatter quantification or complex dosimetric assessments.

Considering the rapid development in this field, more advanced GAN models are
consistently becoming available. While we did not directly compare our models with the
most recent GAN models in this study, we acknowledge that ongoing developments will
lead to further improvements in this area. However, considering the positive outcomes of
our work in enhancing pacemaker visualization, the enhancements achievable with more
advanced models might be relatively modest.

One limitation of this study is the lack of real patient data in the training model.
Further investigation will be required to assess the model’s accuracy on actual patients’
CTs, as the use of phantoms reduces anatomy variability. Another limitation is the use of a
training and testing set from the same imaging devices with consistent imaging protocols
and phantom anatomy. More testing is needed to evaluate the model on an external
testing set.

In summary, our study has convincingly showcased the practical utility of GAN-based
models in enhancing the visualization of pacemakers within kV CT and CBCT phantom
images. The positive outcomes observed in our investigation strongly suggest the fea-
sibility of applying this methodology in a clinical setting, particularly to ameliorate the
contouring process. By successfully leveraging GAN-based models, we have demonstrated
their effectiveness in enhancing the clarity and visibility of pacemakers within these imag-
ing modalities. This not only underscores the potential for significant improvement in
the precision of pacemaker delineation but also signifies the broader applicability of our
findings to real-world clinical scenarios. The enhanced visualization achieved through
GAN-based approaches holds promise for optimizing the accuracy and efficiency of con-
touring procedures, thereby contributing to improved clinical workflows and, ultimately,
patient care.
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