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Abstract: Supervised deep learning models can be optimised by applying regularisation techniques
to reduce overfitting, which can prove difficult when fine tuning the associated hyperparameters. Not
all hyperparameters are equal, and understanding the effect each hyperparameter and regularisation
technique has on the performance of a given model is of paramount importance in research. We
present the first comprehensive, large-scale ablation study for an encoder-only transformer to model
sign language using the improved Word-level American Sign Language dataset (WLASL-alt) and
human pose estimation keypoint data, with a view to put constraints on the potential to optimise
the task. We measure the impact a range of model parameter regularisation and data augmentation
techniques have on sign classification accuracy. We demonstrate that within the quoted uncertainties,
other than `2 parameter regularisation, none of the regularisation techniques we employ have an
appreciable positive impact on performance, which we find to be in contradiction to results reported
by other similar, albeit smaller scale, studies. We also demonstrate that the model architecture is
bounded by the small dataset size for this task over finding an appropriate set of model parameter
regularisation and common or basic dataset augmentation techniques. Furthermore, using the base
model configuration, we report a new maximum top-1 classification accuracy of 84% on 100 signs,
thereby improving on the previous benchmark result for this model architecture and dataset.

Keywords: sign language recognition; human pose estimation; classification; computer vision; deep
learning; machine learning; supervised learning; regularisation; data augmentation

MSC: 68T10; 68T45; 68T50

1. Introduction

Evaluating deep learning models is essential for understanding the limitations of their
performance. It is well known that neural networks, and to a greater extent deep neural
networks, can require vast amounts of data to effectively learn a model of a system [1].
Along with increasing the training dataset size by simply collecting more examples, other
techniques are available that can potentially enhance a model’s performance, both during
training and inference.

The objective of training deep neural networks for learning classification models is
to subsequently perform the classification task on new data, which may also include data
that are different or absent from the dataset used to train the network on. During training,
a neural network learns a model of a given dataset that is representative of a system,
for example, by performing many iterations (epochs), each consisting of a forward pass
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through a subset of the dataset followed by a backward pass, which uses backpropagation
to calculate and propagate the gradients with respect to a loss function back through the
network (other regimes exist). This allows the weights and biases of the neurons—known
collectively as the learnable parameters—to be updated with the goal of minimising the
calculated error (or loss) between the output and ground truth [2]. In contrast to these
learnable parameters, there is a set of hyperparameters that are fixed at the time of training,
and the values assigned to these can impact on the performance of a model, not least by also
determining the number of learnable parameters. Hyperparameter tuning is the process of
finding values for the hyperparameters that optimise the model [3].

Deep neural networks of sufficient complexity, when trained using supervised learn-
ing, are subject to the problem of overfitting, by which they effectively begin to memorise
the data they learn from. As a rule, a model that overfits a given dataset is less able to
generalise well to unseen data [4]. Combatting dataset sensitivity to overfitting can be
achieved through applying regularisation techniques such as model parameter regulari-
sation (e.g., [5–7]) and data augmentation [8]. Regularisation techniques invariably have
one or more associated tunable hyperparameters (including the choice of whether to use
a given technique during training), and correctly tuning these hyperparameters is key to
optimising the performance of deep learning models [9], particularly when datasets are
size limited.

Bergstra and Bengio [10] showed that not all hyperparameters are equal for all models,
and for the efficiency of hyperparameter optimisation, they demonstrate both empirically
and theoretically that random search is a superior strategy over systematic grid or manual
search for finding suitable hyperparameter values, and at a fraction of computational cost.
Random search has since become an increasingly popular method for hyperparameter
tuning, with modern machine learning platforms providing functionality to automate this
process, including quasi-random search techniques for combining a multitude of different
hyperparameter values, e.g., W&B Sweep [11]. While random search increases the speed at
which optimal (or near-optimal) combinations of hyperparameters can be found—which
can be beneficial when there is, for example, a race to market—it does so largely at the
expense of understanding the impact individual hyperparameters have on model perfor-
mance. Traditional ablation studies, for example with manual hyperparameter selection,
retain the advantage of being able to isolate any measurable contribution—positive or
negative—from each modified hyperparameter, including combinations of hyperparame-
ters albeit at significantly increased computational cost [10].

In this study, we measure the effect each hyperparameter, from a chosen set, has on
the model performance of an encoder-only transformer, with a view to further optimise the
task of classifying sets of isolated, dynamic signs from human pose estimation keypoints.
To this end, we perform a large-scale ablation study in the form of a systematic manual
search over select hyperparameter intervals, as well as introducing further regularisation
techniques, such as the shrinkage methods: Lasso (`1 norm) [12] and Ridge (`2 norm) [13]
parameter regularisation. We also apply augmentation techniques on our chosen sign
language recognition dataset, which is small by deep learning standards. In addition to
common augmentation techniques that include rotating, adding noise, and scaling the
keypoints, we also introduce variability by manipulating the frames in the sequences in
several ways. We extend the original benchmark study by Woods and Rana [14], which was
otherwise limited to an architecture search in the form of the number of transformer encoder
layers and attention heads, by substantially increasing the hyperparameter search space as
well as doubling the number of experiments conducted per configuration grouping.

Regularisation techniques used in deep learning tasks—in our case performing sign
language recognition—take several forms. For convenience, we can split these into
two distinct groups: model parameter regularisation, and data augmentation. Both groups
have associated hyperparameters that may require tuning; however, some hyperparameters
have what are deemed good default values, which have been discovered through previous
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research, and generally do not require any further tuning. We describe typical model
parameter regularisation and data augmentation techniques below.

1.1. Model Parameter Regularisation

Model parameter regularisation encompasses both the number of learnable parame-
ters through architectural aspects of a neural network, and restrictions imposed upon those
learnable parameters. Regularising model parameters across the entire neural network can
help mitigate overfitting by applying penalties during training that encourage learning
a less complex model, for example, through having fewer learnable parameters, or by
increasing the sparsity of those parameters by promoting fewer neuron activations [15].
This can be thought of as training a neural network that models more of the broad char-
acteristics rather than overly specific nuances of the dataset. Typically, if the model is
too complex, it will begin to learn the noise implicit in the training dataset split to the
detriment of generalised performance. The purpose of regularisation is to help achieve
a balance between learning to model a dataset well while gaining—and subsequently
retaining—the ability to make accurate predictions on unseen data that it cannot learn
from. Here, we outline the hyperparameters associated with typical model parameter
regularisation techniques.

The learning rate dictates how quickly the parameters are updated during optimisa-
tion, i.e., the backward pass, which in turn is controlled by a chosen optimisation algorithm,
e.g., Adam [16] or Stochastic Gradient Descent [17], each having their own respective
hyperparameters. With the addition of a learning rate scheduler (or multiple), of which
there are many to choose from, the learning rate can evolve during training based on
conditions that include the epoch number or the gradient of the loss value, and so on. A
greater learning rate can increase the speed of convergence by taking larger steps towards
an optimal configuration, but it can also reduce the potential to achieve an optimised set
of parameters by effectively overshooting those that would otherwise most effectively
minimise the loss. Conversely, too small a learning rate can lead to a much longer time to
achieve convergence, which risks underfitting in the case where the maximum number
of epochs is fixed and too small, but also increases the probability of settling on a local
minimum in the loss landscape [18]. Reducing the learning rate according to predefined
rules is common for converging on optimal model parameters, but many learning rate
schedules exist [19].

Batch size is another hyperparameter that can have an effect on model performance [20].
While it is typical to fix the batch size during training, it could in principle, as per the learning
rate, also evolve according to other conditions, likely set by more hyperparameters—although
this is generally not seen in practice. The type of batching can also be set as a hyperparameter.
Taking the entire dataset split in a single batch can speed up convergence and provide more
stable parameter updates, but it is more common to use mini-batching, especially in deep
learning where datasets are often too big to hold in memory, which is also known to improve
generalisation [21]. A mini-batch variation is so-called random batching, where batches are
created from randomly selected examples in a dataset split, only completing an epoch when
every example has been seen at least once [14].

The number of epochs a neural network is trained for is also tunable; too few can lead
to underfitting, where the model is yet to achieve somewhere near-optimal performance
on the training dataset split, and too many can lead to overfitting, where further training
impairs generalised inference—both of which are undesirable outcomes. Early stopping,
however, can provide some protection against overfitting caused by training for too many
epochs. Again, this can come with associated hyperparameters, including a patience value
or a minimum improvement in some performance metric, like loss or accuracy, before
training is stopped. Taking model snapshots when a given metric is improved upon, again
possibly determined by a configured hyperparameter, can ameliorate the problems caused
by training for too long. Deciding which method works best can depend on the deep
learning task, or even be discovered by trial and error.



J. Imaging 2023, 9, 238 4 of 39

The number of hidden layers, e.g., in a fully connected neural network, is another
tunable hyperparameter. Increased depth, along with choice of activation functions to
introduce non-linearities to the model (e.g., ReLU [22]), can enable more complex features
to be modelled, but too many hidden layers can contribute to overfitting. Likewise, the
number of neurons in a given layer is configurable and has a similar effect in regard to
modelling more complex relations between inputs. Increasing the number of neurons can
expand the feature space, whereas reducing the number of neurons—as per the encoder part
of an autoencoder [23]—can encourage a neural network to learn only the most important
features of a model, which can help avoid modelling the training dataset too closely, to
reduce overfitting.

Dropout is a technique that randomly sets a fraction of neuron activations output
by a given layer to zero, as set by a hyperparameter [24]. Dropout can promote learning
redundant and more robust representations that do not rely heavily on individual or
specific combinations of neuron activations, which can introduce a form of ensembling by
effectively training multiple sub-networks within the neural network to which it is applied.
The desired outcome is to regularise the network, so it is less able to learn a perfect model of
the training dataset. As with many hyperparameters, the appropriate dropout probability
is typically derived empirically [25].

Other techniques include batch normalisation, which ensures the activations of a
given layer have zero mean and unit variance to enhance training stability [26], and label
smoothing, which can reduce overconfidence in classification predictions [27]. Both of
these techniques can help regularise a model to reduce overfitting.

Hyperparameters can also be architecture specific. For example, a convolutional
neural network comprises many elements that include the number of convolutional layers,
the number, size, and shape of the filters (kernels), the stride and padding values, and
so on [28], all of which can be tied to hyperparameters so the optimal combination can be
searched for. Likewise, as demonstrated in our parent study [14], a transformer encoder
can have hyperparameters that determine the number of layers and attention heads, as
well as the number of neurons in the fully connected layers, among others.

1.2. Data Augmentation

In supervised deep learning, it is common practice to artificially increase the size
of a given dataset by applying data augmentation techniques [29]. This is perhaps most
frequently utilised when training neural networks for image processing [30,31], but is also
applied to other domains that include natural language processing (NLP) [32], acoustic
modelling [33], time-series classification [34], and relation classification [35]. When a single
labelled example is augmented, it is modified such that it produces one or more slightly
different yet label-preserving, representative examples. Alternatively, new examples can
be generated synthetically to also meet the criteria for a given label [36,37]. When applied
appropriately, data augmentation is a powerful tool used to increase model robustness to
variations and help reduce overfitting. Typical augmentation transformations applied to
image data include rotating, scaling, flipping horizontally and vertically, skewing, warping,
colour alteration (contrast, hue, temperature, etc.), erasing parts of images, random crop-
ping, injecting noise, and even applying neural style transfer [38], to name several. In our
case, we artificially augment our chosen sign language dataset, which consists of human
pose estimation keypoints, by applying a limited number of suitable transformations for
the domain to examples from the training dataset split only.

It is possible for every data augmentation transformation to be controlled by at least
one hyperparameter. For example, the range of angles by which images are rotated would
be assigned a respective hyperparameter, as would the range of scaling that was to be
applied. In addition to these hyperparameters, there exist more hyperparameters related to
which data augmentation methods to use and when, including the mixing probabilities
between raw and augmented data when creating batches during training. It is evident
that the combination of model parameter regularisation and data augmentation leads to
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a hyperparameter space that has the potential to be extremely large for a given neural
network, and finding optimal hyperparameter values can be a challenging task.

Beyond data augmentation, it is common practice to normalise the input values as a
pre-processing step, which can come before and/or after augmentation. Normalisation can
take many forms and is used to standardise a dataset to both help and increase the speed
of model convergence [39].

1.3. Related Work

We now consider related work and the variety of techniques utilised to regularise
models for sign language recognition from published research that makes use of the same
base dataset of keypoints.

For their SPOTER model, Bohacek and Hruz [40] apply randomised data augmen-
tations to the keypoints during training, with the probability of an augmentation being
applied set to 0.5. These augmentations include rotating all keypoints about the centre
point by a randomly selected angle in the interval [−13, 13); two types of perspective
transformations, which are performed on all keypoints excluding those for the hands; se-
quential rotation of the arm keypoints; and adding Gaussian noise. The first transformation
uniformly squeezes every frame of a given sequence by up to 15% of the original frame
width, and the second performs a perspective transformation ostensibly to simulate the
effect of camera tilt with respect to the subject. The sequential rotation of the arm joints is
intended to mimic slight variances in a given sign, which the authors claim do not change
the meaning of the signs. They subsequently normalise by scaling all keypoints (treating the
hands and body keypoints separately) to lie in the interval [0, 1] before shifting by −0.5 in
the x and y planes. The authors fix the seeds of the random number generators, and as
such, their training regime does not assess the impact random seed initialisation has on the
variability of model performance. In addition, they do not utilise a learning rate scheduler,
nor do they use weight decay with their chosen stochastic gradient descent optimiser.
Their transformer model architecture is fixed at 6 encoder and decoder layers, each having
9 attention heads, with a hidden layer dimension of 108 neurons and feed-forward layers
with 2048 neurons. They use a learned positional encoding for the encoder input, and a
class query for the modified decoder input.

Following SPOTER [40], Eunice et al.’s [41] Sign2Pose model appears to have an almost
identical architecture. There are some minor differences, which include slight variations
to the augmentations applied (e.g., rotations being expanded from randomly selected
angles in [−13, 13) in SPOTER to [−15, 15) in Sign2Pose) and the inclusion of weight decay
with the `2 penalty hyperparameter set to 10−4. There is an additional augmentation
transformation not performed in the SPOTER study, however, in that keypoints are flipped
horizontally with a probability of 0.5, which would be problematic for the signs LEFT

and RIGHT if they are present in the dataset splits used. Another minor difference is the
number of so-called head units chosen to define the signing space, although the underlying
mechanism is the same. The one striking difference, however, is the method by which
frames that are deemed to be redundant are discarded, which appears to have a significant
impact on model accuracy.

For their Pose-GRU model, Li et al. [42] use 2 stacked gated recurrent unit (GRU)
layers, regularised by configuring each GRU’s hidden layers with dimensions of 64, 64, 128,
128, which they claim to derive empirically, and do not alter throughout. They randomly
select 50 frames from each example sequence, which provides some augmentation through
randomisation, and perform classification on every frame within a sequence, including the
output pooling, to derive a final prediction. They use cross-entropy loss and the Adam
optimiser. In contrast, their graph convolution network (GCN) based model, Pose-TGCN,
appears to apply no explicit regularisation techniques other than early stopping, which
they apply to all training runs, stopping when the validation accuracy no longer increases
or the number of elapsed epochs reaches 200.
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Tunga et al. [43] appear to extend Pose-TGCN by connecting it to a BERT transformer [44],
which they refer to as GCN-BERT. They also use cross-entropy loss and the Adam optimiser,
regularised with the weight decay `2 penalty hyperparameter set to 10−8, and train for
100 epochs. No other details are provided that document any other techniques employed to
improve model performance.

1.4. Contributions

This article presents the first comprehensive, large-scale ablation study of an encoder-
only transformer for modelling sign language using human pose estimation keypoint
data. We quantify the effects that a variety of regularisation and augmentation techniques
have on model performance. We show that fixing the random number generator seeds
and repeating a single experiment with a hyperparameter value change is an inadequate
method for universally determining the outcome of that hyperparameter change. We also,
in the case of this task and dataset consisting of sparse values, provide strong evidence to
support the hypothesis that the size of the dataset is the limiting factor beyond any of the
regularisation or augmentation techniques applied for improving the performance of our
model to classify isolated, dynamic signs.

1.5. Article Organisation

The remainder of this article is organised as follows: Section 2 details the materials
and methods used in this study, including comprehensive descriptions of the regularisation
and augmentation techniques applied; Section 3 lists the outcome of every experiment
conducted; Section 4 gives in-depth discussion and analysis of the results; and finally,
Section 5 provides conclusions to be drawn from the study.

2. Materials and Methods
2.1. Dataset

Following the benchmark established by Woods and Rana [14], we conduct our ex-
periments on a significantly improved version of WLASL [42], called WLASL-alt [45].
This release has corrections applied to the original WLASL dataset that include incorrect
sign labels and typing errors, as discussed by Neidle and Ballard [45], and Dafnis et al. [46].
The underlying data in WLASL consist of human pose estimation keypoints, extracted
using OpenPose [47]. Each keypoint relates to a landmark on the human body that has been
extracted from the frames that make up isolated dynamic sign sequences, and is defined
by three values: x- and y-axis coordinates, and a detection confidence score (which we
do not use). We normalise the keypoint coordinate values as per the original study [14],
which scales all keypoints in a given sequence such that the mean x-axis distance be-
tween the shoulder keypoints on every frame of that respective sequence is unity, and
likewise for the mean y-axis distance between the neck and nose keypoints. The train,
validation, and test dataset splits used match the original study, and are available online at
https://github.com/ltwoods/msl (accessed on 27 August 2023).

2.2. Experimental Setup

The HILDA HPC at DARTeC [48] was used for all experiments, which hosts a virtual
machine (VM) running Ubuntu Linux 20.04.4 LTS with a 5.15.x series kernel, an Intel Xeon
Gold 6258R with 112 CPUs, 377 GiB RAM, and 4 NVIDIA A100 40 GiB GPUs, with Python
3.8.10, PyTorch 1.9.0+cu111, and NumPy 1.21.4.

2.3. Experiments

Except where stated otherwise, we train for 200 epochs, taking model snapshots
once per epoch when a performance metric is improved upon on the validation dataset
split, and testing with the best model snapshot from the corresponding training run.
Using both increased validation set accuracy and reduced validation set cross-entropy loss
as performance metrics, Woods and Rana [14] showed the difference in test set accuracy

https://github.com/ltwoods/msl
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between the two best models was negligible for this task. To reduce the number of similar
results reported, we therefore choose to report results from the loss performance metric
model only. This choice is further justified because cross-entropy provides a theoretically
better measure of the overall predictability of a model compared to a single real-valued
metric based only on the number of correctly predicted class labels, as would be the case
with only using the improved accuracy score per epoch—we acknowledge, however, that
in practice, the difference between the two sets of experiments is negligible.

We perform all experiments on the same 100 sign classes, which we choose with
the intention of providing a reasonable balance between the time taken to perform each
experiment and the complexity of the experiment (i.e., number of signs to classify). The
sizes of the dataset splits are detailed in Table 1. We also perform all experiments with a
single encoder layer and four attention heads. This combination of encoder architecture and
testing with the best-performing model based on loss correlates with the best-performing
configuration for 100 classes from the original study [14]. We run experiments to test the
classification performance impact from changes to the way the neural network is trained,
which includes the way batches are created during each epoch and explicit regularisation
techniques. In contrast to the original study, we increase the number of experiments
per configuration from 8 to 16, with the aim of reducing the experimental uncertainty of
observations and help identify smaller changes in mean performance. In every experiment
group, we include the result from the baseline experiment as the control.

Table 1. Experiment dataset splits showing number of examples per split for 100 classes.

Training Examples Validation Examples Testing Examples Total Examples

1842 418 403 2663

Where appropriate, we choose hyperparameter values that step up in intervals as
select proportional powers of two, e.g., batch size λbatch = 2n ∀n ∈ [4, . . . , 11], or added
noise λnoise = 0.001× 2n ∀n ∈ [0, . . . , 9]. The intention is to strike a balance between
measuring the effects of smaller changes, as well as the effects of much larger changes, per
experiment group. In other cases, we increment linearly, e.g., encoder dropout λencdo =
0.1× n ∀n ∈ [1, . . . , 8].

While extensive, the experiments we conduct are not exhaustive, and given the avail-
able resources, we limit ourselves to the groups performed in this ablation study, which are
detailed below. Unless specified otherwise, all experiments use the baseline parameters
listed in Table 2. In each experiment group, we only modify the hyperparameter to be
studied while keeping all other values constant according to the baseline configuration.
Parameters that are left at their default implementation values are omitted, for example, all
of the CrossEntropyLoss arguments in the PyTorch implementation [49].

Where appropriate, we analyse the results using a suitable statistical test. For example,
in the case of determining the statistical significance of a given hyperparameter change, we
use the independent two-sample t-test with the assumption that our data are normally dis-
tributed and of equal variance. The independent two-sample t-test produces a probability
value, p, and a test statistic, t, which is calculated as

t =
x1 − x2

sp

√
1

n1
+ 1

n2

,

with the pooled standard deviation, sp, calculated as

sp =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
,
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where x1 and x2 are the mean values of the respective samples, n1 and n2 are the sample
sizes, and s1 and s2 are the standard deviations of the samples. In our case, the sample sizes
n1 and n2 are equal. Throughout, we adopt a significance level α = 0.05 for our statistical
tests. We acknowledge that at 16 experiments per group, our sample size is relatively small.

Table 2. Common baseline experiment parameters.

Parameter Value (s)

Class count 100
Seed initialisation Random

Epoch count 200
Renormalise after augmentation False

Weight initialisation Xavier uniform
Xavier uniform gain 1.0

Encoder dmodel 108
Encoder layers 1

Encoder attention heads 4
Encoder dff 108

Encoder dropout 0.0
Encoder activation function ReLU

Encoder norm first False
Embedding dropout 0.0

Train/validation/test batch size 64
Batching method Random batching

Reduced dataset ratio 0.0
Centroid keypoint index 1

Norm. scale x keypoint indices {2, 5}
Norm. scale y keypoint indices {0, 1}

Selected keypoints All 54
`1 parameter regularisation False
`2 parameter regularisation True (via Adam weight decay)

Augment data False
Optimiser Adam

Adam weight decay 0.001
Adam β1 0.9
Adam β2 0.98
Adam ε 0.000000001

Learning rate 0.0001
Learning rate scheduler Cosine annealing w/warm restarts

Cosine annealing T0 10
Loss function Cross-entropy loss

2.3.1. Random Batching Versus Single Pass

We compare the outcome between randomly selecting batches of sequences with
a single pass through the respective dataset split. Random batching is a mini-batching
technique, where batches of data are selected from a given dataset split on a random
basis, and an epoch only completes when every data point has been seen at least once.
In contrast, a single pass through the dataset has each batch consist of a fixed-size and
ordered slice of a dataset split. It is common to discard any dataset points that do not fit
into a batch, i.e., d mod b > 0, where d is the dataset split size and b is the batch size. In
our case, however, we have a small dataset and so when using the single-pass method, we
automatically reduce the size of the batch accordingly when batching the last sequences
in a dataset split to ensure we use all available data. Experiments that use single pass
are slower to converge in terms of epochs completed—which we otherwise fix to 200 for
all experiments that use random batching—so we measure the outcome across a range
of maximum epochs per training run. The number of epochs, λepochs, for single-pass
experiments are

λepochs = {200, 500, 1000, 1500}.
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2.3.2. Batch Size

We measure the effect batch size, λbatch, has on outcome by training over batch sizes

λbatch = {16, 32, 64, 128, 256, 512, 1024, 2048}.

2.3.3. Learning Rate

We measure the effect learning rate, λlr, has on outcome by training with the values

λlr = {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}.

2.3.4. `1 and `2 Parameter Regularisation

We apply `1 [12] and `2 [13] parameter regularisation to measure the effect each has on
reducing overfitting, and subsequently on test set accuracy. Both forms impose a penalty
on the loss proportional to the sum or square of the sum, respectively, of the model weights.
`1 parameter regularisation promotes sparsity in neuron activations by effectively pushing
some weights to zero, whereas `2 parameter regularisation encourages smaller weights
throughout the network, thereby decreasing the probability that particular neurons, and by
extension selected features, dominate the learning process. Fewer activations produce a
simpler model, which can help feature selection, and in turn help reduce overfitting, as can
a more evenly distributed contribution from activations across the neurons. More formally,
given N model weights, we apply `1 to the batch loss, Lbatch, as

Lbatch = E(y, ŷ) + λ`1

N

∑
n=1
|wn|,

and `2 as

Lbatch = E(y, ŷ) + λ`2

N

∑
n=1

w2
n,

where E(y, ŷ) is the error calculated by the loss function given the ground-truth label y and
prediction ŷ, and λ`1 and λ`2 are the associated parameter regularisation hyperparameters.
We test the effect `1 has over the values

λ`1 = {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}.

and likewise for `2 over

λ`2 = {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}.

Because `2 parameter regularisation is implemented by the Adam optimiser through
the weight decay parameter [50], we use `2 parameter regularisation by default in every
experiment that uses the common baseline parameters. Experiments that also apply `1
parameter regularisation do so in a so-called elastic net regularisation configuration [51]
with the parameter λ`2 held constant throughout at λ`2 = 0.001. We do not test elastic net
regularisation configurations with other values of λ`2 .

2.3.5. Encoder Feed-Forward Block Layer Dimension

Within the encoder, the attention block is followed by a feed-forward block. The
first component of this is a position-wise fully connected feed-forward layer, which has
a configurable output dimension. This is followed by an activation function, after which
dropout is applied. Another feed-forward layer follows, which has the same configurable
input dimension as the first layer’s output dimension. It is, therefore, this shared dimension
that we refer to when we mention the feed-forward block layer dimension. We measure the
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effect that creating a bottle-neck or expanding the feature space between these feed-forward
layers has, compared with keeping it constant, by setting the dimension, λff, to

λff = {2, 4, 8, 16, 32, 64, 108, 128, 216, 256, 512, 1024, 2048, 4096, 8192}.

In addition to setting the layer dimension to typical powers-of-two values, we also
keep it constant at λff = 108, as well as doubling it at λff = 216.

2.3.6. Encoder Dropout

Within the encoder, dropout is applied in both the self-attention block and the feed-
forward block with the same probability, λencdo, which we also measure by varying over
the values

λencdo = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

2.3.7. Embedding Dropout

Likewise, we also apply dropout across a range of probabilities to the keypoint em-
beddings and measure by varying the associated hyperparameter, λembdo, over the values

λembdo = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

2.3.8. Augmentation

Augmentation is the act of manipulating the training dataset split to provide the
model with extra examples that vary slightly, effectively extending the dataset. We apply
augmentation in several ways and measure the effect of each augmentation type, with
each having an associated hyperparameter acting as an upper limit to the amount of
augmentation applied, e.g., a rotation augmentation specified by λrot = 10 randomly
selects a rotation value in the interval [0, 10]. Hence, when enabled, we apply a given
augmentation to every batch because this also includes batches that receive no effective
augmentation, e.g., the rotation randomly selected between zero and the maximum value
happens to be zero. We acknowledge the potential power of so-called sequential rotation as
an augmentation technique [40,41], but we choose not to apply this or similar augmentation
techniques to avoid inadvertently altering any of the signs beyond their original meaning.
As such, we do not anticipate that our augmentations alter the meaning of any signs. In all
cases where the respective augmentation parameter is zero, we use a common group of
results from the base model configuration as the control.

We inject varying amounts of noise into the x- and y-coordinate values of each keypoint.
Using a configuration hyperparameter λnoise, we generate a random value per keypoint
coordinate, per frame, per sequence in the batch, in the interval [−λnoise, λnoise) using
NumPy’s uniform [52]. We generate maximum positive and negative amounts of noise
using the values

λnoise = {0.000, 0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128, 0.256, 0.512}.

We rotate the keypoint coordinate values with the intention of introducing slight
variations in camera orientation about the axis that goes into the scene. Per batch, we
rotate the keypoints of every frame in all sequences about the origin by the same value
in degrees specified by the maximum rotation hyperparameter λrot, which is randomly
generated—again using uniform—to be in the interval [−λrot, λrot), using the values

λrot = {0, 1, 2, 4, 8, 16, 32}.

We apply three different forms of scaling. We scale along each of the x- and y-axes sep-
arately, as well as both simultaneously, by a scaling factor that is determined by a common
hyperparameter λscale. Again using uniform, we randomly generate a scaling factor in the
interval [1.0− λscale, 1.0 + λscale) and apply this to every x- and y-axis coordinate in a given
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batch, as configured, e.g., if scale augmentation is configured for the x-axis only, the scaling
factor is applied to the x-axis coordinate values. We scale using the maximum values

λscale = {0.00, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32}.

To simulate the subtle effect of increased signing speed in various places, we drop
frames from a given sequence and pad the rest of the sequence with copies of the last frame.
Using the hyperparameter λdrop, we select a random sample of frames to remove from
every example in a given batch using the values

λdrop = {0, 1, 2, 4, 8, 16, 32}.

Example sequences can have a period of effective silence before a given sign begins.
We simulate the effect of signs beginning at slightly different times by trimming a number
of frames from the beginning of a sequence as dictated by the hyperparameter λtrim. As
with the drop frames augmentation, each sequence in a given batch is padded with the
data from the respective sequence’s last frame. The random number of frames to trim from
the start lies in the interval [1, λtrim] and is randomly generated from the values

λtrim = {0, 1, 2, 4, 8, 16, 32}.

Offsetting frames in a given batch of sequences intends to have the opposite effect
of trimming the start. This simulates each sign sequence effectively beginning later than
the original signs in those sequences. We do this by taking a random number of copies of
the first frames as per the hyperparameter λocopy, and inserting them at the beginning of
each sequence of a batch. The same number of frames from the end of the sequences are
removed to maintain the fixed sequence lengths. We cap the number of frames to copy to
prevent overflow on the sequence length in the event a sequence is shorter than the number
of frames selected to insert. The frames to copy are randomly generated in the interval[
1, λocopy

]
from the values

λocopy = {0, 1, 2, 4, 8, 16, 32}.

As with the offset frames copy augmentation, we also apply an augmentation by
inserting empty frames in place of copies of the first frame of the sequences in a given
batch as determined by the hyperparameter λopad, again randomly generated to be in the

interval
[
1, λopad

]
from the values

λopad = {0, 1, 2, 4, 8, 16, 32}.

2.3.9. Fixed-Seed Comparison on Singular Hyperparameters

It is common for random number generator seeds to be fixed to enable repeatability of
experiments (on a given computer). The implied assumption is that changes to a single
hyperparameter for a common fixed-seed value across experiments will reveal the explicit
impact that hyperparameter has on outcome. We test this by running 8 baseline experiments
with a fixed-seed set by the hyperparameter λseed = {0, 1, 2, 3, 4, 5, 6, 7}, and repeating
experiments with singularly altered hyperparameters using the same seeds. We measure
the outcome of experiments with fixed seeds for the following hyperparameter settings:
λff = {108, 2048}, λrot = {0, 20}, λscale = {0, 0.08}, and λencdo = {0.0, 0.3}, where the first
value in each hyperparameter set is the control.

2.3.10. Fixed-Seed Comparison on Normalisation

Normalising data has been shown to work effectively for this task [14], and augmenta-
tions that alter the position of keypoint coordinates or the frames within a sequence can, in
principle, alter the distribution of keypoint values across a sequence to the detriment of a
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neural network’s ability to efficiently learn a model of this system. Although the effect is an-
ticipated to be negligible, we nevertheless also compare two groups of 8 experiments; with
and without renormalising after augmentation, separately, with hyperparameters λrot = 20,
and λscale = 0.08 applied to both the x- and y-axes. As with the experiment in Section 2.3.9,
the same fixed seed is given to each of the paired with-and-without renormalisation experi-
ments. Repeating an experiment on the same computer with the same configuration and
fixed seed produces the same result, so the intention is to test the impact renormalisation
has on model performance after altering the keypoint distribution through augmentation
and analyse the distribution of results (rather than performing a one-to-one comparison).

2.3.11. Dataset Size

We reduce the dataset size to measure model performance as a function of the total
number of examples. We do this by uniformly reducing the number of examples in each
class by a configured ratio, λred. This does not fix the class imbalance problem, which is a
known characteristic of this dataset [14,46], but it does linearly scale the size by keeping
the ratios as constant as possible. We measure the reduction in dataset size for the values

λred = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.

3. Results

Following Woods and Rana [14], all quoted experimental uncertainties are calculated
as ±1.96× σM, where σM = σ√

n , and σ is the standard error of the mean over n repeated ex-
periments. All results report the mean top-1 classification accuracy, for the same 100 classes,
using the best-performing models during training as measured by the loss performance
metric per experiment. The highest accuracy values in each results table are highlighted
in bold.

First, we report the results from experiments that compare random batching against a
single pass through the dataset per epoch, which are shown in Table 3. Random batching
results are from a single group of 16 experiments over 200 epochs, while single-pass
experiments are groups of 16 experiments repeated over a number of epoch ranges.

Table 3. Random batching vs. single-pass experiment mean top-1 accuracy for 100 classes. Highest
values are shown in bold.

Batching Epochs Train Validation Test
Method Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

Random 200 0.9998± 0.0000 0.8314± 0.0038 0.7926± 0.0075

Single pass 200 0.8670± 0.0032 0.6939± 0.0072 0.6901± 0.0078
Single pass 500 0.9993± 0.0001 0.7859± 0.0064 0.7646± 0.0060
Single pass 1000 0.9995± 0.0000 0.8098± 0.0066 0.7961± 0.0047
Single pass 1500 0.9995± 0.0000 0.8165± 0.0031 0.7940± 0.0064

Table 4 shows the results from varying the batch size using random batching across a
typical range of batch sizes.

Table 5 shows the results from varying the learning rate. All experiments use the same
cosine annealing with warm restarts learning rate scheduler.

Table 4. Batch size experiment mean top-1 accuracy for 100 classes. Highest values are shown in bold.

Batch Size Train Validation Test
λbatch Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

16 0.9997± 0.0001 0.8294± 0.0050 0.7879± 0.0075
32 0.9998± 0.0000 0.8304± 0.0055 0.7914± 0.0071
64 0.9998± 0.0000 0.8314± 0.0038 0.7926± 0.0075

128 0.9999± 0.0000 0.8305± 0.0031 0.7859± 0.0073
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Table 4. Cont.

Batch Size Train Validation Test
λbatch Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

256 0.9999± 0.0000 0.8154± 0.0041 0.7864± 0.0074
512 0.9998± 0.0000 0.8005± 0.0063 0.7806± 0.0081

1024 0.9986± 0.0002 0.7904± 0.0068 0.7799± 0.0072
2048 0.3205± 0.0055 0.2481± 0.0091 0.2770± 0.0047

Table 5. Learning rate experiment mean top-1 accuracy for 100 classes. Highest values are shown
in bold.

Learning Rate Train Validation Test
λlr Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

0.00001 0.9592± 0.0032 0.7516± 0.0074 0.7386± 0.0082
0.00005 0.9999± 0.0000 0.8200± 0.0054 0.7875± 0.0081
0.00010 0.9998± 0.0000 0.8314± 0.0038 0.7926± 0.0075
0.00050 0.9995± 0.0001 0.8279± 0.0046 0.7952± 0.0081
0.00100 0.9991± 0.0001 0.8184± 0.0043 0.7866± 0.0064
0.00500 0.9826± 0.0005 0.7458± 0.0072 0.7062± 0.0109
0.01000 0.9405± 0.0011 0.6995± 0.0054 0.6487± 0.0086
0.05000 0.4365± 0.0240 0.4034± 0.0174 0.3607± 0.0198

We now report the results from applying `1 and `2 parameter regularisation in Table 6.
As described in Section 2.3.4, all experiments where `1 parameter regularisation is applied
also have `2 parameter regularisation applied because it is implemented as weight decay
in the Adam optimiser. For these experiments, the value of `2 parameter regularisation is
kept constant throughout. Experiments where either `1 or `2 parameter regularisation is
not applied are marked with –.

Table 6. `1 and `2 parameter regularisation experiment mean top-1 accuracy for 100 classes. Entries
marked with – indicate no corresponding parameter regularisation is applied. Highest values are
shown in bold.

`1 Norm `2 Norm Train Validation Test
λ`1 λ`2 Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

– – 0.9998± 0.0000 0.8108± 0.0044 0.7716± 0.0113

0.00001 0.00100 0.9998± 0.0000 0.8245± 0.0049 0.7887± 0.0075
0.00005 0.00100 0.9998± 0.0000 0.8304± 0.0065 0.7847± 0.0082
0.00010 0.00100 0.9998± 0.0000 0.8244± 0.0038 0.7860± 0.0094
0.00050 0.00100 0.9986± 0.0002 0.8077± 0.0054 0.7718± 0.0080
0.00100 0.00100 0.9941± 0.0005 0.7926± 0.0046 0.7488± 0.0091
0.00500 0.00100 0.9153± 0.0026 0.7236± 0.0053 0.6912± 0.0075
0.01000 0.00100 0.5836± 0.0293 0.4790± 0.0222 0.4641± 0.0236
0.05000 0.00100 0.0277± 0.0013 0.0309± 0.0024 0.0264± 0.0038
0.10000 0.00100 0.0240± 0.0011 0.0286± 0.0020 0.0238± 0.0039

– 0.00001 0.9998± 0.0000 0.8197± 0.0055 0.7732± 0.0093
– 0.00005 0.9998± 0.0000 0.8237± 0.0063 0.7835± 0.0131
– 0.00010 0.9998± 0.0000 0.8295± 0.0034 0.7887± 0.0072
– 0.00050 0.9998± 0.0000 0.8273± 0.0051 0.7885± 0.0065
– 0.00100 0.9998± 0.0000 0.8314± 0.0038 0.7926± 0.0075
– 0.00500 0.9994± 0.0001 0.8210± 0.0044 0.7837± 0.0084
– 0.01000 0.9946± 0.0005 0.8125± 0.0034 0.7742± 0.0047
– 0.05000 0.8568± 0.0107 0.7074± 0.0083 0.6835± 0.0095
– 0.10000 0.4705± 0.0416 0.4063± 0.0402 0.3726± 0.0593

The results from varying the number of neurons in the encoder feed-forward block
are listed in Table 7.
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Table 7. Encoder feed-forward block layer dimension experiment mean top-1 accuracy for 100 classes.
Highest values are shown in bold.

Encoder Train Validation TestFeed-Forward Top-1 Accuracy Top-1 Accuracy Top-1 AccuracyLayer Dim λff

2 0.9998± 0.0000 0.8096± 0.0058 0.7585± 0.0112
4 0.9998± 0.0000 0.8118± 0.0056 0.7575± 0.0081
8 0.9998± 0.0000 0.8185± 0.0037 0.7755± 0.0086
16 0.9998± 0.0000 0.8176± 0.0039 0.7765± 0.0106
32 0.9998± 0.0000 0.8181± 0.0046 0.7939± 0.0082
64 0.9999± 0.0000 0.8265± 0.0041 0.7861± 0.0048

108 0.9998± 0.0000 0.8314± 0.0038 0.7926± 0.0075
128 0.9999± 0.0000 0.8291± 0.0045 0.7902± 0.0079
216 0.9998± 0.0000 0.8274± 0.0047 0.7863± 0.0103
256 0.9998± 0.0000 0.8270± 0.0037 0.7922± 0.0064
512 0.9998± 0.0000 0.8231± 0.0041 0.7944± 0.0079

1024 0.9998± 0.0000 0.8207± 0.0038 0.7938± 0.0070
2048 0.9997± 0.0000 0.8119± 0.0042 0.8007± 0.0066
4096 0.9997± 0.0000 0.8119± 0.0051 0.7984± 0.0074
8192 0.9997± 0.0000 0.8122± 0.0033 0.8007± 0.0090

Table 8 shows the results from incrementing the encoder dropout probability from
λencdo = 0.0 to λencdo = 0.8.

Table 8. Encoder dropout experiment mean top-1 accuracy for 100 classes. Highest values are shown
in bold.

Encoder Dropout Train Validation Test
Probability λencdo Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

0.0 0.9998± 0.0000 0.8314± 0.0038 0.7926± 0.0075
0.1 0.9999± 0.0000 0.8270± 0.0037 0.7924± 0.0077
0.2 0.9999± 0.0000 0.8245± 0.0036 0.7947± 0.0058
0.3 0.9998± 0.0000 0.8193± 0.0058 0.7947± 0.0070
0.4 0.9998± 0.0000 0.8188± 0.0048 0.7845± 0.0101
0.5 0.9998± 0.0000 0.8191± 0.0045 0.7827± 0.0067
0.6 0.9998± 0.0000 0.8134± 0.0056 0.7816± 0.0090
0.7 0.9997± 0.0000 0.8117± 0.0059 0.7801± 0.0084
0.8 0.9996± 0.0001 0.8039± 0.0067 0.7542± 0.0114

Likewise, the results from incrementing the input embedding dropout probability
from λembdo = 0.0 to λembdo = 0.8 are listed in Table 9.

Table 9. Embedding dropout experiment mean top-1 accuracy for 100 classes. Highest values are
shown in bold.

Embedding Dropout Train Validation Test
Probability λembdo Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

0.0 0.9998± 0.0000 0.8314± 0.0038 0.7926± 0.0075
0.1 0.9994± 0.0001 0.8187± 0.0046 0.7712± 0.0065
0.2 0.9984± 0.0001 0.8021± 0.0031 0.7598± 0.0061
0.3 0.9966± 0.0002 0.7908± 0.0038 0.7573± 0.0072
0.4 0.9939± 0.0004 0.7657± 0.0060 0.7417± 0.0058
0.5 0.9894± 0.0003 0.7515± 0.0061 0.7194± 0.0066
0.6 0.9797± 0.0006 0.7236± 0.0045 0.6973± 0.0070
0.7 0.9650± 0.0009 0.6973± 0.0050 0.6673± 0.0079
0.8 0.9269± 0.0014 0.6510± 0.0059 0.6411± 0.0101
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We now report the results from augmenting the training dataset split. Table 10 shows
the results from augmenting the input data with added noise.

Table 10. Noise experiment mean top-1 accuracy for 100 classes. Highest values are shown in bold.

Maximum Train Validation Test
Noise λnoise Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

0.000 0.9998± 0.0000 0.8314± 0.0038 0.7926± 0.0075
0.001 0.9998± 0.0000 0.8311± 0.0054 0.7918± 0.0079
0.002 0.9998± 0.0000 0.8283± 0.0030 0.7891± 0.0055
0.004 0.9999± 0.0000 0.8309± 0.0029 0.7960± 0.0061
0.008 0.9998± 0.0000 0.8274± 0.0037 0.7926± 0.0096
0.016 0.9998± 0.0000 0.8255± 0.0041 0.7872± 0.0086
0.032 0.9998± 0.0000 0.8291± 0.0044 0.7945± 0.0093
0.064 0.9998± 0.0000 0.8290± 0.0049 0.7887± 0.0055
0.128 0.9998± 0.0000 0.8360± 0.0043 0.7968± 0.0045
0.256 0.9996± 0.0000 0.8281± 0.0042 0.7887± 0.0074
0.512 0.9981± 0.0001 0.7958± 0.0034 0.7588± 0.0071

Table 11 shows the results from augmenting the input data with added rotation about
the chosen origin.

Table 11. Rotation experiment mean top-1 accuracy for 100 classes. Highest values are shown in bold.

Maximum Train Validation Test
Rotation λrot Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

0 0.9998± 0.0000 0.8314± 0.0038 0.7926± 0.0075
1 0.9998± 0.0000 0.8307± 0.0053 0.7884± 0.0060
2 0.9998± 0.0000 0.8288± 0.0037 0.7912± 0.0082
4 0.9998± 0.0000 0.8303± 0.0049 0.7894± 0.0073
8 0.9998± 0.0000 0.8332± 0.0053 0.7969± 0.0056
16 0.9997± 0.0000 0.8316± 0.0050 0.7925± 0.0116
32 0.9996± 0.0001 0.8221± 0.0038 0.7900± 0.0090

Table 12 shows the results from augmenting the input data by scaling along the x-
and y-axes.

We report the results from augmenting the input data by dropping random frames
from every sequence in a batch, up to a configured maximum value. Table 13 shows the
mean top-1 test accuracy results for 100 classes.

Table 12. Scale experiment mean top-1 accuracy for 100 classes along the x, y, and both axes. Highest
values are shown in bold. The check mark indicates whether scaling was applied along the x-
or y-axes.

Maximum x-axis y-axis Train Validation Test
Scaling λscale Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

0.00 0.9998± 0.0000 0.8314± 0.0038 0.7926± 0.0075

0.01 X 0.9998± 0.0000 0.8280± 0.0043 0.7813± 0.0079
0.02 X 0.9998± 0.0000 0.8293± 0.0038 0.7861± 0.0054
0.04 X 0.9998± 0.0000 0.8287± 0.0062 0.7933± 0.0092
0.08 X 0.9998± 0.0000 0.8276± 0.0038 0.7896± 0.0054
0.16 X 0.9998± 0.0000 0.8327± 0.0042 0.7897± 0.0072
0.32 X 0.9998± 0.0000 0.8299± 0.0040 0.8028± 0.0079

0.01 X 0.9998± 0.0000 0.8269± 0.0054 0.7902± 0.0053
0.02 X 0.9999± 0.0000 0.8333± 0.0048 0.7895± 0.0086
0.04 X 0.9998± 0.0000 0.8282± 0.0050 0.7942± 0.0092
0.08 X 0.9998± 0.0000 0.8329± 0.0048 0.7917± 0.0065
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Table 12. Cont.

Maximum x-axis y-axis Train Validation Test
Scaling λscale Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

0.16 X 0.9999± 0.0000 0.8318± 0.0045 0.7872± 0.0075
0.32 X 0.9998± 0.0000 0.8354± 0.0033 0.7911± 0.0068
0.01 X X 0.9998± 0.0000 0.8258± 0.0053 0.7935± 0.0066
0.02 X X 0.9998± 0.0000 0.8295± 0.0034 0.7882± 0.0087
0.04 X X 0.9998± 0.0000 0.8294± 0.0057 0.7881± 0.0061
0.08 X X 0.9998± 0.0000 0.8313± 0.0044 0.7963± 0.0061
0.16 X X 0.9999± 0.0000 0.8266± 0.0040 0.7911± 0.0064
0.32 X X 0.9998± 0.0000 0.8315± 0.0046 0.7981± 0.0067

Table 13. Drop frames experiment mean top-1 accuracy for 100 classes. Highest values are shown
in bold.

Maximum Frames Train Validation Test
to Drop λdrop Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

0 0.9998± 0.0000 0.8314± 0.0038 0.7926± 0.0075
1 0.9998± 0.0000 0.8292± 0.0030 0.7915± 0.0081
2 0.9998± 0.0000 0.8302± 0.0035 0.7928± 0.0078
4 0.9998± 0.0000 0.8276± 0.0039 0.7887± 0.0061
8 0.9998± 0.0000 0.8296± 0.0049 0.7862± 0.0077
16 0.9999± 0.0000 0.8288± 0.0054 0.7937± 0.0071
32 0.9998± 0.0000 0.8312± 0.0056 0.7934± 0.0066

Table 14 shows the results from augmenting the input data by trimming a random
number of frames from the start of every sequence in a batch, up to a configured maxi-
mum value.

Table 14. Trim start experiment mean top-1 accuracy for 100 classes. Highest values are shown
in bold.

Maximum Frames Train Validation Test
to Trim λtrim Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

0 0.9998± 0.0000 0.8314± 0.0038 0.7926± 0.0075
1 0.9999± 0.0000 0.8291± 0.0047 0.7857± 0.0075
2 0.9999± 0.0000 0.8282± 0.0050 0.7879± 0.0080
4 0.9998± 0.0000 0.8261± 0.0037 0.7884± 0.0070
8 0.9999± 0.0000 0.8302± 0.0030 0.7855± 0.0065
16 0.9997± 0.0000 0.8255± 0.0047 0.7874± 0.0064
32 0.9851± 0.0005 0.8108± 0.0046 0.7748± 0.0094

The results from augmenting the input data by offsetting the beginning of each se-
quence in a batch by inserting a random number of copies of the first frame at the start,
up to a configured maximum value, are shown in Table 15. We remove the corresponding
number of frames from the end of the sequences to keep their lengths unchanged.

Similarly, the results from augmenting the input data by offsetting the beginning
of each sequence in a batch by inserting a random number of blank frames at the start,
up to a configured maximum value, are shown in Table 16. As with the offset frames
copy augmentation, we remove the corresponding number of frames from the end of the
sequences to keep their lengths unchanged.

We report the results from fixing the random number generator seeds and comparing
the outcome on a singular hyperparameter change in Table 17. Running experiments with
fixed seeds allows us to ascertain whether the impact a specific hyperparameter has is
measurable from a single experiment.
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Table 15. Offset frames copy experiment mean top-1 accuracy for 100 classes. Highest values are
shown in bold.

Maximum Frames to Train Validation TestOffset and Copy Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy
λocopy

0 0.9998± 0.0000 0.8314± 0.0038 0.7926± 0.0075
1 0.9998± 0.0000 0.8253± 0.0061 0.7920± 0.0063
2 0.9998± 0.0000 0.8245± 0.0038 0.7884± 0.0050
4 0.9999± 0.0000 0.8267± 0.0051 0.7897± 0.0069
8 0.9998± 0.0000 0.8289± 0.0048 0.7913± 0.0098
16 0.9998± 0.0000 0.8322± 0.0034 0.7945± 0.0082
32 0.9998± 0.0000 0.8266± 0.0041 0.7954± 0.0078

Table 16. Offset frames pad experiment mean top-1 accuracy for 100 classes. Highest values are
shown in bold.

Maximum Frames to Train Validation TestOffset and Copy Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy
λopad

0 0.9998± 0.0000 0.8314± 0.0038 0.7926± 0.0075
1 0.9998± 0.0000 0.8282± 0.0044 0.7931± 0.0045
2 0.9998± 0.0000 0.8279± 0.0044 0.7848± 0.0078
4 0.9998± 0.0000 0.8303± 0.0051 0.7881± 0.0121
8 0.9998± 0.0000 0.8238± 0.0042 0.7886± 0.0079
16 0.9997± 0.0000 0.8292± 0.0061 0.7857± 0.0075
32 0.9856± 0.0006 0.8198± 0.0051 0.7720± 0.0087

Table 17. Fixed-seed comparison on singular hyperparameters experiment mean top-1 test accuracy
for 100 classes. Highest values are shown in bold.

Seed Control λff = 2048 λrot = 20 λscale = 0.08 λencdo = 0.3

0 0.7973 0.8027 0.7739 0.7876 0.7777
1 0.8170 0.7906 0.8082 0.8073 0.7964
2 0.7945 0.7770 0.8221 0.8105 0.7893
3 0.7813 0.7900 0.7771 0.8094 0.7652
4 0.7976 0.7743 0.8004 0.7918 0.7624
5 0.8188 0.8104 0.7954 0.7997 0.8019
6 0.8091 0.8022 0.7893 0.8084 0.7801
7 0.8406 0.8178 0.8125 0.8149 0.8107

The results from fixing the random number generator seeds and comparing the effect
renormalisation after augmentation has on model performance are reported in Table 18.

Finally, we report the results from the dataset size experiment, where we measure the
impact dataset size has on model performance by reducing the number of class examples
by a configured ratio. These results are presented in Table 19.

Table 18. Fixed-seed comparison on normalisation experiment mean top-1 test accuracy for
100 classes. Highest values are shown in bold.

Seed λrot = 20 λrot = 20
λscale = 0.08 λscale = 0.08

Renormalised Renormalised

0 0.7739 0.7637 0.7876 0.7935
1 0.8082 0.8168 0.8073 0.7945
2 0.8221 0.8100 0.8105 0.8018
3 0.7771 0.7784 0.8094 0.8029
4 0.8004 0.7860 0.7918 0.7993
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Table 18. Cont.

Seed λrot = 20 λrot = 20
λscale = 0.08 λscale = 0.08

Renormalised Renormalised

5 0.7954 0.7848 0.7997 0.8065
6 0.7893 0.8111 0.8084 0.8090
7 0.8125 0.8201 0.8149 0.8319

Table 19. Dataset size experiment mean top-1 test accuracy for 100 classes. Highest values are shown
in bold.

Dataset Size Train Validation Test
Reduction Ratio λred Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

0.0 0.9998± 0.0000 0.8314± 0.0038 0.7926± 0.0075
0.1 1.0000± 0.0000 0.7821± 0.0052 0.7590± 0.0118
0.2 1.0000± 0.0000 0.7605± 0.0058 0.7364± 0.0132
0.3 1.0000± 0.0000 0.7652± 0.0060 0.7213± 0.0079
0.4 1.0000± 0.0000 0.7453± 0.0102 0.6867± 0.0119
0.5 1.0000± 0.0000 0.7222± 0.0097 0.6544± 0.0123
0.6 1.0000± 0.0000 0.7201± 0.0095 0.6180± 0.0145

4. Discussion

We begin by evaluating the two batching methods. As Figure 1 shows, single-pass
batching requires many more epochs before achieving a model accuracy that is comparable
to random batching, at which point neither method is clearly the more optimal. This is
because models trained using single-pass batching underfit the data when trained for an
insufficient number of epochs. Woods and Rana [14] showed that, for this task, the majority
of models trained using random batching converge at around 130 epochs, and we can
expect all models trained using this method to converge by approximately 250 epochs.
It is therefore possible that, at 200 epochs, some of the random batching experiments had
not fully converged before training had been completed. Nevertheless, given enough
iterations through the data for single-pass batching (e.g., ∼1000 epochs), both methods are
comparable in terms of performance on the test set. Using the number of epochs as a metric
for time to train can be misleading, however, because random batching, in practice, makes
multiple iterations through the majority of the entire dataset per epoch, and in doing so,
each epoch takes more time to complete than with the single-pass batching method.

Taking the results from single-pass batching at 1500 epochs and comparing with
random batching at 200 epochs using an independent two-sample t-test, we find the dif-
ference between the respective train and validation accuracy result groups are statistically
significant at p = 3.255× 10−18 and p = 1.851× 10−6, respectively, with both mean accu-
racies being greater on the random batch experiments. However, for the test accuracy, at
p = 7.682× 10−1, we find no statistical significance between the two experiment groups
showing that both methods are comparable in the test set performance. The full top-1 accu-
racy results for the batching method experiment analysis are listed in Tables A1 and A2.

Comparing the impact of batch size, we observe no appreciable effect on test set
accuracy up to at least batch size λbatch = 1024, after which performance drastically
degrades (see Figure 2). We did not test any batch sizes between λbatch = 1024 and
λbatch = 2048, so we cannot provide a more precise estimate for which model performance
begins to degrade. When using random batching, larger batch sizes equate to fewer
iterations through the data, which explains the observed reduction in accuracy once a
threshold is met. As the batch size increases, random batching begins to approximate single
pass, which we show to perform worse than random batching at lower epochs. We also
observe a reduction in validation set performance for batch sizes λbatch > 128, indicating
some dataset imbalance.
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Figure 1. Batching method: single pass versus random batching for top-1 classification accuracy on
100 signs. Each column label includes the number of epochs the neural network was trained for.

Reviewing the results from the learning rate experiment, we observe that, for this
task, the learning rate that produces the best model performance is between approximately
λlr = 1.0× 10−4 and λlr = 1.0× 10−3, with a reduction in accuracy outside of that range up
to the values measured. Figure 3 clearly identifies the peak performance range of learning
rate values, with λlr = 5.0× 10−4 giving the best test set accuracy over the range of learning
rates tested.
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Figure 2. Log-linear plot showing mean top-1 accuracy as a function of batch size, λbatch, for
100 classes. Somewhere between a batch size of 1024 and 2048, model performance begins to
rapidly degrade.

We analyse the effect that `1 and `2 parameter regularisation has on model performance
by plotting the outcomes of their respective experiments separately. In both cases, the
comparative model performance from applying no parameter regularisation is overlaid,
which shows the mean top-1 performance for the train, validation, and test sets as dotted
lines, with the respective calculated uncertainty making up the shaded areas. No shaded
area is visible for the training set performance because its value is zero when evaluated to
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five significant figures. For convenience, we limit the y-axis range of both plots equally to
exclude values that correspond with very low performance outcomes, as we do on other
plots where performance is severely reduced as the result of a hyperparameter value.
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Figure 3. Log-linear plot showing mean top-1 accuracy as a function of learning rate, λlr, for
100 classes. A learning rate between approximately λlr = 1.0× 10−4 and λlr = 1.0× 10−3 produces
the best-performing models.

Figure 4 shows the effect of applying elastic net regularisation over a range of values
for the `1 parameter, λ`1 , with a fixed `2 parameter, λ`2 = 0.001. The shaded areas indicate
the mean top-1 accuracy minimum and maximum values from the calculated uncertainty
for 16 experiments with no parameter regularisation being applied, which allows the
effect of elastic net regularisation to be observed. By also referring to Table 6, it is clear
that values of λ`1 > 0.005 start to significantly negatively impact on model performance.
Conversely, values of λ`1 ≤ 0.0001 show the models perform better than without any
parameter regularisation being applied, with a mean top-1 accuracy gain of approximately
1.7% on the test set for the best-performing value λ`1 = 0.00001. The trend suggests values
of λ`1 < 0.00001 may offer further, albeit marginal, gains, but it must be noted that the error
of these measurements does lie within the range of the baseline error, which in this case is a
model with no parameter regularisation. At this point in the analysis, therefore, we cannot
rule out the possibility that the observed gains are superficial. With the assumption that
there is a real performance gain at very low values of λ`1 , it appears to be the case that, in
conjunction with `2 parameter regularisation, this technique works best for this task when
λ`1 is included somewhat sparingly.

Applying the independent two-sample t-test to the results from the experiments with
the best-performing value of λ`1 = 0.00001 and those with no parameter regularisation (the
control), we find no significant difference between the two groups for the train accuracy,
with p = 4.466× 10−1. We do, however, find a significant difference in the validation and
test accuracies, with p = 3.149× 10−4 and p = 1.966× 10−2, respectively, with both group
mean values being greater than the control group with no parameter regularisation. This
strongly indicates that elastic net regularisation with a very low value for `1 improves
model performance compared with no parameter regularisation. The full top-1 accuracy
results for the elastic net regularisation and control experiments analysis are listed in
Tables A3 and A4.
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Figure 4. Log-linear plot showing mean top-1 accuracy as a function of elastic net regularisation for
100 classes, with the `1 parameter, λ`1

, varied, and the `2 parameter, λ`2 , held constant at λ`2 = 0.001.
The dashed lines with shaded areas indicate the respective mean top-1 accuracy minimum and
maximum values from the calculated uncertainty for 16 experiments with no elastic net regularisation
applied at all.

Figure 5 shows the effect of applying `2 parameter regularisation alone. As with
elastic net parameter regularisation, there is a clear degradxation in model performance
for larger related parameter values. The model is, however, less sensitive to larger values
of λ`2 when compared with the magnitude of λ`1 because of the definition of the penalty
imposed on the neuron weights (see Section 2.3.4). There is a clear measured optimal value
at λ`2 = 0.001, which does not intersect with the baseline error (wherex the baseline, again,
is a model with no parameter regularisation). This value of λ`2 provides an observed mean
performance gain of approximately 2.1% over no parameter regularisation.

10−5 10−4 10−3 10−2 10−1

λ`2

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T
op

-1
ac

cu
ra

cy

Train100

Validation100

Test100

Figure 5. Log-linear plot showing mean top-1 accuracy as a function of `2 parameter regularisation,
λ`2 , for 100 classes. The dashed lines with shaded areas indicate the respective mean top-1 accuracy
and associated uncertainty for 16 experiments with no parameter regularisation applied.
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Performing an independent two-sample t-test on the results from the experiments
with the best-performing value of λ`2 = 0.001 and those with no parameter regularisation,
we find—again, similar to elastic net regularisation—that there is no significant difference
between the two groups for the train accuracy, with p = 8.085× 10−1, but we do find the
difference is significant for the validation and test accuracies, which have p = 1.153× 10−7

and p = 5.080× 10−3, respectively. In both of these latter cases, the mean values are again
greater than the control. We conclude that `2 parameter regularisation improves model
performance by a significant margin.

It would be instructive to perform `1 parameter regularisation experiments as a stan-
dalone group without elastic net regularisation. Despite this, the selected value for the
`2 parameter, λ`2 = 0.001, can be attributed to being a fortunate choice for the common
baseline hyperparameters. The observed best combination of hyperparameters for the
elastic net configuration is almost certainly caused by the contribution made by the `2
component over `1, and we can test this statistically. This would explain why `2 parameter
regularisation performs better than elastic net regularisation, and why elastic net regularisa-
tion performs best for extremely low values of λ`1 where the `1 contribution is significantly
reduced. Comparing the outcome of the statistical tests performed on the elastic net and `2
parameter regularisation, with p = 1.966× 10−2 and p = 5.080× 10−3, respectively, we
observe that, statistically, `2 parameter regularisation alone produces a more performant
model on the test set, although experimenting with different combinations of hyperpa-
rameter values would provide more confidence. The full top-1 accuracy results for the `2
parameter regularisation and control experiments analysis are listed in Tables A3 and A5.

The effect that the number of neurons in the encoder feed-forward block layers has
on model performance is surprising. Figure 6 shows the test set performance appears to
rise in line with the feed-forward layer dimension. Figure 7 isolates the test set results and
rescales them to give a clearer picture of what appears to be happening. We could expect
an inflated layer dimension to increase overfitting on the training set, thereby impeding
the ability of the model to generalise—especially so in the case of our model, which is
clearly already overfitting—and conversely, we could reasonably expect a reduced layer
dimension bottleneck to help mitigate overfitting, but this is not the outcome we observe
with the experiments conducted. Model performance on the test set trends upwards with an
increase in neurons up to the experimental limit of λff = 8192, having plateaued at around
λff = 2048, with little performance difference in this range of dimensions. For convenience,
this is marked in Figure 7 with a green dashed line. Both increasing the number of neurons
beyond our limit of λff = 8192 and the number of experiments per configuration would
provide insight for determining the point at which the encoder feed-forward block layer
dimension begins to impact on performance from overfitting the training dataset split to
the detriment of generalisation to the test set. One possible explanation for the observed
behaviour is that overfitting on the training set benefits some classes in the test set that
have very similar equivalent training set examples. If this is the case, through increasingly
memorising those training set class examples, the model more easily recognises very similar
examples in the test set. It is worth noting that we do not see the same behaviour in the
validation set, which could contain class examples with enough difference within each
class when compared to the training set. This presents an opportunity for further analysis
beyond the scope of this study, and would perhaps benefit from the expertise of someone
proficient in ASL. What we find here is not dissimilar to the batch size experiment where
an effect that we would expect to harm a more balanced dataset is not observed.

Figure 8 shows that applying dropout to the encoder appears to have little effect on
model performance for λencdo ≤ 0.3. There is a slight improvement in test set performance
for the range 0.2 ≤ λencdo ≤ 0.3 compared with lower values of λencdo, but given the
experimental uncertainty of the measurements, no optimal value up to λencdo = 0.3 can
be determined. Dropout probabilities greater than λencdo = 0.3, however, show a marked
decline in performance, with the most severe reduction in accuracy at the upper limit
λencdo = 0.8, which is unsurprising. Dropout also appears to reduce validation set per-
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formance across the spectrum. This is notable because dropout is generally considered
advantageous to training deep neural networks [24,25]. One possible explanation is that
whereas techniques like `2 parameter regularisation encourage a spread of activations
with no heavy dependencies on specific neural pathways, other techniques, like dropout,
encourage neural pathway redundancy, which may still favour strong (but redundant)
activation pathways, and because `2 parameter regularisation is active by default through-
out all dropout experiments, the two techniques could be in conflict when dropout is
applied. Again, this presents another opportunity for a future study to measure the effect
of applying a range of dropout probabilities against a range of `2 parameter regularisation
values, including none. It is, of course, also likely that the small dataset size plays an
important role in the effect dropout has for improving the model’s capacity to generalise to
unseen data.
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Figure 6. Log-linear plot showing mean top-1 accuracy as a function of encoder feed-forward block
layer dimension, λff, for 100 classes. Test set performance appears to increase with the number of
neurons in the feed-forward block layer.
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Figure 7. Log-linear plot showing mean top-1 accuracy as a function of encoder feed-forward block
layer dimension, λff, for 100 classes. Only the test set results are shown, which more clearly shows
that the test set performance increases with the number of neurons in the feed-forward block layer
until it appears to plateau, over the range tested, at approximately 2048 neurons. This is marked with
a green dashed line.
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Dropout is applied to the training dataset split input embeddings as an analogue to
neuron dropout in the encoder, but as can be seen in Figure 9, it is clear that no amount of
embedding dropout is beneficial for model performance on any of the dataset splits. This
categorically rules out embedding dropout as a valid strategy to reduce overfitting.

Augmenting the training dataset split by adding noise has no clear measurable effect
on model performance for levels of noise λnoise ≤ 0.256. The values of λnoise quoted
correspond with the maximum absolute value of injected noise per keypoint in a batch.
Random batching means that, per epoch, batches will likely be included that contain little
to no noise at all being applied. Figure 10 shows that once the level of injected noise goes
above a maximum value of approximately λnoise = 0.256, the amount of noisy data begins
to overwhelm the less noisy data, which impedes the model’s ability to generalise to the
test dataset split. The outcome of these experiments is in contrast to the study conducted
by Bohacek and Hruz [40], who quote a measured increase in accuracy on 100 classes from
62.79% to 63.18% by augmenting with added noise.
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Figure 8. Plot showing mean top-1 accuracy as a function of encoder dropout probability, λencdo, for
100 classes. Despite model performance on the test set appearing to peak at approximately λencdo = 0.3,
the uncertainty prevents the determination of a clearly optimal value. Dropout probabilities λencdo > 0.3
appear to impede performance on the test set. The dashed lines with shaded areas indicate the respective
mean top-1 accuracy and associated uncertainty for 16 experiments with no encoder dropout applied.
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Figure 9. Plot showing mean top-1 accuracy as a function of embedding dropout probability, λembdo,
for 100 classes. It is clear that no amount of embedding dropout is beneficial for model performance
on any of the dataset splits. The dashed lines with shaded areas indicate the respective mean top-1
accuracy and associated uncertainty for 16 experiments with no embedding dropout applied.
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Figure 10. Log-linear plot showing mean top-1 accuracy as a function of noise augmentation, λnoise,
for 100 classes. Given the experimental uncertainty, augmenting the data with noise appears to
provide no measurable positive effect on model performance, with the effect being clearly negative
beyond λnoise = 0.256. The dashed lines with shaded areas indicate the respective mean top-1
accuracy and associated uncertainty for 16 experiments with no augmentation applied.

Augmenting the training dataset split by arbitrarily, but uniformly, rotating the key-
points about the origin, up to a maximum rotation value, appears to provide no real positive
or negative effect on model test set performance, across the entire range of rotation values
tested, 0 ≤ λrot ≤ 32 (see Figure 11). Taking our best mean top-1 accuracy score from
the rotation experiments, where λrot = 8, and again comparing with the study performed
by Bohacek and Hruz [40], we see an increase of ∼0.43% from augmenting with rotation,
whereas they report an increase in accuracy of 2.27%. It is possible that differences in im-
plementation can cause some discrepancy, but with a measured experimental uncertainty
of ∼0.56% relating to our best mean score, we conclude that we observe no measurable
effect from augmenting with rotation.

Analysing the three groups of scaling experiments together, we can see in Figures 12–14
that augmenting the training dataset split by scaling separately along the x- and y-axes,
and together on both axes, over the selected values, 0.00 ≤ λscale ≤ 0.32, offers no test
set performance enhancement. With the exception of the extremes of the tested values
λscale = 0.01 and λscale = 0.32 along the x-axis, all results fall within the baseline uncer-
tainty where no augmentation is applied. The uncertainties associated with the results
from the experiments with λscale = 0.01 and λscale = 0.32 do, however, intersect, so no
firm conclusion can be drawn. The rationale for this stems from the results for the superfi-
cially anomalous lowest value λscale = 0.01; augmenting by a maximum scaling value of
λscale = 0.01 means the difference between keypoints that receive no x-axis perturbation
and those that do is minuscule compared with those that, during random batching, receive
a much larger range of perturbation values (e.g., λscale = 0.08) where the performance
is somewhat increased compared with the baseline. The deviation from the mean at this
lowest extreme is commensurate with the deviation at the upper extreme of λscale = 0.32,
and we therefore conclude that the variation observed shows no real impact on model
performance across the entire range of λscale in all axes other than perhaps reducing the
stability of the model.

The subtle effect of simulating increasing the speed of movement in various places by
dropping random frames, per batch, up to the configured maximum set by λdrop, appears to
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have no effect at all on model performance over the range of hyperparameter values tested.
Figure 15 clearly shows no reduction in overfitting nor change in either validation or test
set performance. We are somewhat surprised that this technique does not work as expected,
and this is perhaps because the effect is too subtle. Increasing the range of values λdrop can
take may produce more positive results. Better still would be to intelligently remove frames
using real analysis of the motion of various keypoints throughout a given sign, and thereby,
for example, reducing the length of time a particular hold lasts, or speeding up the motion
from rest to sign by differing amounts. But dramatically altering the sign sequences begins
to encroach on synthetic sign dataset creation, and as previously stated, we recommend the
involvement of (preferably Deaf) expert signers when manipulating signs beyond the basic
techniques we have employed. We do not do so simply because we are not Deaf.
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Figure 11. Log-linear plot showing mean top-1 accuracy as a function of rotation augmentation, λrot,
for 100 classes. Given the experimental uncertainty, it is not possible to claim a directly observable
positive effect from augmenting with rotation of keypoints. The dashed lines with shaded areas
indicate the respective mean top-1 accuracy and associated uncertainty for 16 experiments with no
augmentation applied.

With the intention of both helping to remove some of the silence before a sign begins
and to alter the time at which a sign does begin, such that more variety is introduced
into the dataset, it is clear that the trim start augmentation becomes detrimental beyond a
certain point, as Figure 16 clearly illustrates. Every mean experiment result sits towards
the lower bound of the uncertainty of the baseline, up until λtrim = 0.16, after which
(at λtrim = 0.32) performance clearly degrades across all dataset splits. This is almost
certainly because a significant proportion of signs are being truncated with a sufficiently
high λtrim. As with the drop frames experiment, performing this kind of augmentation
more intelligently, with perhaps a mechanism to detect the start of the sign to ensure no
essential frames are trimmed from the start of any given sequence, would likely yield better
results. Likewise, extending the augmentation to detect the end of the sign would likely
produce better results still [46].
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Figure 12. Log-linear plot showing mean top-1 accuracy as a function of scaling augmentation along
the x-axis, λscale, for 100 classes. Excluding the accuracy results for both extreme hyperparameter
values, no clear measurable effect is observed. The measured uncertainties of those extremes, however,
do fall within the measured uncertainty of the baseline experiments, indicated by the respective
shaded areas, thereby preventing a clear positive or negative performance impact being observed.
The dashed lines with shaded areas represent the respective mean top-1 accuracy and associated
uncertainty for 16 experiments with no augmentation applied.
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Figure 13. Log-linear plot showing mean top-1 accuracy as a function of scaling augmentation along
the y-axis, λscale, for 100 classes. There is no observable effect on test set performance from any scaling
hyperparameter value λscale. The dashed lines with shaded areas indicate the respective mean top-1
accuracy and associated uncertainty for 16 experiments with no augmentation applied.
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Figure 14. Log-linear plot showing mean top-1 accuracy as a function of scaling augmentation along
the x- and y-axes, λscale, for 100 classes. There is no observable effect on test set performance from
any scaling hyperparameter value λscale. The dashed lines with shaded areas indicate the respective
mean top-1 accuracy and associated uncertainty for 16 experiments with no augmentation applied.
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Figure 15. Log-linear plot showing mean top-1 accuracy as a function of the drop frames aug-
mentation, λdrop, for 100 classes. Given the experimental uncertainty, it is not possible to claim
a directly observable positive effect from augmenting by inserting an element of randomisation
by dropping arbitrary frames from each sequence in a batch. The dashed lines with shaded areas
indicate the respective mean top-1 accuracy and associated uncertainty for 16 experiments with no
augmentation applied.
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Figure 16. Log-linear plot showing mean top-1 accuracy as a function of the trim start augmentation,
λtrim, for 100 classes. Given the experimental uncertainty, it is not possible to claim a directly
observable positive effect from augmenting by inserting an element of randomisation by trimming
arbitrary frames from the start of each sequence in a batch. The dashed lines with shaded areas
indicate the respective mean top-1 accuracy and associated uncertainty for 16 experiments with no
augmentation applied.

The offset augmentation techniques are very similar in that both delay the effective
start of a given sign by inserting leading frames and reducing the length of the sequences
as required to keep them constant. The only difference is that the offset copy augmentation
inserts copies of the first frame data, whereas offset pad inserts empty frames. Referring
to Figures 17 and 18, it is clear that neither reduce overfitting to the benefit of the model’s
ability to generalise to the validation and test sets, with the offset pad augmentation (which
inserts blank frames) actively harming the model beyond λopad = 16. The conclusion that
we are able to draw here is that some representative data, even if static, is better than no
data at the beginning of a sign sequence. Given that all sequences are padded to a fixed
length with zero values for the keypoint coordinates, and the sequence lengths—and by
extension, sequence masks—are not used in the encoder, it would be interesting to pad
sequences to the maximum sequence length with static copies of the final frame rather than
empty values and measure the outcome.

We have seen from the experiments conducted so far that randomised seeds produce
a range of results for experiments that are otherwise identical in configuration, and we
show that it is necessary to repeat experiments many times to produce a mean value with
associated measurement uncertainty so that the impact a given hyperparameter has on
outcome can be evaluated. If a particular hyperparameter value is expected to produce a
positive or negative change in outcome, we should expect the same polarity in the outcome
by repeating the same experiment over a range of fixed seeds. The consequence of this not
being true is that changing the value of a hyperparameter and repeating a single experiment
is no guaranteed indicator of the efficacy of that hyperparameter change, with either a fixed
or randomised seed. More simply, the requirement for multiple experiments with different
seeds does not go away.
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Figure 17. Log-linear plot showing mean top-1 accuracy as a function of the offset copy augmentation,
λocopy, for 100 classes. Given the experimental uncertainty, it is not possible to claim a directly observ-
able positive effect from augmenting by inserting copies of the first frame at the start of each sequence
in a batch to delay the start of a sign. The dashed lines with shaded areas indicate the respective
mean top-1 accuracy and associated uncertainty for 16 experiments with no augmentation applied.
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Figure 18. Log-linear plot showing mean top-1 accuracy as a function of the offset pad augmentation,
λopad, for 100 classes. Given the experimental uncertainty, it is not possible to claim a directly
observable positive effect from augmenting by inserting blanks frames at the start of each sequence
in a batch to delay the start of a sign, but only up until λopad = 16 after which it is clear that model
performance is clearly degraded. The dashed lines with shaded areas indicate the respective mean
top-1 accuracy and associated uncertainty for 16 experiments with no augmentation applied.

Reviewing the results from the fixed-seed comparison on singular hyperparameters
experiment, we find evidence that fixing seeds does not lead to single-experiment results
that show a clear outcome from a single hyperparameter change. For the experiment
that compares training runs using the same fixed seeds for λff = 108 (the control) and
λff = 2048, we plot the change in outcome for the validation and test sets for each given
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fixed seed such that a positive value means an improved accuracy was observed. We omit
the training set outcomes because the difference is negligible. Figure 19 shows clearly that
both the validation and test set accuracy scores can change considerably—and change
polarity—when the exact same experiment is repeated with a different fixed seed. Even
more notable here is that while Table 7 shows the mean top-1 accuracy after 16 experiments
has λff = 2048 performing better than λff = 108 (the control), a naive interpretation of the
results from this fixed-seed experiment would lead to the conclusion that an overall drop
in performance is observed for λff = 2048. Repeating the process for the experiment that
compares training runs using the same fixed seeds for λrot = 0 (the control) and λrot = 20,
we see a similar result (see Figure 20), with a spread of difference in outcome for both
the validation and test set accuracy. Figure 21 shows the difference in outcome for the
experiment with λencdo = 0.0 (the control) and λencdo = 0.3, but shows test set accuracy is
reduced for each of the tested fixed seeds. Again, Table 8 shows the mean top-1 accuracy
for λencdo = 0.3 after 16 experiments (each with a randomised seed) is marginally higher
than λencdo = 0.0 on the same block of experiments. Running single experiments with any
of the fixed seeds in our tested range, in this case, would lead to the erroneous conclusion
that choosing λencdo = 0.3 would produce a worse test set accuracy than λencdo = 0.0,
which we do not observe after 16 repeated experiments (see Table 8).

We now analyse the results from the fixed-seed comparison on normalisation ex-
periment (see Table 18). Taking each group where the keypoints are normalised before
augmentation versus renormalised after augmentation, we can perform an independent
two-sample t-test and measure the statistical significance of the two distributions being com-
parable, i.e., no measurable difference was observed between the two groups. Insufficient
resources prevent us from increasing the sample size, but nevertheless, we find the rotation
experiment with λrot = 20 shows no significant difference between the two groups across
the training, validation, and test set accuracies, with p = 2.377× 10−1, p = 7.138× 10−1,
and p = 9.173× 10−1, respectively. We find the same is true for the x-y scaling experiment
with λscale = 0.08. With p = 7.266× 10−1, p = 5.854× 10−1, and p = 8.266× 10−1, for the
training, validation, and test splits, there is no significant difference found. We conclude
that for the experiments conducted on our models, it is unlikely that renormalising after
augmentation offers any performance gain. This is useful because it means the extra com-
putational overhead of renormalising every batch can be avoided in future experiments
that use these same techniques.
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Figure 19. Impact of fixed seed on repeatability of singular feed-forward block layer dimension
hyperparameter, λff, change. Each bar shows the difference between two experiments: the baseline
hyperparameter value versus the altered hyperparameter value. A positive value indicates an
improved accuracy score from the altered hyperparameter. The spread of values shows that the fixed
seed can influence the impact of the hyperparameter value such that it is an insufficient way to test
the outcome of hyperparameter changes with single experiments.
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Figure 20. Impact of fixed seed on repeatability of singular rotation hyperparameter, λrot, change.
Each bar shows the difference between two experiments: the baseline hyperparameter value versus
the altered hyperparameter value. A positive value indicates an improved accuracy score from the
altered hyperparameter. The spread of values shows that the fixed seed can influence the impact of
the hyperparameter value such that it is an insufficient way to test the outcome of hyperparameter
changes with single experiments.
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Figure 21. Impact of fixed seed on repeatability of singular encoder dropout hyperparameter, λencdo,
change. Each bar shows the difference between two experiments: the baseline hyperparameter value
versus the altered hyperparameter value. A positive value indicates an improved accuracy score from
the altered hyperparameter. The spread of values shows that the fixed seed can influence the impact
of the hyperparameter value such that it is an insufficient way to test the outcome of hyperparameter
changes with single experiments.

The dataset used in this study is small by deep learning standards, at only 2663 examples
in the 100 sign classes group. Table 19 shows the impact that dataset size has on model perfor-
mance by reducing the number of class examples by a ratio defined by the hyperparameter
λred, where λred = 0.0 means no reduction in size and λred = 0.5 would mean the number of
class examples in each dataset split is halved. Reducing the dataset size shows a drop in top-1
test set accuracy proportional to the size, which is to be expected. To estimate the improve-
ment that an increased dataset size could have on model performance, we can extrapolate to
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larger dataset sizes using regression analysis. As a conservative best-case estimate, we fit a
linear trend to the full set of dataset reduction results and obtain the equation

ylinear = 1.015× 10−4x + 5.309× 10−1,

with coefficient of determination R2 = 8.402× 10−1. For a worst-case estimate, we assume
an increase in dataset size eventually asymptotes to a maximum accuracy value, at which
the model is essentially saturated, and performance ceases to improve with increased
dataset size. We therefore fit a polynomial of degree 2 and obtain the equation

ypoly = −2.407× 10−8x2 + 1.884× 10−4x + 4.597× 10−1,

with coefficient of determination R2 = 8.529× 10−1. Using these equations, we predict
mean accuracy at increased dataset sizes up until the model reaches 100% accuracy on
the linear fit, and until the model reaches a peak on the polynomial fit. These results are
shown in Figure 22, where the linear limit is found to be at a dataset size of 4624 example
sequences, and for the polynomial fit, the peak is reached at 3900 example sequences.
The linear and polynomial limits are marked with vertical dashed lines. We find the
worst-case top-1 mean accuracy is approximately 83% given a sufficiently large dataset,
which is a mean value improvement of approximately 3% on our best-performing model
configuration. We therefore cautiously estimate that the dataset size would need to be
doubled for this model to produce the best possible top-1 test set accuracy. Despite the
analysis performed, we must also consider the change in balance that simply adding more
example sequences would bring. If the dataset imbalance could be improved, so could our
estimates and no doubt also our model performance. Notwithstanding these caveats, it
is clearly demonstrated that the dataset size is the predominant limiting factor, given the
correctness of our assumptions.
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Figure 22. Top-1 test set accuracy as a function of dataset size, with conservative best- and worst-case
fitted curves to estimate the effect increased dataset size has on accuracy. Predictions for the linear
and polynomial of degree 2 fits have also been plotted. The hypothetical point, as predicted by the
linear fit, at which the dataset size would allow for 100% accuracy is marked with a vertical purple
dashed line, and the equivalent maximum accuracy point for the worst-case polynomial fit is marked
with a vertical teal dashed line.

Finally, we note an improved maximum test set accuracy score for 100 classes of 0.8406,
beating the previous accuracy score of 0.8316 [14]. This result was observed in the fixed-seed
control experiment group with λseed = 7 (see Table 17), which is notable because, other than
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using a fixed-seed value, it utilises the common baseline hyperparameter configuration
used throughout (see Table 2). We have reproduced and updated the results table from
Woods and Rana [14] to include the best maximum top-1, top-5, and top-10 results for
100 classes from this ablation study (see Table 20). We have also included the best mean
top-1 accuracy score, taking the associated top-5 and top-10 accuracy scores from that same
experiment group. The best mean top-1 accuracy score was observed in the feed-forward
block layer dimension experiment group with λff = 2048.

For some of the augmentation techniques that show no impact on test set performance,
it would have been better to repeat these experiments but by increasing the hyperparameter
values until an effect is observed, positive or negative, or until the hyperparameter is
exhausted (i.e., λrot). It is possible that some of the augmentation techniques may still work,
e.g., drop frames or offset copy, but only with sufficiently high associated hyperparame-
ter values.

Table 20. Updated table from Woods and Rana [14] showing best top-1, top-5, and top-10 test
accuracy results for human pose-estimation-based sign language recognition using WLASL-based
data. Highest values are shown in bold.

Model 10 Classes Top-k 50 Classes Top-k 100 Classes Top-k 300 Classes Top-k
1 5 10 1 5 10 1 5 10 1 5 10

Pose-TGCN [42] – – – – – – 0.5543 0.7868 0.8760 0.3832 0.6751 0.7964
Pose-GRU [42] – – – – – – 0.4651 0.7674 0.8566 0.3368 0.6437 0.7605

GCN-BERT [43] – – – – – – 0.6015 0.8398 0.8867 0.4216 0.7171 0.8093
SPOTER [40] – – – – – – 0.6318 – – 0.4378 – –

Sign2Pose [41] – – – – – – 0.8090 – – 0.6421 – –
Woods and Rana [14] (mean) 0.9395 0.9854 1.0000 0.8330 0.9634 0.9771 0.7993 0.9415 0.9619 0.6855 0.8920 0.9318
Woods and Rana [14] (max) 0.9688 1.0000 1.0000 0.8722 0.9746 0.9831 0.8316 0.9596 0.9733 0.7052 0.8999 0.9378

Ours (mean) – – – – – – 0.8007 0.9395 0.9600 – – –
Ours (max) – – – – – – 0.8406 0.9641 0.9795 – – –

With many variations in the same signs, we conjecture that the difference between
some of these same sign examples is greater than any basic augmentation technique al-
lows to bridge the gap. For example, the WLASL-alt examples for the ASL sign SHOW

exhibit some variation that includes hand positions that are slightly to the left or right
or to the front or at any intermediate angle. We hypothesise that the model would have
to learn separate representations for distinct forms of the same signs, but proving this is
beyond the scope of this study. The obvious conclusion is that—in accordance with our
observations—minor perturbations like adding noise or rotating keypoints are insufficient
compared with including more representative example sequences in the dataset that cover
all sign variations, which would ultimately improve model performance. This is an impor-
tant factor that differentiates image-based deep learning models [42,53] from sparse human
pose estimation keypoint data-based models [14,40–42].

Performance gains made by optimising individual hyperparameters, which otherwise
fall within the measured uncertainty across a sample of experiments, may have a stacking
effect when combined with other optimised hyperparameters. Discovering these optimal
combinations, however, would require a more thorough and exhaustive combinatorial
search, which, given the exponentially explosive nature of all possible combinations, is im-
practical. This is where random hyperparameter search becomes the preferred choice [10].

5. Conclusions

In this study, we expand on the original sign language modelling study by Woods and
Rana [14], by conducting a comprehensive, large-scale ablation study. We apply several
regularisation and data augmentation techniques and find that none of these techniques
dramatically reduces overfitting on the training set to the benefit of generalising to the test
set. Our findings also appear to contradict previous similar studies that report performance
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gains from e.g., augmenting with noise. We find the boundaries of some hyperparameter
values, and also that `2 parameter regularisation via weight decay in the Adam optimiser
offers the most significant benefit in improving model performance, but the gains are
modest. We show that renormalising after augmentation is an unnecessary step that
adds otherwise avoidable computational overhead. In addition, we further demonstrate
the importance of conducting many experiments per configuration to enable reliable
model performance evaluation, including showing that fixing random number generator
seeds and repeating experiments once after a hyperparameter change is inadequate for
determining the impact of that new hyperparameter value. While we cannot speculate
on how our findings affect other supervised learning models and datasets—which are
largely determined empirically—this study can help inform future similar studies aiming
towards optimal hyperparameter selection by providing an extensive list of available
hyperparameters to test as well as an indication of the anticipated outcome for various
hyperparameter values, especially for sparse data like variable-length sequences of human
pose estimation keypoints. Our experiments with padding using copies of the first frame
versus empty frames suggest some data are better than none when padding, even if the
keypoints represented by the data are static, and with this in mind, we recommend this idea
is extended to the general process of padding sequences and tested. We also recommend
testing random sampling of sequence frames to determine if the benefits reported elsewhere
in the literature can be realised with this model architecture. We provide strong evidence
that the small dataset size is the predominant limiting factor, and we believe our methods
would have a greater impact with an increased dataset size. Finally, we report an improved
maximum top-1 accuracy score on 100 classes of 84% using the same configuration as the
original study.
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Appendix A

Table A1. Random batching method top-1 accuracy results for 100 classes.

Train Validation Test
Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

0.9999 0.8238 0.7964
0.9998 0.8366 0.7898
0.9998 0.8262 0.7804
0.9997 0.8376 0.7827
0.9998 0.8207 0.7877
0.9999 0.8274 0.7965
0.9999 0.8405 0.8404
0.9998 0.8417 0.7676
0.9999 0.8366 0.7844
0.9999 0.8347 0.7908
0.9999 0.8273 0.7984
0.9999 0.8347 0.7874
0.9998 0.8323 0.7983
0.9999 0.8376 0.7920
0.9997 0.8309 0.8014
0.9999 0.8132 0.7867

Table A2. Single pass batching method top-1 accuracy results for 100 classes.

Train Validation Test
Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

0.9995 0.8134 0.7767
0.9995 0.8254 0.8139
0.9995 0.8206 0.7618
0.9995 0.8110 0.7866
0.9995 0.8230 0.8114
0.9995 0.8134 0.7916
0.9995 0.8134 0.7940
0.9995 0.8134 0.7940
0.9995 0.8278 0.7891
0.9995 0.8158 0.7916
0.9995 0.8158 0.7965
0.9995 0.8038 0.8015
0.9995 0.8182 0.7866
0.9995 0.8230 0.8065
0.9995 0.8086 0.7965
0.9995 0.8182 0.8065

Table A3. Parameter regularisation control top-1 accuracy results for 100 classes.

Train Validation Test
Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

0.9999 0.7993 0.7197
0.9999 0.8051 0.7351
0.9998 0.7949 0.7520
0.9999 0.7972 0.7592
0.9998 0.8183 0.7953
0.9998 0.8092 0.7767
0.9997 0.8156 0.7797
0.9998 0.8223 0.7803
0.9999 0.8221 0.7893
0.9999 0.8158 0.7539
0.9998 0.8082 0.8021
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Table A3. Cont.

Train Validation Test
Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

0.9999 0.8118 0.7957
0.9999 0.8256 0.7817
0.9997 0.8109 0.7863
0.9998 0.8050 0.7589
0.9999 0.8110 0.7804

Table A4. Elastic net regularisation top-1 accuracy results for 100 classes.

Train Validation Test
Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

0.9998 0.8024 0.8049
0.9999 0.8409 0.7863
0.9998 0.8170 0.7760
0.9998 0.8387 0.7871
0.9998 0.8215 0.7797
0.9997 0.8307 0.8086
0.9999 0.8322 0.7747
0.9999 0.8170 0.7808
0.9998 0.8305 0.8113
0.9998 0.8300 0.7844
0.9998 0.8231 0.7934
0.9999 0.8137 0.8070
0.9999 0.8253 0.7953
0.9998 0.8206 0.7545
0.9997 0.8163 0.7980
0.9998 0.8323 0.7770

Table A5. `2 parameter regularisation top-1 accuracy results for 100 classes.

Train Validation Test
Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

0.9999 0.8238 0.7964
0.9998 0.8366 0.7898
0.9998 0.8262 0.7804
0.9997 0.8376 0.7827
0.9998 0.8207 0.7877
0.9999 0.8274 0.7965
0.9999 0.8405 0.8404
0.9998 0.8417 0.7676
0.9999 0.8366 0.7844
0.9999 0.8347 0.7908
0.9999 0.8273 0.7984
0.9999 0.8347 0.7874
0.9998 0.8323 0.7983
0.9999 0.8376 0.7920
0.9997 0.8309 0.8014
0.9999 0.8132 0.7867
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