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Abstract: Optical Coherence Tomography (OCT) is an imperative symptomatic tool empowering
the diagnosis of retinal diseases and anomalies. The manual decision towards those anomalies by
specialists is the norm, but its labor-intensive nature calls for more proficient strategies. Consequently,
the study recommends employing a Convolutional Neural Network (CNN) for the classification of
OCT images derived from the OCT dataset into distinct categories, including Choroidal NeoVascular-
ization (CNV), Diabetic Macular Edema (DME), Drusen, and Normal. The average k-fold (k = 10)
training accuracy, test accuracy, validation accuracy, training loss, test loss, and validation loss values
of the proposed model are 96.33%, 94.29%, 94.12%, 0.1073, 0.2002, and 0.1927, respectively. Fast Gradi-
ent Sign Method (FGSM) is employed to introduce non-random noise aligned with the cost function’s
data gradient, with varying epsilon values scaling the noise, and the model correctly handles all noise
levels below 0.1 epsilon. Explainable AI algorithms: Local Interpretable Model-Agnostic Explanations
(LIME) and SHapley Additive exPlanations (SHAP) are utilized to provide human interpretable
explanations approximating the behaviour of the model within the region of a particular retinal image.
Additionally, two supplementary datasets, namely, COVID-19 and Kidney Stone, are assimilated
to enhance the model’s robustness and versatility, resulting in a level of precision comparable to
state-of-the-art methodologies. Incorporating a lightweight CNN model with 983,716 parameters,
2.37× 108 floating point operations per second (FLOPs) and leveraging explainable AI strategies, this
study contributes to efficient OCT-based diagnosis, underscores its potential in advancing medical
diagnostics, and offers assistance in the Internet-of-Medical-Things.

Keywords: adversarial attacks; deep learning; health informatics; lightweight CNN; retinal image
classification

1. Introduction

The retina, situated at the posterior aspect of the ocular globe, comprises photoreceptor
cells adept at transducing luminous stimuli into intricate electrical signals, subsequently
dispatched to the cerebral cortex via the optic nerve. This intricate process serves as
the foundation for human visual perception, wherein the brain deciphers these electrical
transmissions as coherent visual representations. Retinal diseases can seriously affect vision
and in some cases, can lead to permanent blindness [1] which is a big problem for the
general health of the public. Getting a prompt and accurate diagnosis with the help of
automated tools is a great assist for medical specialists in making wise medical decisions.
The advancement of digital medical imaging has brought about a significant change in
ophthalmology as it has introduced effective technologies that help in the detection of such
diseases. By improving early detection through image analysis and identifying minuscule
anomalies, Artificial Intelligence (AI) has considerably coped with retinal diseases. AI
has also enhanced treatment planning by analyzing patient data and enabling tailored
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care. Additionally, AI-driven systems help track the development of diseases, resulting in
therapies that are more successful [2].

Different Machine Learning (ML) and Convolutional Neural Networks (CNNs) are
efficient at analyzing images and are particularly incredible at recognizing complex patterns
in medical images [3]. Their ability to diagnose complicated retinal diseases is efficient
without a doubt, but in medical practice, using CNNs depends not only on how well they
can diagnose the issues but also on how useful they are in places with limited computational
resources. Not only CNN, but different variants of CNN like ResNet [4], VGG [5] and more
have produced good accuracies statistically. These CNNs and their variants have a very
high number of training parameters, and many layers which make it time-consuming in
real-time predictions [6] and integration with the Internet-of-Medical-Things (IoMT) [7].

As AI technology advances, it has become essential to not only achieve better di-
agnostic abilities but also to understand how these AI systems make predictions and
decisions [8–10]. As these models can be hard to understand because of their statistical
nature making them black boxes [11], the addition of Explainable Artificial Intelligence
(XAI) into these models can solve the problem. The combination of small and efficient
CNN models in IoMT devices with XAI, as a bio-marker, helps retinal disease diagno-
sis to be more accurate and more accessible for medical experts, practitioners, and even
ordinary people.

To resolve all of these issues, this study aims to achieve the following three key objectives:

1. To develop an efficient CNN model with minimal parameters for detecting retinal
abnormalities such as CNV, DME, and Drusen using OCT datasets.

2. To incorporate Explainable Artificial Intelligence (XAI) methodologies such as Local
Interpretable Model-agnostic Explanations (LIME) and Shapley additive explanations
(SHAP) into the realm of clinical interpretation, with the aim of comprehending the
prediction by the Convolutional Neural Network (CNN) model.

3. To generalize the model’s reliability and applicability; two new additional datasets
were trained and evaluated for the model.

2. Related Works

Researchers in health informatics are leveraging the predictive power of Deep Learn-
ing (DL) to address the automated diagnosis of various diseases such as COVID-19 [12],
monkeypox [13], kidney stone [14] and so on. Here, we summarise the recent DL methods
that have been employed for retinal disease diagnosis using various image modalities.
These methods can be categorized into two broad classes: pre-trained DL models (that
leverage the transfer learning strategies) and custom-designed CNN (which needs training
from scratch).

Subramanian et al. [15] utilised four CNN models such as VGG16, DenseNet-201,
Inception-V3, and Xception, to classify seven different retinal diseases. Moreover, Bayesian
optimization was employed to fine-tune the hyperparameters of these CNN models, cou-
pled with image augmentation techniques to enhance their ability to generalize. The use of
DenseNet-201 in classifying retinal diseases on the Retinal OCT Image dataset resulted in
an accuracy exceeding 99%, demonstrating superior performance compared to alternative
methods. Puneet et al. [16] implemented the combination of Attention and Transfer Learn-
ing approaches into a DCNN for categorizing retinal diseases such as CNV, DME, and
Drusen using OCT images. Their proposal achieved notable results, attaining accuracies
of 97.79% during training and 95.6% during testing. Kayadibi et al. [17] implemented a
hybrid fine-tuned CNN for retinal disease classification from OCT images. They utilized
PCA to reduce the feature size and enhance the performance. The benchmarking out-
comes for two OCT datasets demonstrated a high level of promise in terms of accuracy.
Specifically, the UCSD dataset yielded an impressive accuracy of 99.70% according to
Kermany et al.’s study [18], while the Duke dataset achieved a perfect 100% accuracy as
reported by Srinivasan et al. [19]. In their research, Kim and colleagues [20] harnessed a
variety of Convolutional Neural Networks (CNNs) like VGG16, ResNet50, DenseNet121,
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and Inception-v3 as feature extractors. Subsequently, they employed these features to
develop binary OCT image classification models. A binary classifier model is developed for
each category (CNV, DME, Drusen and Normal) and the VGG-16-based model for CNV vs.
other classes achieved 98.6% accuracy. They achieve high accuracy using the pre-trained
DL models. However, their proposal needs the training of individual models for each
class which incurs high computational complexity. A pre-trained VGG-16 network was
implemented by Li et al. [21] for retinal image classification on OCT images. They validated
the model’s performance on 1000 independent OCT images. Their work revealed that the
transfer learning with the VGG-16 model has a promising accuracy of 98.6%, sensitivity of
97.8%, and specificity of 00.4%. With such commendable performance of the model, deep
learning can automate the diagnosis of retinal disease. Li et al. [22] adopted the ensemble
models for retinal disease classification using OCT images. They trained four DL- models
based on improved ResNet50 to build the ensemble and achieved the highest accuracy of
96.3%, sensitivity of 96.6%, and specificity of 98.7%. However, the ResNet50 model is itself
the heavyweight model.

In addition to employing pre-trained deep learning models, only a limited number of
researchers have created custom CNNs for the classification of retinal images. For example,
a deep CNN with six convolution blocks (including the Relu, batch normalization, and
pooling operation) was implemented by Sujina et al. [23]. Their proposal achieved a promis-
ing accuracy of 99.69% with a low misclassification rate. However, the generalisability
of the CNN on additional datasets is not reported. Altan et al. [24] implemented a deep
learning architecture to detect the macular edema on OCT images and reported an accuracy
of 99.20%.

Hybrid deep learning models for retinal image classification have also been proposed
recently. For instance, a hybrid deep learning model for OCT image classification was
implemented by Khan et al. [25]. They extracted retinal features from OCT images using
three pre-trained deep learning models (DenseNet121, InceptionV3, and ResNet50), and
ant colony optimization was used for best feature selection. Finally, the SVM and KNN
were employed for classification. Their proposal achieved high performance on OCT image
classification. However, the approach is not applicable to end-to-end training of the model.

3. Materials and Methods

The entire material and methods adopted in the study are depicted in Figure 1, which
includes the stages ranging from data preparation to model evaluation.

Figure 1. Methodology.

3.1. Dataset
3.1.1. Disease Description

Figure 2 [26] shows the different diseases considered in this study. CNV, depicted in
Figure 2a, arises from the emergence of fresh blood vessels in proximity to the choroid. CNV
is caused by flaws in the innermost section of the choroid known as Bruch’s membrane,
along with conditions like severe nearsightedness and heightened vascular endothelial
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growth. DME, Figure 2b, primarily affects individuals with diabetes. It leads to vision
distortion as fluid accumulates in the macula. This accumulation impairs cone cells’ light-
sensing abilities, causing blurred vision. DME arises from the expansion of blood vessels at
the posterior region. In Figure 2c, we can observe Drusen, a condition primarily linked to
the aging process. It involves the accumulation of yellow extracellular particles between
the Bruch’s membrane and the retinal pigment in the eye. Drusen has the potential to
hinder the transport system, which could lead to a deprivation of oxygen for the cone cells
responsible for colour vision, ultimately resulting in their deterioration.

(a) CNV (b) DME (c) Drusen
Figure 2. Representative images for diseases.

3.1.2. Dataset Description

The publicly accessible dataset [27] encompasses detailed cross-sectional images of liv-
ing patients’ retinas, which have been classified into four distinct categories: Normal, CNV,
Drusen, and DME. These categories are visually represented in Figure 3. The dataset com-
prises a grand total of 84,492 images, distributed as follows: CNV contains 37,457 images,
Normal contains 26,567 images, DME includes 11,600 images, and Drusen encompasses
8868 images.

(a) (b) (c) (d)
Figure 3. Illustrative examples from the retinal image dataset are presented. Figure (a) showcasing
Choroidal NeoVascularization, characterized by the presence of neovascular membranes (indicated by
white arrowheads) along with associated sub-retinal fluid (marked by arrows). Figure (b) illustrates
Diabetic Macular Edema, which manifests as intra-retinal fluid associated with retinal thickening
(denoted by arrows). Figure (c) displays multiple instances of drusen (highlighted by arrowheads),
while Figure (d) illustrates a normal, pristine retina with an undisturbed foveal structure and no
signs of retinal fluid or edema.

3.2. Dataset Pre-Processing

The originally imbalanced dataset was transformed into a balanced one, where each
category contained exactly 8868 images. In this balanced dataset, all images were resized
to dimensions of 180 × 180 and then normalized to fall within the range [0, 1]. To ensure
representative sampling, a stratified approach was employed, allocating 80% of the data
for training, and the remaining 20% for testing, with half of the testing data reserved
for validation.

3.3. CNN Model

The proposed lightweight model reported in Table 1 provides a concise overview of
the CNN architecture and Figure 4 shows the graphical result. The model holds only five
convolution layers to perform convolution operations on the input image, with increasing
filter depths (16, 32, 64, 128, 256) to capture hierarchical features. Each convolution layer is
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followed by max-pooling layers to down-sample the feature maps, aiding in information
compression. Dropout layers help mitigate over-fitting by randomly deactivating neurons
during training with values of 0.2 on each. The final dense layers (256, 4) process flattened
features for classification, culminating in four output classes. The model contains around
983,716 total trainable parameters, contributing to its complexity and predictive capacity.

Table 1. The proposed lightweight CNN Model Architecture. Note the “Param #.” represents the
parameters involved in the given CNN.

Layer (Type) Output Shape Param #

Conv2D (None, 178, 178, 16) 448
MaxPooling2D (None, 89, 89, 16) 0
Dropout (None, 89, 89, 16) 0
Conv2D (None, 87, 87, 32) 4640
MaxPooling2D (None, 43, 43, 32) 0
Dropout (None, 43, 43, 32) 0
Conv2D (None, 41, 41, 64) 18,496
MaxPooling2D (None, 20, 20, 64) 0
Dropout (None, 20, 20, 64) 0
Conv2D (None, 18, 18, 128) 73,856
MaxPooling2D (None, 9, 9, 128) 0
Dropout (None, 9, 9, 128) 0
Conv2D (None, 7, 7, 256) 295,168
MaxPooling2D (None, 3, 3, 256) 0
Dropout (None, 3, 3, 256) 0
Flatten (None, 2304) 0
Dense (None, 256) 590,080
Dense (None, 4) 1028

Total params.: 983,716
Trainable params.: 983,716
Non-trainable params.: 0

Figure 4. Graphical visualization of the proposed model.

3.4. Implementation Setup

The CNN model and XAI algorithms in this study were implemented using Python
3.10.12, along with Keras version 2.13.1 and TensorFlow version 2.13.0. The computational
resources employed for this research included the runtime environment provided by
Google Colab, supported by a robust NVIDIA K80 GPU with an impressive 12 GB of RAM.
To assess the performance of the CT dataset, a cross-validation technique with a designated
value of K = 10 [28] was employed, which entailed distinct and random allocations for both
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training and testing subsets. For the purpose of regularization, an early stopping strategy
was employed, which relied on monitoring the validation loss for 10 consecutive epochs.

3.5. Performance Evaluation Metrics
3.5.1. Accuracy

The performance of classification models is typically evaluated using the metric of
accuracy. Out of all the examples in a dataset, it calculates the percentage of accurately
predicted instances. Mathematically, accuracy (Acc) is calculated as Equation (1).

Acc =
Number of Correct Predictions

Total Number of Predictions
(1)

3.5.2. Precision

Precision is a performance measure that assesses the correctness of a model’s positive
predictions. It is determined by the ratio of true positive predictions (TP) to the sum of true
positive and false positive predictions (TP + FP).

3.5.3. Recall

Recall evaluates a capacity to accurately identify every positive occurrence present
in the dataset. It is described as the proportion of genuine positives (positives that were
correctly detected) to all real positives.

3.5.4. F1-Score

The F1 Score is a classification task evaluation metric that balances precision and recall.
It is calculated as the harmonic mean of precision and recall, offering a single measure of
model performance that takes both false positives and false negatives into account.

3.5.5. ROC Curve

The Receiver Operating Characteristic (ROC) curve is a graph that shows how well a
model works. It shows the trade-off between two things: how often the model correctly
says “yes” when it should (Sensitivity), and how often it incorrectly says “yes” when it
shouldn’t (1-Specificity). This graph helps us see how good the model is at telling things
apart in different settings. To make the ROC curve, we draw a graph of the True Positive
Rate (TPR) against the False Positive Rate (FPR) for different settings. The area under the
ROC curve (AUC-ROC) gives us a single number that tells us how well the model is doing.

3.5.6. FLOPS

Algorithm 1 calculates the Floating Point Operations (FLOPs) for the CNN model [29].
It defines two functions, CalculateCNNLayerFLOPs, and CalculateDenseLayerFLOPs, to
compute FLOPs for Conv2D and Dense layers, respectively, based on their parameters. The
CalculateTotalFLOPs function iterates through the model’s layers, identifying Conv2D and
Dense layers, and accumulates their respective FLOPs. This provides an estimate of the
total computational complexity of the CNN model. The algorithm is valuable for assessing
the computational efficiency of the CNN in terms of the number of operations needed
for inference.
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Algorithm 1 Calculate FLOPs for CNN Model [29]
1: function CALCULATECNNLAYERFLOPS(layer)
2: Input: CNN layer
3: Output: FLOPs for the layer
4: return 2 × layer.filters × layer.kernel_size[0] × layer.kernel_size[1] × layer.input_shape[−1] ×

layer.output_shape[1]× layer.output_shape[2]
5: end function
6: function CALCULATEDENSELAYERFLOPS(layer)
7: Input: Dense layer
8: Output: FLOPs for the layer
9: return 2× layer.input_shape[−1]× layer.output_shape[−1]

10: end function
11: function CALCULATETOTALFLOPS(model)
12: Input: CNN model
13: Output: Total FLOPs for the model
14: total_flops← 0
15: for layer in model.layers do
16: if layer is Conv2D then
17: total_flops += CalculateCNNLayerFLOPs(layer)
18: else if layer is Dense then
19: total_flops += CalculateDenseLayerFLOPs(layer)
20: end if
21: end for
22: return total_flops
23: end function

3.5.7. Explainable AI

Although there are certain challenges associated with XAI, such as its sensitivity
to individual cases, the trade-off involving complexity, and the assumption of highly
interdependent features, XAI delves into the visual computational approach of Deep
Learning models. Consequently, the study incorporates the use of LIME and SHAP.

1. LIME
In the pursuit of enhancing the transparency and interpretability of modern machine
learning models, LIME has emerged as a powerful technique. LIME addresses the
challenge of understanding complex black-box models’ predictions by approximating
their behaviour through locally interpretable models. This approach allows us to shed
light on how specific features influence predictions, especially in contexts involving
intricate data types such as images.
LIME operates by selecting a target instance x, model f and generating perturbed
instances x′i in its vicinity. The model’s predictions f (x) and f (x′i) are obtained, and
interpretable features zi are extracted from the perturbed instances. An interpretable
CNN model g(z), was trained using pairs (zi, f (x′i)) to approximate the complex
behavior of f in the local neighborhood of x. To analyse g(z) , coefficients βi in g(z),
the importance of the corresponding features zi in influencing the predictions were
reflected. Larger absolute values of βi indicate stronger influences [30].

2. SHAP
For the retinal input retinal image x with N number of pixels and f prediction, SHAP
values for each pixel in the image were calculated. The values of SHAP show the
contribution of the model to define how much each pixel i in the retinal image x
contributes and is calculated using Equation (2).

φi(x) = ∑
S⊆{1,2,...,N}\{i}

|S|!(N − |S| − 1)!
N!

[ f (xS ∪ {i})− f (xS)] (2)

S represents a subset of pixels excluding pixel i, xS is the image with the pixels in
subset S unchanged, f (xS ∪ {i}) is the model’s prediction when pixel i is included
in the subset S and f (xS) is the model’s prediction when pixel i is excluded from the
subset S [31].
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These SHAP values provide insights into the contribution of each pixel to the model’s
prediction. Positive SHAP values indicate that a pixel’s presence positively influenced
the forecast, while negative values suggest the opposite.

4. Results
4.1. Statistical Results

We analyzed classic statistical validation measures, which included the model’s per-
formance in terms of error and correctness throughout training, as well as across the
validation and test datasets. Furthermore, we incorporated precision, F1-score, recall,
confusion matrix, and k-fold validation into our evaluation.

Among ten different folds, 10th fold, stopped early in 15th epoch, holding the lowest
accuracy, and the same is considered to plot the evaluation metrics. The training process
spanned 20 epochs, with each fold configured to terminate early if the validation loss
persisted for five consecutive epochs.

Figure 5, shows the training and validation accuracy of 10th fold where training phase
yielded 95.64% and a loss of 0.1201, and the validation accuracy stood at 94.12% with a
corresponding loss of 0.2185.

(a) (b)
Figure 5. Training and Validation Result. (a) represents training and validation accuracy (b) shows
training and validation loss

Figure 6 shows the performance matrix of 10th fold. Among 892 Drusen samples, 843
were accurately predicted. Only 52 normal samples were misclassified, out of which 18
were predicted as Drusen, 4 were predicted as CNV, and 30 were predicted as DME. Out of
900 samples, a total of 807 samples were predicted correctly for the CNV class. Considering
876 samples, 843 samples were predicted correctly for DME.

Figure 6. Class-wise performance of CNN model.
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Following 10 folds, the model demonstrated an average training accuracy of 96.33%, a
validation accuracy of 94.12%, a training loss of 0.1073, and a validation loss of 0.1927. The
average testing accuracy and testing loss stood at 94.29% and 0.2002 respectively (Table 2).

Table 2. Performance Metrics for Different Folds. Symbols: TA, TL, TP, TR, VA, VL, VP, VR, TeA, TeL,
TeP, and TeR represent training accuracy, training loss, training precision, training recall, validation
accuracy, validation loss, validation precision, validation recall, test accuracy, test loss, test precision,
and test recall, respectively in percentages.

K TA TL TP TR VA VL VP VR TeA TeL TeP TeR

1 96.31 0.1011 96.49 96.13 94.11 0.1820 94.37 93.99 94.28 0.1974 94.43 94.17
2 96.22 0.1010 96.39 96.04 94.01 0.1819 94.27 93.90 94.18 0.1972 94.33 94.07
3 96.31 0.1011 96.49 96.13 94.11 0.1820 94.37 93.99 94.28 0.1974 94.43 94.17
4 96.41 0.1012 96.59 96.23 94.20 0.1822 94.46 94.09 94.37 0.1976 94.52 94.26
5 96.51 0.1013 96.69 96.33 94.30 0.1824 94.56 94.19 94.47 0.1978 94.62 94.36
6 96.31 0.1135 96.49 96.13 94.10 0.1908 94.36 93.99 94.27 0.2029 94.42 94.16
7 96.81 0.1012 96.99 96.63 94.60 0.1781 94.86 94.49 94.77 0.2015 94.92 94.66
8 96.14 0.1176 96.32 95.96 93.93 0.2160 94.19 93.82 94.10 0.2101 94.25 93.99
9 96.64 0.1151 96.82 96.46 94.43 0.2135 94.69 94.32 94.60 0.1975 94.75 94.49
10 95.64 0.1201 95.82 95.46 93.43 0.2185 93.69 93.32 93.60 0.2025 93.75 93.49

Average 96.33 0.1073 96.51 96.15 94.12 0.1927 94.38 94.01 94.29 0.2002 94.44 94.18

Table 3 shows the classification report where “Drusen” and “Normal” show high
Precision (0.94–0.95) indicating accurate positive predictions and DME shows high Recall
(0.96), capturing most positives. F1-Score ranges from 0.94 to 0.95 showing the harmony
between Precision and Recall.

Table 3. Classification Report of 10th fold.

Class Precision Recall F1-Score

Drusen 0.94 0.95 0.94
Normal 0.95 0.94 0.95
CNV 0.95 0.90 0.92
DME 0.90 0.96 0.93

Accuracy 0.94

Macro Avg 0.94 0.94 0.94
Weighted Avg 0.94 0.94 0.94

As the imbalanced datasets were made balanced, the ROC curve (for 10th fold) was
plotted as shown in Figure 7 to calculate the area under the curve and evaluate the
model performance.

The model showed outstanding performance in distinguishing between positive and
negative categories, as proven by its impressive AUC score of 0.99 in all areas. The ROC
curve, which depends on TPR and FPR, displayed the model’s predictions on the test
dataset having an exceptionally high TPR, covering the entire range of AUC values. This
demonstrates the model’s exceptional effectiveness.

Table 4 presents sensitivity and specificity values of four classes in 10th fold. DME and
Normal classes exhibit high sensitivity (>0.98), indicating accurate detection of relevant
cases. Drusen has slightly lower sensitivity, while CNV has the highest specificity (>0.97),
suggesting strong performance in distinguishing its class.
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Figure 7. ROC-AUC curve.

Table 4. Sensitivity and Specificity of 10th fold.

Class Sensitivity Specificity

DME 0.989963 0.916084
NORMAL 0.99096 0.948488
DRUSEN 0.974254 0.925115
CNV 0.966781 0.974166

4.2. Explainable Results
4.2.1. SHAP

Because it is hard to understand how the CNN model predicted the output, XAI tech-
niques are used to explain it [32]. The testing images are on the left, and each explanation
has a transparent grey background (see Figures 8–11).

Figure 8. The model determined the presence of Drusen in the image by analyzing the OCT image
and noting a significant concentration of red pixels (scattered in central regions) in the explanatory
image (second in a row), which is located in the second column.
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Figure 9. The model’s examination of the OCT image revealed a significant number of red pixels in
the explanatory image (third in a row) to suggest the presence of a healthy eye.

Figure 10. The model determined that the OCT image exhibited indications of CNV, which is a retinal
disorder, due to the significant abundance of red pixels in the third explanatory image located in the
fourth column.

Figure 11. The model determined that the OCT image indicated the presence of DME due to the
significant number of red pixels observed in the fifth column of the fourth explanatory image.

The red pixels in the first explanation image (refer to Figure 8) increase the probability
of predicting a Drusen. In the second explanation, the model somehow attempts to indicate
that the image is normal, but the red pixels’ concentration in the first explanation is
higher. Third, and fourth explanation images do not contain any red or blue pixels, so the
probability of classifying the input image as CNV and DME is low.

In Figure 9, the presence of concentrated red pixels suggests that the image is normal.
Conversely, in Figures 10 and 11, the absence of concentrated red pixels indicates that they
correspond to CNV and DME, respectively.

4.2.2. LIME

LIME is employed to extract the features and perturbations from the training dataset.
These perturbations are randomly generated from a standardized image, and subsequent
operations involving mean-centering and scaling are conducted. The simple linear iterative
clustering (SLIC) [33] is used to compute the initial three characteristics which delineate
the most influential boundaries and incorporate them into the image. The second column
of Table 5 displays the original test images corresponding to each category. The segmented
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image segment in the third column of Table 5 represents the segmentation obtained through
LIME. As illustrated in Table 5, LIME furnishes visual explanations of the model’s decision-
making process, spotlighting the image regions that make a significant contribution to a
specific class prediction.

Table 5. Interpretation of LIME results alongside input image and segmented image.

Category OCT Image LIME Interpretation

DRUSEN

Normal

CNV

DME

5. FLOPS Calculation

The proposed model’s Floating-point Operations (FLOPs) were determined by consid-
ering all arithmetic operations involving floating-point values, such as addition, subtraction,
division, multiplication, and any other relevant operations. The model executed a total of
2.37× 108 operations, and this calculation was accomplished using Algorithm 1.

6. Generation of Fast Gradient Sign Method for Adversarial Examples

To evaluate the model’s robustness, we conducted tests using adversarial examples.
We computed the gradient of the loss function with respect to the input images to capture
subtle variations. We introduced epsilon as a hyperparameter to quantify the perturba-
tion’s intensity, which was generated by taking the sign of the gradient and adjusting its
magnitude. Subsequently, we incorporated this perturbation into the image and forwarded
it for prediction. Our findings indicate that the model exhibited resilience up to an epsilon
value of 0.1, as illustrated in Table 6 for DRUSEN and CNV, whereas all categories remained
stable below the threshold of 0.1.
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Table 6. Adversarial Examples.

Class Original Image Epsilon = 0.1 Adversarial
Prediction

Drusen Drusen

Normal Drusen

CNV CNV

DME CNV

7. Generalizability Investigation

To see if the proposed model could be used to diagnose other common datasets with
the same number of categories, the model was trained under the same constraints as before
and the results were analysed for two additional datasets, COVID-19 and Kidney Stone.

7.1. COVID-19

Publicly available COVID-19 dataset [34], with 4273 pneumonia samples, 1583 normal
samples, 703 tuberculosis samples, and 576 COVID-19 samples was balanced with an
equal number of 576 images for each category. With a training accuracy of 97.18%, a test
accuracy of 92.54%, and a validation accuracy of 94.78% as shown in Figure 12a, the model
achieved a training loss of 0.0804, test loss of 0.2180 and validation loss of 0.1960 as shown
in Figure 12b.
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(a) Training and Validation Accuracy (b) Training and Validation Loss
Figure 12. Training and Validation Results for COVID-19.

Figure 13a represents the confusion matrix. Here, six instances of Tuberculosis samples
were inaccurately predicted out of a comprehensive pool of 56 samples. Seven mispredic-
tions were observed among pneumonia samples out of 55. Similarly, for COVID-19 cases,
seven errors emerged out of 66 samples, whereas all 54 samples categorized as normal were
accurately predicted. To offer a more detailed insight into the findings, it is worth noting
that the AUC-ROC values for tuberculosis, pneumonia, COVID-19, and normal cases stand
at 0.99, 0.98, 0.97, and 1.00, respectively, as shown in Figure 13b.

(a) Confusion Matrix (b) ROC Curve

Figure 13. Confusion Matrix and ROC for COVID-19.

Figures 14–17 show the SHAP explanation of tuberculosis, pneumonia, COVID-19,
and Normal samples respectively.

Figure 18 shows the LIME segmented results for individual categories of the COVID-19
dataset. The segmented results highlight the infected regions in respective images.
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Figure 14. The analysis conducted by the model on the X-ray image indicated elevated concentrations
of red pixels in the initial explanatory image (located in the second column). These red pixels are
likely to represent regions of the image that are suggestive of tuberculosis.

Figure 15. The model’s prediction is based on the presence of a substantial number of red pixels
in the second explanatory image, situated in the third column, suggesting that the X-ray image
depicts pneumonia.

Figure 16. The model’s forecast of pneumonia was substantiated by the elevated density of red pixels
in the third explanatory image.

Figure 17. The model determined that the X-ray image was classified as “Normal” because there was
a notable concentration of red pixels in the fourth explanatory image.
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(a) Tuberculosis (b) Pneumonia (c) COVID-19 (d) Normal
Figure 18. Results for LIME segmentation for Figures 14, 15, 16, and 17 respectively.

The proposed model shows better results in comparison with other SOTA approaches
and the results are tabulated in Table 7 showing training accuracy of 97.18% and number of
parameters (0.983 million).

Table 7. Comparative Analysis of COVID-19 Result to other SOTA methods.

Ref Algorithm Accuracy (%) Parameters (Millions)

[35] CNN-based CoroNet 89.6 33.97

[36] Custom CNN 94.53 34.73

[37] Attention based VGG 85.43 VGG-16 = 18
VGG-19 = 21.2

[12] Custom CNN 95.94 3.7

Proposed Custom CNN 97.18 0.983

7.2. Kidney Stone

The publicly available Kidney Stone dataset [14], with 5077 normal samples, 3709 cyst
samples, 2283 tumor samples and 1377 stone samples was balanced with an equal number
of 1377 images for each category. With a training accuracy of 99.70%, a test accuracy of
99.64%, and a validation accuracy of 99.82% as shown in Figure 19a, the model achieved
a training loss of 0.0056, test loss of 0.0345 and validation loss of 0.0078 as shown in
Figure 19b.

(a) Training and Validation Accuracy (b) Training and Validation Loss

Figure 19. Training and Validation Result for Kidney Stone.

Figure 20a represents the confusion matrix for the kidney stone dataset. All cyst and
stone samples were correctly classified. One tumor sample was misclassified as normal,
and one normal sample was misclassified as stone. The AUCROC values for all categories
are 1.00, which indicates that the model has perfect accuracy as shown in Figure 20b.
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(a) Confusion Matrix (b) ROC Curve

Figure 20. Confusion Matrix and ROC for COVID-19.

Figures 21, 22, 23, and 24 show the SHAP explanation of tumor, cyst, and Normal
samples respectively.

Figure 21. The model found that there were a lot of red pixels in the first explanation image (second
column) of the CT scan. These red pixels are likely to be areas of the image that are indicative of a tumor.

Figure 22. The model’s prediction that the CT image is a cyst is supported by the high concentration
of red pixels in the explanation image in the third column.

Figure 23. The model’s prediction of Stone was supported by the high concentration of red pixels in
the third explanation image.
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Figure 24. The model found that the CT image is predicted as Normal as the high concentration of
red pixels is located in the fourth explanation image.

Figure 25 shows the LIME segmented results for individual categories of the kidney
stone dataset. The segmented results highlight the infected regions in respective images.

(a) Tumor (b) Cyst (c) Stone (d) Normal

Figure 25. Results for LIME segmentation for Figures 21, 22, 23, and 24, respectively.

The proposed model shows the competitive results in comparison with other state-of-
the-art methods as tabulated in Table 8 in terms of training accuracy (99.70%) and number
of parameters (0.983 million).

Table 8. Comparative Analysis of the Kidney Stone dataset.

Ref Algorithm Accuracy (%) Parameters (Millions)

[14]

Inception V3 61.6 22.32
VGG16 98.2 14.74
Resnet 73.8 23.71
EANet 77.02 6
Swin Transformers 99.3 4.12
CCT 96.54 4.07

[38] DenseNet201-Random Forest 99.44 20

[39]
VGG16NB 96.26 14.74
DenseNet121-KNN 96.64 20
VGG-DN-KNN 100 14.74

Proposed Custom CNN 99.70 0.983

8. Conclusions

The study presents a significant advancement in OCT-based diagnostic methodologies
to address the labor-intensive nature of manual anomaly classification in retinal images.
Achieving remarkable average accuracies and minimal losses across training, validation and
test sets, the proposed model demonstrates its efficacy in classifying CNV, DME, Drusen,
and Normal retinal conditions. The integration of XAI techniques provides interpretable
insights into the model’s decision-making process. Moreover, the model’s robustness and
generalizability are substantiated by its consistent performance on additional datasets re-
lated to COVID-19 and Kidney Stone conditions. With a focus on efficiency and lightweight,
the model can play a significant role in IoMT devices.
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With more real-time datasets, augmentation, and generative adversarial networks,
other lightweight transfer learning models like MobileNet can be tested further as
real-time sensations.
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