
Citation: Bhandari, M.; Neupane, A.;

Mallik, S.; Gaur, L.; Qin, H. Auguring

Fake Face Images Using Dual Input

Convolutional Neural Network . J.

Imaging 2023, 9, 3. https://doi.org/

10.3390/jimaging9010003

Academic Editor: Zahid Akhtar

Received: 11 November 2022

Revised: 6 December 2022

Accepted: 13 December 2022

Published: 21 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

Auguring Fake Face Images Using Dual Input Convolution
Neural Network
Mohan Bhandari 1 , Arjun Neupane 2 , Saurav Mallik 3,4,* , Loveleen Gaur 5,6,7,* and Hong Qin 8

1 Department of Science and Technology, Samriddhi College, Lokanthali, Bhaktapur 44800, Nepal
2 School of Engineering and Technology, Central Queensland University, Norman Gardens,

Rockhampton, QLD 4701, Australia
3 Department of Environmental Health, School of Public Health, Harvard University, Boston, MA 02115, USA
4 Research Assistant, University of Arizona, Tucson, AZ 85721, USA
5 Amity International Business School, Amity University, Noida 201303, India
6 School of Computer Science, Taylor University, Subang Jaya 47500, Malaysia
7 Graduate School of Business, University of South Pacific, Suva 1168, Fiji
8 Department of Computer Science and Engineering, University of Tennessee, Chattanooga, TN 37996, USA
* Correspondence: smallik@arizone.edu (S.M.); lgaur@amity.edu (L.G.)

Abstract: Deepfake technology uses auto-encoders and generative adversarial networks to replace or
artificially construct fine-tuned faces, emotions, and sounds. Although there have been significant
advancements in the identification of particular fake images, a reliable counterfeit face detector is still
lacking, making it difficult to identify fake photos in situations with further compression, blurring,
scaling, etc. Deep learning models resolve the research gap to correctly recognize phony images,
whose objectionable content might encourage fraudulent activity and cause major problems. To
reduce the gap and enlarge the fields of view of the network, we propose a dual input convolutional
neural network (DICNN) model with ten-fold cross validation with an average training accuracy of
99.36 ± 0.62, a test accuracy of 99.08 ± 0.64, and a validation accuracy of 99.30 ± 0.94. Additionally,
we used ’SHapley Additive exPlanations (SHAP) ’ as explainable AI (XAI) Shapely values to explain
the results and interoperability visually by imposing the model into SHAP. The proposed model holds
significant importance for being accepted by forensics and security experts because of its distinctive
features and considerably higher accuracy than state-of-the-art methods.

Keywords: Convolutional Neural Network (CNN); deepfakes; face detection; SHAP; XAI

1. Introduction

Numerous wisecrackers have used deepfake (DF) techniques to create various doc-
tored images and videos featuring well-known celebrities (including Donald Trump, Barack
Obama, and Vladimir Putin) making claims they would never make in real-life situations [1].
To more accurately assess the exhibition differences between various locations tactics, sev-
eral studies examine the presentation contrasts between the few DFs discovery procedures
for two-stream, HeadPose, MesoNet, visual artifacts, and multi-task [2].

The incredible advancements that have been made in deep learning (DL) research
have made it possible to resolve complex tasks in computer vision [3], including neural
network optimization, natural language processing [4], image processing [5], intelligent
transportation [6], and image steganography [7]. Machine learning (ML) algorithms have
been heavily incorporated into photo-editing software recently to assist with creating,
editing, and synthesizing photographs and enhancing image quality. As a result, even
those without extensive editing experience in photography can produce sophisticated,
high-quality images [8]. Additionally, many photo-editing programs and applications
provide a variety of amusing features such as face swapping to draw users. For instance,
face-swapping apps automatically identify faces in images and replace one person’s face
with an animal or another human.
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Face images, such as identifying people, are often used for biometric authentication
since they convey rich and simple personal identity information. For instance, facial recog-
nition is used more often in our daily lives for things such as financial transactions, and
access management [9]. Face modification technology is advancing quickly, making it easier
than ever to create false faces, which hastens the distribution of phony facial photos on
social media [10,11]. The inability of humans to discern between real and false faces due
to sophisticated technology has led to ongoing worries about the integrity of digital infor-
mation [12,13]. Different DL models such as the convolution neural network (CNN) are
frequently used to build false face detectors to lessen the adverse effects that manipulation
technology has on society [14].

Different monitoring approaches are used to identify and stop these destructive effects.
However, most earlier research relies on deciphering meta-data or other easily masked
aspects of image compression information. Splicing or copy-move detection methods are
also useless when attackers use generative adversarial networks (GAN) to create complex
fake images. However, little research is available to identify images produced by GANs [15].
High-quality facial image production has been transformed by NVIDIA’s open-sourced
StyleGAN TensorFlow implementation. The democratization of AI/ML algorithms has,
however, made it possible for malicious threat actors to create online personas or sock-
puppet accounts on social media platforms. These synthetic faces are incredibly convincing
as real images [16]. In order to extract knowledge from current models, StyleGAN offers a
data-driven simulation that is relevant for manufacturing process optimization [17]. On top
of that, the proposed study addresses the issue of identifying fraudulent images produced
by StyleGAN [18,19].

The main objective of the proposed study is to anticipate and understand fraudulent
images, and the major contributions are outlined in the points that follow:

1. A dual branch CNN architecture is proposed to enlarge the view of the network with
more prominent performance in auguring the fake faces.

2. The study explores the blackbox approach of the DICNN model using SHAP to
construct explanation-driven findings by utilizing shapely values.

2. Related Works
2.1. Deep Learning-Based Methods

The authors in [20] suggested that to build a generalizable detector, one should
use representation space contrasts since DeepFakes can match the original image/video
in terms of appearance to a more significant extent. The authors combined the scores
from the proposed SupCon model with the Xception network to use the variability from
different architectures when examining the features learned from the proposed technique
for explainability. Using the suggested SupCon, the study’s maximum accuracy was 78.74%.
In a real open-set assessment scenario where the test class is unknown at the training
phase, the proposed fusion model achieved an accuracy of 83.99%. According to the
authors in [21], a Gaussian low-pass filter is used to pre-process the images; as a result, the
ascendancy of image contents can facilitate the detection capability. In a study proposed by
Salman et al. [22], the highest accuracy of 97.97% based on dual-channel CNN was detected
from GAN-generated images. Zhang et al. [23] utilized the LFW face database [24] to extract
a set of compact features using the bag of words approach and then fed those features
into SVM, RF, and MLP classifiers to distinguish swapped-face photos from real ones,
acheiving accuracies of 82.90%, 83.15%, and 93.55% respectively. Similarly, Guo et al. [25]
suggested a CNN model called SCnet to identify deepfake photos produced by the Glow-
based face forgeries tool [26]. The Glow model intentionally altered the facial expression in
the phony photographs, which were hyper-realistic and had flawless aesthetic attributes
where SCnet maintained 92% accuracy. A technique for detecting Deepfakes was given by
Durall et al. [27] and was based on an investigation in the frequency domain. The authors
created a new dataset called Faces-HQ by combining high-resolution real face photos from
other public datasets such as CELEBA-HQ data set [28] with fakes faces. They achieved
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decent results in terms of total accuracy using naïve classifiers. On the other hand, by
utilizing Lipschitz regularization and deep-image prior methods, the authors in [29] added
adversarial perturbations to strengthen deepfakes and trick deepfake detectors. However,
detectors only managed to obtain less than 27% accuracy on perturbed deepfakes while
achieving over 95% accuracy on unperturbed deepfakes. The authors of [30] used each of
the different 15 categories to produce 10,000 false photos for training and 500 fake images for
validation. They employed the Adam optimizer [31] with a batch size of 24, a weight decay
of 0.0005, and an initial learning rate of 0.0001. The proposed two-stream convolutional
neural networks were trained for 24 epochs over all training sets, and styleGAN achieved
an accuracy of 88.80%.

2.2. Physical-Based Methods

Authors revealed the erratic corneal specular points between two eyes in GAN-
simulated faces in [32]. They showed how these artifacts are prevalent in first-rate GAN-
synthesized face images and continued by describing an involuntary technique for ex-
tracting and comparing corneal specular focus for human eyes, arguing the lack of physi-
cal/physiological restrictions in GAN models. The overall accuracy of the study was 94%.

2.3. Human Visual Performance

After being selected via Mechanical Turk in a study by authors [33], participants
(N = 315) received quick instruction with illustrations of both natural and synthetic faces.
After that, each participant watched 128 trials containing a single face and had unlimited
time to categorize it appropriately. The participant was unaware that half of the faces were
real and half were artificial. They were evenly distributed in gender and race among the
128 trials. The overall accuracy was between 50–60%.

3. Materials and Methods
3.1. Data Collection and Pre-Processing

The extraction of a dataset of fake and real face images is from a shareable source [34].
Additionally, the artificial faces created for this dataset using StyleGAN make it more
difficult for even a trained human eye to classify them accurately. The real human faces in
this dataset gathered to have a fair representation of different features (age, sex, makeup,
ethnicity, etc.) encountered in a production setup. Out of 1289 images, 700 are real, whereas
the rest are fake. The ratio of train, test, and validation split used was 80:10:10. Some of the
samples from the dataset are shown in Figure 1.

(a) (b) (c) (d)

Figure 1. Sample images extracted from the dataset. Note that (a,b) are fake image, whereas (c,d) rep-
resent real images.

Each image was reduced in size to 224 × 224 × 3 to improve the computing perfor-
mance. Images were shuffled concerning their position to speed up convergence and to
prevent the model from overfitting/underfitting, and three epochs of patience (for training
accuracy) and early stopping callbacks were imposed. Entire image pixels from the dataset
were rescaled into the [0,1] range.
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Even though the dataset had an uneven distribution of classes, the erroneous identifi-
cation did not result in any greater penalties. Stratified data sampling was used for each
training batch to take an equal number of samples from each class.

3.2. Proposed Method

The bottom-line integrant of the DICNN-XAI approach is: the DICNN model for
auguring fake face images and the SHAP-based explanation framework. Figure 2 is the
diagrammatic representation of the overall process followed. StyleGAN-generated doctored
face images are pre-processed to feed multiple copies into the DICNN model. After the
different statistical results of the model are analyzed, it is finally fed into SHAP to explore
the blackbox approach of the DICNN model.

Figure 2. The proposed model to augur doctored images into fake and real.

3.2.1. Dual Input CNN Model

Inspired by the base model of CNN [35,36], proving the viability of the multi-input
CNN model [37–39], DICNN-XAI is proposed in the study. To increase robustness, DICNN
updates a number of parameters adaptively from numerous inputs [40] and aids in the
identification of deep texture patterns [41]. Two input layers (size 224 × 224 ×3) were
defined. One branch was continued with a single convolution layer, of which the output
was flattened to concatenate the flattened results from the input of another branch. On
top of that, two dense layers and dropout layers were added. The overall CNN model
architecture is detailed in Table 1.
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Table 1. Summary details for DICNN architecture.

Layer Name Shape of Output Param # Connected to

Input 1 (None, 224, 224, 3) 0 -
Input 2 (None, 224, 224, 3) 0 -
Conv2D (None, 222, 222, 32) 896 Input 1
Flatten 1 (None, 150,528) 0 Input 2
Flatten 2 (None, 1,577,088) 0 Conv2D
Concatenate Layer (None, 1,727,616) 0 [Flatten 1, Flatten 2]
Dense 1 (None, 224) 386,986,208 Concatenate Layer
Dropout (None, 224) (None, 224) Dense 1
Dense 2 (None, 2) 450 Dropout

Total params: 386,987,554
Trainable params: 386,987,554
Non-trainable params: 0

3.2.2. Explainable AI

Due to the BlackBox nature of DL algorithms as well as due to growing complexities,
the need for explainability is increasing rapidly, especially in image processing [42–44],
criminal investigation [45,46], forensic [47–49], etc. Professionals from these sectors may
find it easier to comprehend the DL model’s findings and apply them to swiftly and
precisely assess whether a face is real or artificial.

SHAP assesses the impact of a model’s features by normalizing the marginal contribu-
tions from attributes. The results show how each pixel contributes to a predicted image and
supports classification. The Shapley value is computed using all possible combinations of
characteristics from dataset images under consideration. Red pixels increase the chance of
guessing a class once the Shapley values have been pixelated, while blue pixels make class
predictions less likely to be correct [50]. Shapley values are computed using Equation (1).

φi = ∑
S⊆N\{i}

|S|!(M − |S| − 1)!
M!

[ fx(S ∪ i) − fx(S)]] (1)

For a particular attribute i, fx is the switch of results subsumed by values from SHAP. S
is the member of all features from feature N, with the deviation of feature i. The weighting
factor |S|!(M−|S|−1)!

M! sums up the numerous ways, and the subset S can be permuted. For
the attributes with subset S, the results are denoted by fx(S) and are a result of Equation (2).

fx(S) = E[ f (x)|xS] (2)

With each original trait replaced, (xi), SHAP replaces a binary variable (z
′
i) that repre-

sents whether xi is absent or present as per Equation (3)

g(z
′
) = φ0 +

M

∑
i=1

φiz
′
i = bias + ∑ f eatureContribution (3)

In Equation (3), for model f(x), the confined surrogate model is g(z
′
) .

3.3. Implementation

The proposed model is coded in python [51] using Keras [52] and the TensorFlow
framework. With 12 GB of RAM in Google Colab [53] and NVIDIA K80 GPU, 10-fold
training and testing experiments were performed.
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4. Results and Discussion
4.1. Model Explanation with DICNN

To evaluate the model, training accuracy, training loss, test accuracy, test loss, val-
idation accuracy, validation loss, and precision, the F1-score and recall were used as
conventional statistical metrics. For model training, we defined early termination condi-
tions and a 20-period epoch. The loss and accuracy of DICNN for K = 10-fold is shown
in Figure 3. Our DICNN achieved an averaged training accuracy of 99.36 ± 0.62% and a
validation accuracy of 99.30 ± 0.94% over the 10-fold (Table 2).

Overall, the suggested DICNN model attains an average test accuracy of 99.08± 0.64%
and 0.122 ± 0.18 as test loss for K = 10-fold (Table 2).

(a) (b)

Figure 3. Train and validation results of 10th fold from proposed DICNN. (a) Depicts 99.36 ± 0.62%
training accuracy and 99.30 ± 0.94% validation accuracy. (b) Conveys 0.19 ± 0.31 of training loss and
0.092 ± 0.13 of validation loss.

Table 2. TA, VA, TL, VL, TsA, TsL, and BD for the DICCN model, standing for training accuracy,
training loss, validation accuracy, validation loss, test accuracy, test loss, and the number of bad
predictions from the model for K = 10-fold in %).

TA TL VA VL TsA TsL BP

K1 99.90 0.0036 100.00 9.78 × 10 −5 99.00 0.04 0

K2 97.99 0.6236 98.45 0.2445 100.00 0.01 2

K3 99.90 7.84 × 10 −4 100.00 2.11 × 10 −5 99.00 0.09 0

K4 99.61 0.0082 100.00 0.0036 97.67 0.04 0

K5 99.32 0.9420 100.00 1.07 × 10 −5 99.22 0.03 0

K6 98.84 0.1851 97.67 0.3579 99.11 0.62 3

K7 98.74 0.1261 99.22 0.0632 99.22 0.07 1

K8 99.61 0.0122 100.00 0.0014 99.22 0.01 0

K9 99.71 0.0254 97.67 0.2454 98.45 0.30 3

K10 100.00 0.0037 100.00 0.0039 100.00 0.01 0

µ± σ 99.36 ± 0.62 0.19 ± 0.31 99.30 ± 0.94 0.092 ± 0.13 99.08 ± 0.64 0.122 ± 0.18 0.9 ± 1.22

4.2. Model Explanation Using SHAP

The Shap value that indicates the score for each class is shown as Figure 4. The intensity
for red values is concentrated on a fake image, whereas blue values focus on an actual
photo. Figure 4a indicates that the image is counterfeit as there are specific manipulations
in the eyes and forehead as per the shapely values.
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(a) (b)

Figure 4. Considering fake and real categories, (a) shows the SHAP results for a fake image, whereas
(b) shows the SHAP results for a real image .

4.3. Class-Wise Study of Proposed CNN Model

The performance of our suggested model for each class, as well as the accuracy,
recall, f1-score, specificity, and sensitivity from K=10-fold data, were studied on a class-
by-class basis (Table 3). Looking at the Table 3, it is observed that DICNN achieved a
precision of 98.17 ± 2.20–99.23 ± 1.15, a recall of 98.53 ± 0.83–98.77 ± 1.59, an f-score
of 98.83 ± 0.98–99.18 ± 0.81, and specificity and sensitivity between 98.41 ± 1.75 and
98.41 ± 1.75. DICNN achieved the highest f-score for the ’Fake’ class, which indicates
that the model is susceptible to fake images. In addition, Figure 5 displays the confusion
matrix, which shows the accurate and inaccurate classification generated by our model for
k = 10-fold.

Table 3. K = 10-fold results (after 20 epochs, in %): for specificity (Spec), sensitivity (Sen), precision
(Pre), F1 score (Fsc), and recall (Rec).

Spec Sen Pre Fsc Rec

K1
Fake 99.34 100.00 98.31 99.98 99.15

Real 100.00 99.34 98.56 98.78 99.56

K2
Fake 97.26 100.00 96.55 98.25 100.00

Real 100.00 97.26 100.00 98.61 97.26

K3
Fake 100.00 100.00 100.00 99.12 99.34

Real 100.00 100.00 99.54 98.67 99.76

K4
Fake 99.50 100.00 98.12 99.34 99.89

Real 100.00 99.50 98.90 99.38 98.86

K5
Fake 100.00 100.00 100.00 100.00 100.00

Real 100.00 100.00 100.00 100.00 100.00

K6
Fake 96.25 100.00 100.00 98.09 96.25

Real 100.00 96.25 94.23 97.03 100.00

K7
Fake 96.10 99.25 100.00 99.20 97.34

Real 99.25 96.10 95.32 98.30 99.89

K8
Fake 100.00 100.00 100.00 100.00 100.00

Real 100.00 100.00 100.00 100.00 100.00
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Table 3. Cont.

Spec Sen Pre Fsc Rec

K9
Fake 95.71 100.00 100.00 97.81 95.71

Real 100.00 95.71 95.16 97.52 100

K10
Fake 100.00 100.00 100.00 100.00 100.00

Real 100.00 100.00 100.00 100.00 100.00

µ± σ
Fake 98.41 ± 1.75 99.93 ± 0.23 99.23 ± 1.15 99.18 ± 0.81 98.77 ± 1.59

Real 99.93 ± 0.23 98.41 ± 1.75 98.17 ± 2.20 98.83 ± 0.98 99.53 ± 0.83

Figure 5. Confusion matrix for test split of 10th fold.

4.4. Comparison with the State-of-the-Art Methods

Table 4 compares the classification performance of our DICNN model with different
cutting-edge techniques. We choose the current models based on DL methods, physical-
based methods, and human visual performance to make the performance more coherent
and pertinent. We select a total of five techniques for comparison. Among the three DL
models, our model outperformed two models by 15.37% and 1.39%, whereas another
model achieved accuracy by 0.64%. The proposed model’s human visual approach is more
accurate by 39.36%, whereas accuracy was higher by 5.36% than the physical approach.

Table 4. Comparison of proposed DICNN model with other state-of-the-art methods. ’DL’ and ’Acc’
stand for deep learning and accuracy, respectively.

Ref Category Method Dataset Performance (%) XAI

[20] DL Xception Network 150,000 images Acc: 83.99% No

[21] DL CNN 60,000 images Acc: 97.97% No

[22] DL dual-channel CNN 9000 images Acc: 100% No

[23] DL CNN 321,378 face images Acc: 92% No

[27] DL Naive classifiers Faces-HQ Acc: 100% No

[29] DL VGG 10,000 real and fake image Acc: 99.9% No

[29] DL ResNet 10,000 real and fake image Acc: 94.75% No

[30] DL Two Stream CNN 30,000 images Acc: 88.80% No

[32] Physical Corneal specular highlight 1000 images Acc: 94% No

[33] Human Visual 400 images Acc: 50-60% No

Ours DL DICNN 1289 images Acc: 99.36 ± 0.62 SHAP

5. Conclusions and Future Work

We proposed a DICNN-XAI model with a single convolutional layer for segregat-
ing fraudulent face images as real or fake, together with an XAI framework acheiving
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99.36 ± 0.62% training accuracy, 99.08 ± 0.64% test accuracy, and 99.30 ± 0.94% validation
accuracy over ten-fold. The findings show that DL-XAI models can deliver persuasive
artifacts for fake image perception and categorize with high accuracy. The proposed model
outperforms other SOTA techniques when classifying fraudulent images alongside XAI.

Only a few images used datasets to train the proposed model, Adam as a optimizer.
In the future, the model’s performance may be enhanced by using more complex offline
data augmentation techniques, such as the Generative Adversarial Network. XAI can
be forced to utilize classification algorithms with higher accuracy and better optimizer.
The study could be repeated and used for other XAI algorithms, such GradCAM, to
improve auguring problems. Furthermore, algorithms that mimic natural occurrences can
be applied to heterogeneous datasets for false imaging modalities, such as the most current
developments in computational capacity, deepfake technologies, and digital phenotyping
tools [54].
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