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Abstract: Indoor scene recognition and semantic information can be helpful for social robots. Recently,
in the field of indoor scene recognition, researchers have incorporated object-level information and
shown improved performances. This paper demonstrates that scene recognition can be performed
solely using object-level information in line with these advances. A state-of-the-art object detection
model was trained to detect objects typically found in indoor environments and then used to detect
objects in scene data. These predicted objects were then used as features to predict room categories.
This paper successfully combines approaches conventionally used in computer vision and natural
language processing (YOLO and TF-IDF, respectively). These approaches could be further helpful in
the field of embodied research and dynamic scene classification, which we elaborate on.
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1. Introduction

Humans are highly efficient when it comes to contextualizing environments. We can
infer information regarding a scene based on observations and extensive prior knowledge
we build through experience. This experience can be based on long-term associations we
learn through our lifetimes or short-term observations and knowledge that contextualizes
current situations. For example, suppose an individual is exploring a campus and walks
into a room with several chairs arranged circularly with a large central table. In that case, we
might infer that this room is a “seminar room”. Encountering a similar room but in another
environment (e.g., an “office space”), we might assign a different label (e.g., “conference
room”).

When it comes to designing social robots, it has been argued and shown that semantic
level information is essential for indoor scene recognition and navigation [1–5]. If social
robots are to be deployed indoors (and, potentially, in other contexts), some level of semantic
knowledge must be incorporated. In many simple cases (e.g., a cleaning robot), this might
not be necessary. However, if the agent (robot) is to perform “higher” level functions
such as target-driven navigation and scene inference, the incorporation of semantic-level
information is effective [1,6,7]. Intuitively, if the agent is to locate a particular target
object, identifying what room the agent is in and what peripheral (non-target) objects are
observed in that room would aid its navigation. Incorporating object-room and object-
object semantic-level associations (in combination with computer vision approaches – such
as semantic segmentation or object detection) could allow the agent to locate target objects
more rapidly [6,8]. Additionally, an agent could incorporate observed objects into its
working memory and keep track of contexts and object locations. This would be further
useful in navigating an environment, as the agent would often have a sub-par view of its
surroundings at any point in time (e.g., it might be staring at the corner of a couch or a
blank wall).

Further, when it comes to indoor scene recognition, one could argue that the room
category largely depends on the function allocated to said room. For example, consider
an empty abode with a certain number of rooms. Some rooms will have predefined
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determinations of function (such as kitchen, bathroom, garage, among others). However,
some rooms are defined by the objects they contain. Moreover, the objects found in these
rooms will often be determined by the function assigned to them. For example, a room
might be a “home office”, a “bedroom”, or something else. Prior to allocating a function to
the room, it could be anything. However, once assigned a function, the objects in the said
room would reflect this.

Additionally, a room might be assigned multiple functions, such as a sleeping area
and working area (e.g., a bedroom/home office). In which case, the objects observed would
likely correspond to objects typically found in both room classes. In this context, object-level
representation would be beneficial in disambiguating indoor scenes, as overlapping labels
would be appropriate.

To define semantic-level associations, one needs to identify representative data that
can be used to quantify these associations. One approach would be to observe how often
objects appear together and in what contexts. In the field of natural language processing
(NLP), the term frequency-inverse document frequency (TF-IDF) is often used to determine
the relevance of words to documents [9,10]. TF-IDF is often used in text classification to
identify words typically associated with a specific class of documents [11]. In the context of
scene recognition, a similar approach could be utilized to identify what objects (analogous
to words) are relevant to rooms (analogous to documents). Particular objects would contain
more semantic information relative to other objects. For example, a “chair” is likely to be
found in most rooms, whereas a “bed” is most likely found in a bedroom. Additionally,
while some objects might be less informative by themselves (e.g., a mirror), they could
add semantic information when combined with another object (e.g., mirror-sink). Object
co-occurrence has been shown to improve classification models when performing object-
level scene classification [12]. Other NLP approaches have also been used to facilitate scene
recognition, such as word embeddings [13].

This paper aims to illustrate the benefit of an NLP approach to scene recognition as
a proof of concept. Treating scenes as analogous to language would allow one to apply
approaches used in NLP to perform and facilitate tasks required by a social robot. This work
trained two object detection models to detect objects typically found in indoor environments
and applied TF-IDF transformation to classify indoor scenes based on detected objects
using a simple machine learning approach. This approach was also implemented using a
pre-trained semantic segmentation model.

This paper is structured as follows; we describe the related research in scene recogni-
tion in the scientific literature. Followed by details of the used methodology elaborating
on the datasets, the object detection approach, how the objects were transformed into
feature inputs, and scene classification (see Figure 1 for an illustration of the pipeline used).
Subsequently, the results are reported, followed by a discussion that considers the results
and the general approach in the context of wider fields of research.
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Figure 1. Visualization of the pipeline. top: general diagram of the modules for object detection
and room prediction, and bottom: step-by-step scheme (A) Train YOLO to detect indoor objects. (B)
Perform object detection on scene data (examples use IOD155 with conf. thresh = 0.25). The images
are from the ADE20k dataset (C) Transform predicted object labels into TF-IDF input features. (D)
Train classifier to predict room category based on these input features.

2. Related Work
Indoor Scene Classification

Traditional methods used for outdoor scene classification do not perform as well when
applied to indoor scene classification [14] (see ref. [15] and references therein for a review
on scene recognition). This is because indoor scenes tend to have lower variability in
global spatial features when compared to outdoor scenes. Early attempts at improving
indoor scene classification sought to leverage both local and global spatial features by
incorporating techniques such as bag-of-visual words [16]. It has been argued that indoor
scene classification has two main challenges, (1) low inter-class variance between scene
categories and (2) ambiguity regarding scene labeling [17]. This ambiguity could potentially
arise due to an overlap between room functionality and labels associated with particular
rooms. For example, if a room has a dining table, one couch, and one television, is it a
dining room or a living room? How would one demarcate areas in a studio flat with an
attached kitchen? Does a counter separate the kitchen or not? The overlap of functionality
in room categories is a challenge to be considered.
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More recently, techniques have focused on scene classification by leveraging object-
level semantic information [18–21]. In 2019, Chen and colleagues [13] investigated scene
classification by combining traditional scene classification techniques with NLP methods.
Using a convolutional neural network (CNN) module, they generated an ordered top-5
prediction for a given image and segmented the scene using a scene parser module. These
segmented objects were then passed through a word embedding module that refined the
top-5 predictions and improved indoor scene classification performances. They trained and
tested their model within three super-categories: school, shopping mall, and home. They
reasoned that while GPS tracking would be sufficient in determining the general setting
of a potential agent, it would not be sufficient in determining the exact location and room
that the agent would find itself in. Considering overlap between many scene categories,
refining the potential room classes to setting specific choices could reduce the limitations of
low scene variability. For example, by using GPS, one could determine that the agent is on
a school campus and thereby use an indoor room classification model trained on indoor
school settings to predict the room category that the agent is in.

In addition to methodological limitations in finding the best algorithms for indoor
scene recognition, it is necessary to address the technical elements of implementing these.
The method demonstrated here builds on previous work by providing a relatively simplistic
approach that leverages the speed of a widely used object detection network: YOLO (You
Only Look Once) [22] and a simple NLP approach that is not computationally demanding.
In the context of robotics, where incoming visual data relies on frames, having approaches
that can process information close to the speed of incoming frame rates could be a boon.
There are papers that demonstrate the speed of YOLO [22] and while improved accuracy
is always desirable-being able to perform the same task at less computational cost should
also be valued.

Teder and colleagues [12] investigated various word embedding approaches (La-
tent semantic analysis [23] and word2vec) and whether object-level distributions and
co-occurrences contributed meaningful semantic information to scene recognition. They
compared Residual networks [24] and VGG networks [25] and how well they performed
when fusing word embeddings in the final CNN layer. They observed improved scene
recognition performances when incorporating object-level semantic information.

Our approach is closely related to both methods [12,13]. While both incorporate object-
level semantic information in scene recognition, our approach performs scene recognition
solely through object-level representations. This means that we represent a scene not
through the embedded objects but by means of vector representations of these objects.

Zhou et al. [26] have recently implemented a Bayesian approach for scene recognition.
The authors implemented an improved object model (IOM) enriched from a Bayesian
perspective (BIOM) to find object co-occurrences and pairwise object relations. These
models are incorporated into a pretrained CNN model (placesCNN) and tested on the
reduced places365 dataset (n = 7 and 14 classes) and SUN RGB-D dataset [27]. PlacesCNN
can be seen as the original baseline for scene recognition on the places365 dataset [28]. In
the same direction, Miao and colleagues [29] propose an Object-to-Scene (OTS) method,
which extracts object features and learns object relations to recognize indoor scenes. More
recently, Labinghisa et al. [30] proposed a method called image-based indoor location
awareness algorithm (IILAA) in combination with a clustering algorithm, with state-of-the-
art performance on the MIT67 dataset [14].

3. Methodology
3.1. Datasets

Open Images V6 [31] was used to train YOLOv5 [32] to perform object detection using
90 classes (Indoor Object Detection 90-IOD90) and 155 classes (IOD155) that one would
reasonably expect to find in indoor settings (e.g., oven, dining table, TV, keyboard, bed,
flower, sink, laptop, wrench, etc.). For IOD90, 309,762 images were used for training, 6307
were used for validation, and 18,644 for testing. For IOD155, 468,579 images were used
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for training, 11,717 images were used for validation, and 34,907 for testing. The Open
Images dataset contains annotated images, and the images were selected based on whether
object classes were present. Irrelevant annotations were ignored, and only target object
classes were used. In Figure 1 an overall technical flow of the pipeline proposed in this
work is depicted, as well as a step-by-step scheme. Moreover, the pseudocode of the whole
algorithm is presented in Algorithm 1.

For scene recognition, eight indoor room classes were selected from the Places365
dataset [28] (bathroom, bedroom, corridor, clean-room, kitchen, home-office, living-room,
and dining-room). Five thousand images were selected for training and validation for
all categories apart from “clean-room”, with 3871 images. The number of images used
for training was 38,871, of which a balanced 20% were used for validation. For testing,
100 images were used for each category (for a total of 800) and correspond to the Places365
designated validation set. The original Places365 testing set does not contain labels as
it is part of an ongoing challenge; therefore, a customized validation/testing approach
was required.

Algorithm 1 Pseudocode of the proposed approach.

1: procedure REQUIREMENTS:
2: A working object detection model . either custom or pretrained
3: A dataset D of scene data . with labeled rooms
4: procedure FOR PERFORMING ROOM CLASSIFICATION
5: for Image in dataset D do
6: DetectObjects(Image)
7: TrainValTest.split(D)
8: CountVectorizer()
9: TF-IDF()

10: TrainClassifier() . for predicting room category
11: PredictRooms() . evaluate room classification performance

3.2. Object Detection Modules

We trained a recent implementation of YOLO [22,33], YOLOv5L (See https://github.
com/ultralytics/yolov5, accessed on 13 November 2021), to detect predefined objects
using the Open Images V6 dataset. Of the 600 trainable objects in this dataset, 90 and
155 object classes were selected to be used. For the used images, the annotations were
converted to a PASCAL VOC format. YOLO was used because it is one of the fastest object
detection methods currently available. In the field of embodied agents and reinforcement
learning, the improved speed of YOLO could be beneficial when performing studies
investigating reinforcement learning and object navigation. This is because reinforcement
learning is already computationally expensive, and using a relatively “simple” object
detection framework could be beneficial [34,35]. Additionally, we are aware of the current
controversy revolving around YOLOv4 [36] and YOLOv5 [32] and have no reason to select
one over the other. The current study aims not to optimize the object detection task, but
instead to utilize object detection (trained on custom data) in a scene recognition task. We
have no opinion regarding the appropriateness of which version to use; we have used
the Jocher and colleagues [32] implementation of YOLO because it is compatible with
PyTorch [37].

YOLOv5 was trained using the default hyperparameters for 100 epochs in batches of
32. YOLOv5 uses standard Non-Max Suppression (NMS) in post-processing. It provides
the option for image augmentation and while creating mosaics in the training phase we
did not initialize the image augmentation preprocessing option. YOLOv5 uses anchor
boxes and determines them using an “AutoAnchor” [38]. For testing model performance, a
confidence threshold of 0.001 was used. The same confidence threshold was used to detect
objects for the indoor scene classification and 0.25, 0.50, and 0.75. However, increasing the
confidence threshold was negatively associated with indoor scene classification accuracies.

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
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This is because as the confidence threshold increases, fewer objects are detected, and so the
number of images without detected objects increases. It would be interesting to see how
false positives and false negatives affect classification performances in scene recognition.
However, as the images used for scene recognition had no object-level annotations, this
could not be tested. It could be that if a false positive is consistent enough in a scene category,
it could be “informative” and be used in scene classification despite being mislabelled;
unfortunately, this was not something we could empirically expand on.

A pre-trained semantic segmentation model (Xception [39]) was also used. The se-
mantic segmentation model contained 150 classes relevant to the ADE20k dataset [40].
ADE20k is a dataset that provides semantic segmentation labels for images containing
scene categories corresponding to the Places365 dataset. It is important to note that the
150 classes used in the segmentation model also include classes relevant to outdoor scenes
and are not exclusive to objects found in indoor environments.

3.3. Object-Level Scene Classification Module

We generated object-level predictions (with object detection and semantic segmen-
tation, separately) that were used as features in relevant images in the Places365 dataset
using the Object Detection Modules. These features were then transformed using TF-IDF
and Count Vectorizer with the default parameters, where each image was treated as a
document. Count Vectorizer is a standard method used in NLP and it is used to convert
corpora into a matrix of token counts of words. In this case, it is used to count detected
objects in order to identify their frequency across our scene data. It is crucial to keep in
mind that Places365 does not have object-level annotations. So, the input features for scene
classification represent predicted objects – as opposed to concrete and well-defined labels.

Term frequency (TF—Equation (1)) is defined as the frequency that the term t appears
in the document d and inverse document frequency (IDF) is a metric used to identify how
much information the term provides. IDF (Equation (2)) is calculated as the logarithm of
the total number of documents N divided by the number of documents where the term
t appears (i.e., in regard to this study: the number of images, where the object is present)
and corresponds to how frequent or rare a term is in a collection of documents. Term
frequency-inverse document frequency (TF-IDF—Equation (3)) is calculated as the product
of TF and IDF. The more relevant a word is to a document, the higher the TF-IDF score (on
a scale of 0–1). TF-IDF was calculated using Scikit-Learn [41].

t f (t, d) =
ft,d

∑t′∈d ft′ ,d
(1)

id f (t, D) = log
N

|d ∈: t ∈ d| (2)

t f id f (t, d, D) = t f (t, d)× id f (t, D) (3)

The same weighting can be applied to objects and scenes if the term for object and
document for an image is substituted. Common objects observed in most scenes would
be weighted down, and rare objects would have an increased weighting. For example,
one would expect “oven” to be a relatively infrequent object but often observed in kitchen
settings. In this context, ovens would have a higher TF-IDF weighting than a more frequent
and less informative object (e.g., a chair).

Using a Bag-of-Words (BoW) [42] approach, these features correspond to a vectoriza-
tion of the frequency of occurrence for objects in the target room categories. This vector
space was then used to train a classifier to predict a room category based on observed
(predicted) objects. In NLP, BoW approaches can be limited because they do not capture
the structural sequence and order of words so other approaches might be more appropriate.
However, in static scene recognition, there is no sequential order (which could be more
relevant in dynamic scene processing), so this limitation is less applicable here.
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A random forest classifier was used to predict scene category from observed (predicted)
objects in images using Scikit-Learn [41] with n = 1000 estimators, the minimum number
of samples is 2, and an unlimited number of leaf nodes. This was applied to all object
detection methods (IOD90 and IOD155) and semantic segmentation (Xception). Other
machine learning models were tested (linear regression and support vector machine)
however random forest was superior in all cases and gave the best results.

4. Results
4.1. Evaluating Object Detection

Using a confidence threshold of 0.001, object detection for the 90 indoor classes had a
precision of 0.526, recall of 0.601, mean average precision at 0.5 IOU (mAP@0.5) of 0.553
and a mAP@0.5:0.95 (mean average precision at IOUs from 0.50 to 0.95 at 0.05 increments)
of 0.416. Object detection for 155 indoor classes had a precision of 0.455, recall of 0.469,
mAP@0.5 of 0.417 and a mAP@0.5:0.95 of 0.309. These results are summarized in Table 1.
and correspond to 100 epochs of training using default hyperparameters and evaluated on
the Open Images testing data.

Table 1. Evaluating YOLO.

Model Precision Recall mAP@.50 mAP@.50:.95

IOD90 0.526 0.601 0.553 0.416
IOD155 0.455 0.469 0.417 0.309

4.2. Scene Classification with IOD90

Scene recognition using 90 classes of objects (IOD90) and a confidence threshold
of 0.001 achieved an accuracy of 82.53% on the validation set (test: 83.63%) and using
a confidence threshold of 0.25 achieved an accuracy of 74.92% (test: 75.50%). Using a
confidence threshold of 0.50, an accuracy of 56.65% on the validation set (test: 55.88%) was
achieved. Using a highly restrictive confidence threshold of 0.75, the accuracy was close
to chance at 23.97% (test: 25.63%). Increased confidence thresholds were associated with
lower accuracy scores (see Figure 2 for a visual summary).

The number of detected objects might explain this. Using a confidence threshold of
0.001, a mean of 299.02 (std: 6.00, range: 12–300) number of objects per image were detected
and using a confidence threshold of 0.25, a mean of 44.69 (std: 39.28, range: 0–300) objects
per image was detected. An average of 10.05 (std: 13.30, range: 0–277) and 0.74 (std: 2.35,
range: 0–91) number of objects were detected using confidence threshold of 0.50 and 0.75,
respectively. Further, increasing thresholds resulted in more images having no predicted
objects, which influenced the performance of the object-level classification of scenes. For
example, with a 0.001 confidence threshold, all 90 classes were detected, with all images
having at least one detected object (i.e., 100%). With a 0.25 confidence threshold, 89 object
classes were detected, with 92.07% of images having at least one detected object. Using a
confidence threshold of 0.50, 80 classes were detected across 66.53% of all images and using
a 0.75 confidence threshold, 55 objects were detected across 15.21% of images.

Considering how many objects were detected on average for a confidence threshold of
0.001, scene classification was tested using the only single occurrence of objects detected
(i.e., using only the presence of an object class, as opposed to all detected instances of
objects). When ignoring duplicate objects, IOD90 achieved a 79.74% accuracy (test: 81.25%)
with a 0.001 confidence threshold on the validation set and an accuracy of 76.10% (test:
75.50%) using 0.25. An accuracy of 57.21% was observed on the validation set (test: 57.00%)
using a threshold of 0.50, and an accuracy of 23.99% was observed (test: 25.63%) using a
threshold of 0.75. Only slight changes in accuracy were observed: −2.79%, +1.18%, +0.56%
and +0.02% for confidence thresholds of 0.001, 0.25, 0.50 and 0.75, respectively, on the
validation sets when using sets of objects.



J. Imaging 2022, 8, 209 8 of 12

Figure 2. Scene Recognition for IOD90 & IOD155—visualization of results across conf. thresholds
(0.001, 0.25, 0.50, 0.75) for validation and testing sets. Also displayed are whether all detected objects
or singular instances (sets of objects) are used in predicting room category.

4.3. Scene Classification with IOD155

Using a model trained to detect 155 object classes (IOD155) an accuracy of 83.25% on
the validation set (test: 83.38%) was observed using a confidence threshold of 0.001 and an
accuracy of 75.91% (test: 77.00%) was observed using a threshold of 0.25. A threshold of
0.50 achieved an accuracy of 57.43% on the validation set (test: 57.75%) and a threshold of
0.75 achieved an accuracy of 23.61% (test: 23.75%).

Again, this could be explained by the number of detected objects. On average, 298.98
(std: 11.48, range: 12–300), 48.57 (std: 43.37, range: 0–300), 10.81 (std: 14.47, range: 0–300),
0.80 (std: 2.68, range: 0–162) objects were detected per image using confidence thresholds
of 0.001, 0.25, 0.50, 0.72—respectively. Out of 155 classes, 135 objects were detected at least
once using a threshold of 0.001 across all (100%) images, and 125 objects were detected at
least once using a threshold of 0.25 across 90% of the images. Using a threshold of 0.50,
106 object classes were detected across 66.89% of the images, while 60 object classes were
detected in 15.91% of the images at least once using a threshold of 0.75.

When ignoring duplicate objects detected, a confidence threshold of 0.001 achieved
80.57% accuracy (test: 80.88%), a threshold of 0.25 achieved an accuracy of 76.14% (test:
77.75%), a threshold of 0.50 achieved an accuracy of 58.25% (test: 58.63%) and 0.75 achieved
an accuracy of 23.64% (test: 23.75%). Again, only slight differences in accuracy were
observed: −2.68%, +0.23%, +0.82%, +0.03% for confidence thresholds of 0.001, 0.25, 0.50
and 0.75, respectively, on the validation set.

4.4. Scene Classification with Semantic Segmentation

Using a pre-trained semantic segmentation model, an accuracy of 80% was achieved
on the validation set and 71.41% accuracy on the testing set. Across all data, semantic
segmentation detected 149 object classes. Unlike YOLO, semantic segmentation uses
masking, and the implementation here does not allow for the counting of objects detected
(apart from the number of classes). On average, 16.37 (std: 6.50, range: 1–47) object classes
were detected per image. The most commonly segmented classes were “wall”, “floor”, and
“ceiling”, which is to be expected for indoor environments. However, due to their relatively
high-frequency and shared commonality across room categories, TF-IDF should down
weight their importance. All images contained at least one instance of those classes; when
ignoring those semantic labels, at least one object was detected in 99.91% of all images.

4.5. Model Comparisons

Identifying relevant benchmarks for this study is no trivial task. Table 2 compares a
selection of scene recognition models. Often when looking at a large number of classes
for scene data (e.g., the full ADE20k and Places365 datasets), researchers compare model
performances regarding their accuracy for the Top-1 prediction and the Top-5 predictions.
This is due to overlap and ambiguity; however, as this study only has eight room categories,
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a Top-5 accuracy would not be appropriate. Furthermore, the room categories were confined
to rooms typically found in residential homes. Chen and colleagues [13] use the Top-5
predictions and refine their predictions based on word embeddings. Our results are
comparable to theirs as they use the same dataset with more room categories represented
in their “home” data (n = 14). However, they select their testing set from the Places365
training set and use the Places 365 testing set as their validation set, which differs from
this study. Newer approaches where the semantic relationships among the objects [26] and
transfer object learning [29] are included for scene recognition improve the state-of-the-art
by around 2.0%.

Despite the differences in the number of room categories, the performances on the
testing set for this study more closely resemble their validation set (both in terms of results
and likely overlapping scene data).

Table 2. Scene Recognition—Model Comparisons (IOD90 & IOD155 conf. thresh = 0.001).

Dataset Top-1 Top-5
Val Test Val Test

ADE20K
ResNet18+LSA [12] 53.77% - 75.65% -

Places365
VGG [28] 55.24% 55.19% 84.91% 85.01%

ResNet152 [28] 53.63% 54.65% 85.08% 85.07%

Places365-Home
ResNet50 [13] 83.46% 92.03% - -

ResNet50+Word2Vec [13] 83.67% 93.27% - -
CBORM [26] 85.80% - - -

OTS [29] 85.90% - - -

this work IOD155 + tfidf 83.25% 83.38% - -
IOD90 + tfidf 82.53% 83.63% - -

Xception + tfidf 80.00% 71.41% - -

4.6. Experimental Settings

The models were implemented in the Pytorch library and trained using an NVIDIA
Volta V100 GPU with 10 cores from a Xeon Gold 6230 processor, with 32Gb of RAM. The
parameters used during the training stage were a batch size set to 32 and 100 epochs.
The Adam optimization algorithm with a base learning rate of 0.1 for minimization, while
momentum and weight decay are set to 1.0 and 1× 10−5, respectively. The obtained models
and datasets (IOD155 and IOD90) are available for reproducibility (see Reference [43]).

5. Discussion

This study aimed to demonstrate the benefit of NLP approaches to scene recognition
and further illustrate object-level importance. As demonstrated, indoor scene classification
can be performed solely from object-level information by combining TF-IDF weighting
with detected objects in static scenes.

Researchers often use semantic information to facilitate high-level functions such as
object-goal-directed navigation and exploration in embodied research. The object detection
models developed here could further advance this field, as they often rely on pre-trained
models that contain a limited number of classes relevant to indoor scenes, such as MS-
COCO [6]. YOLO was trained to perform object detection on 90 and 155 object classes
relevant to indoor scenes, which could be beneficial to the field.

When evaluating the object detection models, IOD90 performed better than IOD155;
however, IOD155 performed better in scene classification. This illustrates one of the
limitations of this study. Object-level annotations for the scene data (Places365) were
not available, so evaluating the object-level prediction on the scene data is not possible.
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Generally, lower confidence thresholds were associated with improved scene recognition,
which is likely due to more input features for the classification task.

Both IOD90 and IOD155 performed better than the semantic segmentation model
when used as input features for classification. This is likely due to IOD90 and IOD155
incorporating more semantic labels specific to indoor scenes. The semantic segmentation
model also contained semantic labels associated with all other scene categories from the
Places365 dataset, including outdoor scenes. Therefore, one cannot infer that one approach
is better than the other. However, in this case, it is likely that object detection performed
better due to having more relevant indoor object classes.

Interestingly, only slight deviations in classification performance were observed when
using instances of objects detected (i.e., sets of objects). In the context of dynamic scene
classification, this might be an interesting line of future research. When exploring a room,
a proportion of the relevant frames could include a suboptimal field of view. Recently
encountered objects could be stored in working memory to allow for contextualizing the
immediate scene/frame. However, performing object detection over all frames could lead
to large collections of “encountered” objects - despite the actual number of objects being
far lower (due to the same object/s being present across frames). Using sets of recently
encountered objects could simplify this task.

6. Conclusions

This paper illustrates the relevance of objects and NLP approaches to indoor scene
classification. These models were then used to predict objects in unlabelled scene data by
training YOLO to detect indoor objects. These predicted objects were then used to train a
classifier, using object TF-IDF values as input features to classify room categories.

This approach could yield further benefits to static and dynamic indoor scene classifi-
cation and could also be beneficial for embodied research. Given the presented approach’s
simplicity, the proposed implementation can be deployed easily on low-cost hardware,
which is the case with most commercially available humanoid robots. Some limitations in-
clude the lack of semantic relationships among the objects in rooms once these are detected,
as well as the absence of learning about the room’s composition once the classification is
performed. This last limitation is essential in case of dynamic changes if the various aspects
of the room change, so there is no need to run the algorithm every time in the same location.
Future research directions include addressing these limitations, and, more importantly, our
goal is to deploy the proposed algorithm in assistive robots, particularly for elderly care.
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