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Abstract: Zero-Shot Learning (ZSL) is related to training machine learning models capable of clas-
sifying or predicting classes (labels) that are not involved in the training set (unseen classes). A
well-known problem in Deep Learning (DL) is the requirement for large amount of training data.
Zero-Shot learning is a straightforward approach that can be applied to overcome this problem. We
propose a Hybrid Feature Model (HFM) based on conditional autoencoders for training a classical
machine learning model on pseudo training data generated by two conditional autoencoders (given
the semantic space as a condition): (a) the first autoencoder is trained with the visual space concate-
nated with the semantic space and (b) the second autoencoder is trained with the visual space as
an input. Then, the decoders of both autoencoders are fed by the test data of the unseen classes to
generate pseudo training data. To classify the unseen classes, the pseudo training data are combined
to train a support vector machine. Tests on four different benchmark datasets show that the proposed
method shows promising results compared to the current state-of-the-art when it comes to settings
for both standard Zero-Shot Learning (ZSL) and Generalized Zero-Shot Learning (GZSL).

Keywords: Zero-Shot Learning (ZSL); semantic space; conditional autoencoders; generative models;
computer vision

1. Introduction

Deep-learning-based models have brought tremendous advancement in different
fields, including but not limited to computer vision [1,2], natural language processing [3],
and satellite image processing [4]. In these research fields, deep-learning-based models
achieved human-level capabilities. In fact, these developments are subject to higher qual-
ity and large-scale data. With the exponential growth of new classes in our real world,
collecting large amounts of data driven by significant variations requires much cost. It
is a key challenge to annotate sufficient training data for each class to exploit supervised
learning [4,5]. Therefore, different learning paradigms with limited labeled data have been
presented in the literature, namely semi-supervised learning [4], life-long learning [6], and
active learning [7]. However, the capabilities of these paradigms are limited in exploring
variations in the limited amount of labeled data. Generally, humans can recognize over
30,000 core item types [8] and many more sub-categories. Additionally, humans are also
excellent at recognizing items without seeing any visual examples. This capability is the
zero-shot learning problem in machine learning.

Zero-shot learning (ZSL) models [9–11] have recently emerged to identify unseen
categories with no training data but with semantic descriptions of classes. The ZSL models
can take into account situations when data are scarce [12,13]. In general, the ZSL models
address this situation by learning either a visual-to-semantic mapping [14,15] or a semantic-
to-visual mapping [16,17]. The general assumption is based on the observations that the
visual space encodes the semantic space and that the semantic space encodes the visual
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space [15,18–20]. However, zero-shot learning is still a challenging research field since we
need to predict unseen test categories that are never used when training the models [21–23].
For example, most ZSL methods like Deep Embedding Model (DEM) [24–26] discover
direct embeddings from global features to the semantic space. However, the methods
cannot capture the appearance relationships between different local regions in this way.
The techniques could also ruin the diversity of visual modality due to highly overlapped
semantic descriptions of various categories.

To cope with these challenges, we propose a Hybrid Feature Model (HFM) based
on conditional autoencoders for zero-shot learning method to identify both seen and
unseen classes via transferring knowledge from seen categories to unseen categories. Based
on the observations [27] where a single conditional variational autoencoder is used, our
method consists of two autoencoders that are depicted in Figure 1. The first autoencoder is
provided by the concatenation of the visual and semantic spaces. The second autoencoder is
provided by only the visual space. Our proposed method encodes the real data distribution
efficiently. Therefore, our approach identifies the unbiased projection toward seen classes
and produces close relationships between unseen samples and prototypes.

Figure 1. The proposed approach consists of two autoencoders. The first autoencoder is provided by
the concatenated vectors of the visual and semantic spaces. The second autoencoder is provided by
the visual features vectors only. Both autoencoders have a dense layer, followed by a dropout and
a second dense layer. This is followed by another layer, which generates the values z. Activation
functions are ReLU, and the activation functions for the last layer for both the encoder and the
decoder are linear.

Most techniques fail to consider the discriminative information between the visual and
semantic spaces. Thus, the significant insight is that our hybrid autoencoder approach may
precisely represent the real data distribution of the query set in a fine-grained and dynamic
manner. Especially, when the available samples are not driven by rich discriminative
information. This can be exploited to enrich the diversity of data distribution and further
improve the model accuracy. Furthermore, we explore both the visual and semantic spaces
to encode diversified and discriminative modes of variation for learning a boosted classifier.
Therefore, our method alleviates the problems when intra-class diversity and inter-class
discriminability are lacking. Consequently, the proposed model presents promising results



J. Imaging 2022, 8, 171 3 of 12

using a highly fine-grained dataset (see Section 5). In addition, the work shows that using
multiple VAEs generate an improved discriminative image space where data are easier to
separate for ZSL classification purposes.

The rest of the paper is divided into the following sections: in Section 2, we present
the related works from the literature. In Section 3, we present our proposed method in
detail. Experiments and experimental results on four benchmark datasets and a conclusion
are presented in Sections 4, 5, and Section 6, respectively.

2. Related Work

We classify the literature into two categories: embedding space-based zero-shot learn-
ing and feature generation-based zero-shot learning. In the first category, Lampert et al. [12]
presented attribute-based classification based on a high-level description that is phrased in
terms of semantic attributes, such as the object’s color or shape. Norouzi et al. [13] introduced
an image embedding system that mapped images into the semantic embedding space via
a convex combination of the class label embedding vectors. However, the methods do not
provide a natural mechanism for multiple semantic modalities to be fused and optimized
jointly in an end-to-end structure. In [18], authors assumed that unseen categories come
from unsupervised text corpora. Their method is based on the distributions of words in
texts as a semantic space for understanding what objects look like. The method does not use
the distribution information of samples. Therefore, the method cannot discover the cluster
structure of samples. The authors [15] presented a visual-semantic embedding model trained
to recognize visual objects using both labeled image data as well as semantic features gleaned
from the unannotated text. They did not exploit the cluster relationship to rectify the biased
sample-prototype relationship. Akata et al. [20] learned a function considering image and
class embeddings. They used supervised attributes and unsupervised output embeddings
either derived from hierarchies or learned from unlabeled text corpora. Xian et al. [21] intro-
duced a latent embedding model for learning a compatibility function between image and
class embeddings. Romera et al. [22] modeled the relationships between features, attributes,
and classes as a two linear layers architecture, where the weights of the top layer are not
learned but are given by the surrounding features. The researchers [23] embedded each class
in the space of attribute vectors. Changpinyo et al. [28] aligned the semantic space to the
model space that concerns itself with recognizing visual features. Kodirov et al. [29] presented
a ZSL learning model based on a Semantic AutoEncoder (SAE). They projected a visual feature
vector into the semantic space. The encoder and decoder may be linear and symmetric, which
could not recognize or differentiate multiple features. Zhang et al. [24] used the visual space as
the embedding space by considering the subsequent nearest neighbor search. The method [30]
introduced an episode-based model for zero-shot learning. They trained their model within a
set of episodes, each of which is modeled to simulate a zero-shot classification task. These
methods have limited abilities to scale to large numbers of object categories. This limitation
is partly due to the increasing complexity of collecting sufficient training data in the form of
labeled images as the number of object categories grows.

In the second category, the methods learn to consolidate the visual samples for unseen
classes. These methods first learn a conditional generative model considering, for example,
Variational Autoencoder (VAE) and Generative Adversarial Networks (GAN). In addition,
GAN-based approaches, e.g., f-VAEGAN-D2 [25] and TF-VAEGAN [26] show a competitive
performance. In [25], authors proposed f-VAEGAN-D2, which combined VAEs and GANs
to learn the marginal feature distribution of unlabeled images through an unconditional
discriminator. However, the method cannot discover the class-based feature distribution
from the available semantic information. In contrast to f-VAEGAN-D2 model, authors
in [26] proposed the TF-VAEGAN model, which combined VAEs and GANs. However,
they added a semantic embedding decoder to reconstruct the embedding space, which
is used as a feedback module to improve the output of the Generator of the GAN. How-
ever, GANs and their derivatives show training instability, while VAE is more stable [31].
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Mishra et al. [27] generated the samples from the given attributes, using a conditional
variational autoencoder, and exploited the generated samples to classify the unseen classes.

Our proposed method falls into the feature generation-based zero-shot category driven
by stability during training. The approach also encodes complex data distribution efficiently.
It demonstrates that for specific test situations (see Section 5), a hybrid model consisting
of two VAEs can outperform a GAN-VAE model with less training effort. Excluding
the Kullback–Leibler (KL) divergence from the conditional VAE loss yields enhanced
discriminative image features for classifying unseen classes in ZSL settings, which is
promising. A limitation of the proposed approach is that the proposed model lacks a
feedback module that can be coupled with the decoder to improve the reconstructed image
space. To show the strength of our proposed method, we perform a comparison with a
set of methods [12,13,15,18,20–30]. The reason for choosing these methods for comparison
is three-fold. Firstly, they belong to both categories in the literature. Secondly, they
represent different techniques. Lastly, these methods represent older and new techniques
in the literature. We also compare our method with [19]. The considered approach is
reinforcement learning for training image captioning methods. The comparison with this
method would highlight the generalization capability of our approach.

3. A Hybrid Feature Model
3.1. Problem Definition

The basic idea of any ZSL approach is to build a model which maps information
from the seen to unseen classes based on a semantic description of the unseen classes.
In other word, zero-shot learning is needed when there are no labeled training exam-
ples for all classes under observation. Therefore, the available dataset is split into two
groups, a training subset (seen classes) Yseen = {y1

seen, y2
seen, . . . , yn

seen} , and unseen classes
Yunseen = {y1

unseen, y2
unseen, . . . , ym

unseen} subset, where n refers to the number of seen classes
and m refers to the number of unseen classes. In addition, the assumption Yseen ∩ Yunseen = φ
should hold. In such a situation, the task is to build a model Rd → Yunseen using only the
training subset and able to classify the unseen classes. Afterward, the trained classifier should
be applied on test data of unseen classes under the zero-shot settings Yseen ∩ Yunseen = φ. Con-
sequently, zero-shot learning provides a new technique to overcome obstacles, such as the
lack of training examples aiming at increasing a learning system’s capability to deal with
unexpected events in the same way that people do.

Most state-of-the-art techniques solve the ZS problem by embedding the training
data feature space and the semantic representation of class labels in some vector space
to preserve the similarity. Then, unseen classes can be classified as nearest-neighbor
search problems. In the generalized zero-shot case, we seek to design a more generic
model Rd → Yseen ∪ Yunseen, that is able to categorize or classify the seen and unseen
classes appropriately.

3.2. Approach

The Variational Autoencoder [32] consists of a decoder and an encoder. The encoder
and the decoder are trained to aim at maximizing a goal which is known as the Evidence
Lower Bound (ELBo). In both the encoder and the decoder, the variable z represents the
hidden, latent space and the variable x represents the data. In addition, the encoder qΦ(z|x)
consists of parameters Φ and maps from data space to latent space and a decoder pθ(x|z)
which consists of the parameters θ and maps from latent space to data space. The lower
bound for p(x) can be written as:

L(Φ, θ; x) = −KL(qΦ(z|x)||pθ(z)) +EqΦ(z|x)[logpθ(x|z)] (1)

In Equation (1), KL denotes the Kullback–Leibler divergence between the encoder’s
distribution qΦ(z|x) and pθ(z).
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Conditional Variational Autoencoders (CVAE) [33] consists of the encoder and the
decoder that can be conditioned to additional variables like the variable x (data) and the
condition variable c. Thus, it is possible to generate samples following desired properties
that might be encoded by c also. The loss function can be given as:

L(Φ, θ; x, c) = −KL(qΦ(z|x, c)||pθ(z|c)) +EqΦ(z|c)[logpθ(x|z, c)] (2)

In this work, our loss function considers only the reconstruction term which is the
Mean Squared Error (MSE).

We chose to use such a loss function because researchers in [34–36], showed that
the KL divergence in the standard conditional variational autoencoder (see Equation (1))
does not allow the model to use the latent variables in many situations effectively. In
this paper, we show that dropping the Kullback–Leibler (KL) term from the Variational
Autoencoder [32] shows promising performance.

Algorithm 1 shows the training steps. Firstly, the algorithm requires the image
features Xseen, the labels of the image features (visual space) Yseen, and the vectors of
the semantic space Sseen. Then the first autoencoder Autoencoder1 is trained using Xseen
combined with Sseen and learns the latent space z to generate x̂ given Sseen. Then the
second autoencoder Autoencoder2 is trained using the Xseen and learns the latent space z
to generate X̂seen given Sseen.

Algorithm 1 Training

Require: Xseen, Yseen, Sseen
Ensure: Autoencoder1, Autoencoder2

Train the conditional model (Autoencoder1, condition is Sseen) (Xseen, Sseen → Xseen)
Train the conditional model (Autoencoder2, condition is Sseen) (Xseen → Xseen)

Algorithm 2 shows the detailed steps to classify the unseen classes. The algorithm re-
quires the first autoencoder Autoencoder1, the second autoencoder Autoencoder2, and the
semantic vectors of unseen labels Sunseen. Then, the encoder of the first autoencoder
Autoencoder1 will estimate q(z(i)|x(i), SYi ) but the input of the encoder is the image fea-
ture concatenated with the semantic vectors. Then, the decoder of Autoencoder1 tries
to reconstruct x using a sampled z from a standard normal distribution concatenated
with Sunseen. Then, the encoder of the second autoencoder Autoencoder2 will estimate
q(z(i)|x(i), SYi ) but the input of the encoder is only the image feature space. Then, the de-
coder of Autoencoder2 tries to reconstruct x using a sampled z from a standard normal
distribution concatenated with Sunseen. The generated x̂ from both autoencoders will
be concatenated to form the pseudo training data for a support vector machine. Then,
the Support Vector Machine (SVM) is trained, and its parameters are fitted. We use it to
predict the performance using the unseen test classes.
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Algorithm 2 Unseen classes classification

Require: Autoencoder1, Autoencoder2, Xunseen, Sunseen, Yunseen
Ensure: classLabel

TrainingSetAutoenc1 = Φ
for yunseen ∈ Yunseen do

for i inNumO f Samples do
# sample f rom a Gaussian distribution
z ~N (0, 1)
# Concanetate z and the unseen semantic class label
tmpVi = Sunseen ◦ z
# Generate a pseudo− sample f rom the f irst autoencoder
PseudoXi ← DecoderAutoencoder1(tmpVi)
# Add the sample and the unseen class label to TrainingSetAutoenc1
TrainingSetAutoenc1 ← TrainingSetAutoenc1 ∪ (PseudoXi, yunseen)

end for
end for
TrainingSetAutoenc2 = Φ
for yunseen ∈ Yunseen do

for i inNumO f Samples do
# sample f rom a Gaussian distribution
z ~N (0, 1)
# Concanetate z and the unseen semantic class label
tmpVi = Sunseen ◦ z
# Generate a pseudo− sample f rom the second autoencoder
PseudoXi ← DecoderAutoencoder2(tmpVi)
# Add the sample and the unseen class label to TrainingSetAutoenc2
TrainingSetAutoenc2 ← TrainingSetAutoenc2 ∪ (PseudoXi, yunseen)

end for
end for
Straining = TrainingSetAutoenc1 ∪ TrainingSetAutoenc2
fit SVM model using Straining
Use the trained SVM model
classLabel = SVM(Xunseen)

4. Experiments

In the field of ZSL, there are well-known benchmark datasets. Therefore, we selected
four of them to test the performance of the proposed approach. We used, SUN Attribute
(SUN) dataset [37] which consists of 14340 images, 645 classes are seen and 72 unseen.
Caltech-UCSD-Birds (CUB) [38] which consists of 11788 images, 150 classes are seen and
50 unseen. In addition, we used Animals with Attributes1 and Animals with Attributes2
(AwA-1) and (AwA-2) [39] datasets. AwA-1 consists of 30475 images, 40 classes are seen
and 10 unseen. AwA-2 dataset consists of 37322 images, 40 classes are seen and 10 unseen.

Figures 2–4 show examples from AwA, CUB and SUN datasets, respectively.

Figure 2. Examples from Animals with Attributes (AWA) dataset.
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Figure 3. Examples from Caltech-UCSD-Birds (CUB) dataset.

Figure 4. Examples from SUN Attribute (SUN) dataset.

Regarding the visual space, we explored the Residual Neural Network 101 (ResNet101)
features [39]. Concerning the semantic space, we rely on the semantic space vectors given
by the authors of those datasets. Both autoencoders have a dense layer, followed by a
dropout and a second dense layer. This is followed by another layer, which generates the
values z. Activation functions are ReLU, and the activation functions for the last layer for
both the encoder and the decoder are linear. In addition, we use the keras [40] framework
in combination with the tensorflow backend [41] for implementation.

In our model, hyper-parameters are divided into two categories. The network hyper-
parameters and the Support Vector Machine (SVM) cost parameter. The network hyper-
parameters are set to batch size equal to 50, the size of the latent variable is 50, and the
optimizer is Adam [42]. The number of generated samples for each class is equal to 200.
Cross-validation on training classes is used to determine the latent variable size. The SVM
cost parameter is set to 100. To calculate the overall accuracy, we used the per-class average:

accper−class
average =

1
|Y|Σ

|Y|
i=0(

Nclassi
correctclass

Nclassi
Total

) (3)

Regarding the GZSL, we explored the generalized zero-shot situation [43]. We kept
aside 20% of the data from the training images and trained the model using the remaining
80% of the data. The SVM is trained using both the seen and the unseen classes to avoid
biased performance toward seen classes. For Generalized Zero-Shot Learning (GZLS),
we followed the recommendation in [44] to consider the harmonic mean of the accuracy
between seen and unseen classes.

5. Results and Discussion

Table 1 shows the state-of-the-art comparison on four datasets using per-class average
and the suggested splits from [39]. Our HFM model shows classification scores of 69.5%,
65.0%, 65.5%, and 53.8% on CUB, AwA1, AwA2, and SUN, respectively. For the ZSL
settings, Table 1 shows that f-VAEGAN-D2 [25] and TF-VAEGAN [26] performed the best
for AwA2 and SUN datasets. However, our model outperforms them using the CUB dataset.
This result is promising because our model showed an improved performance using the
highly fine-grained CUB dataset, which means that the generated pseudo-images gave
separable output space. We attribute this to excluding Kullback Leibler divergence and to
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the hybrid nature of our reconstructed image feature space. Unfortunately, the authors of
f-VAEGAN-D2 and Tf-VAEGA did not provide any results related to AwA1 dataset.

As shown in Figure 5, we visually inspect the image feature vectors produced by our
model for each class using the t-SNE [45] technique, and we compare them to the original
test image feature vectors for the AwA-1 dataset. As a result, we could observe that the
proposed approach can accurately simulate the underlying images. In addition, we could
observe that the reconstructed image features did not exclude many modes compared to
the real distribution.

Figure 5. This figure visualizes the image feature space of the AwA-1 dataset (each color denotes a
label), (a) shows t-SNE real test data visualization and (b) shows the test data generated from the
proposed approach.

Table 1. State-of-the-art comparison on four datasets using the per-class average under the
ZSL setting.

Model CUB AwA1 AwA2 SUN

DAP [12] 40.0 44.1 46.1 39.9
IAP [12] 24.0 35.9 35.9 19.4

ConSE [13] 34.3 45.6 44.5 38.8
CMT [18] 34.6 39.5 37.9 39.9
SSE [19] 43.9 60.1 61.0 51.5

DeViSE [15] 52.0 54.2 59.7 56.5
SJE [20] 53.9 65.6 61.9 53.7

LATEM [21] 49.3 55.1 55.8 55.3
ESZSL [22] 53.9 58.2 58.6 54.5
ALE [23] 54.9 59.9 62.5 58.1

SYNC [28] 55.6 54.0 46.6 56.3
SAE [29] 33.3 53.0 54.1 40.3

Relation Net [30] 55.6 68.2 64.2 -
DEM [24] 51.7 68.4 67.1 61.9

f-VAEGAN-
D2 [25] 61.0 — 71.1 64.7

TF-
VAEGAN [26] 64.9 — 72.2 66.0

CVAE [27] 52.1 71.4 65.8 61.7
HFM (Ours) 69.5 65.0 65.5 53.8

Table 2 shows the result of the Generalized Zero-Shot Learning (GZSL) compared to
the well-known state-of-the-art approaches. The table shows comparable performance for
the CUB and AwA2 dataset. However, the proposed approach showed better performance
using AwA1 dataset. Table 2 shows that our HFM model has a harmonic mean score of
43.4%, 61.6%, 63.4%, and 29.7% on CUB, AwA1, AwA2, and SUN, respectively. The results
of the Generalized Zero-Shot learning can be explained because of using ELBo without
KL divergence (KL-free) is still theoretically a valid target for generative modeling using
VAEs [35].



J. Imaging 2022, 8, 171 9 of 12

Table 2. Results of Generalized Zero-Shot Learning (GZSL) settings.We used the harmonic mean of
accuracy on both seen and unseen classes as a measure.

Model CUB AwA1 AwA2 SUN

DAP [12] 3.3 0.0 0.0 7.2
IAP [12] 0.4 4.1 1.8 1.8

ConSE [13] 3.1 0.8 1.0 11.6
CMT [18] 8.7 15.3 15.9 13.3
SSE [19] 14.4 12.9 14.8 4.0

DeViSE [15] 32.8 22.4 27.8 20.9
SJE [20] 33.6 19.6 14.4 19.8

LATEM [21] 24.0 13.3 20.0 19.5
ESZSL [22] 21.0 12.1 11.0 15.8
ALE [23] 34.4 27.5 23.9 26.3

SYNC [28] 19.8 16.2 18.0 13.4
SAE [29] 13.6 3.5 2.2 11.8

Relation Net [30] 47.0 46.7 45.3 —
DEM [24] 29.2 47.3 45.1 25.6

f-VAEGAN-
D2 [25] 53.6 — 63.5 41.3

TF-
VAEGAN [26] 58.1 — 66.6 43.0

CVAE [27] 34.5 47.2 51.2 26.7
HFM (Ours) 43.4 61.6 63.4 29.7

Table 3 shows the results for every autoencoder on four datasets under the ZSL setting.
The results of the table confirm that combining the image feature spaces that are generated
using both autoencoders improved the overall performance significantly.

Table 3. Results for each autoencoder on four datasets under the ZSL setting. The performance is
evaluated using the per-class average.

Dataset Autoencoder1 Autoencoder2 Both
AWA1 63.6 60.0 65.0
AWA2 58.6 58.4 65.5
CUB 68.5 58.9 69.5
SUN 50.6 51.4 53.8

Table 4 shows the results of the Generalized zero-shot setting (GZSL) that are calculated
based on per-class average using seen classes, unseen classes, and harmonic mean.

Table 4. Results of Generalized Zero-Shot setting (GZSL) that are calculated based on per-class
average using seen classes, unseen classes, and harmonic mean.

Dataset Seen Unseen Harmonic Mean
AWA1 75.7 52.0 61.6
AWA2 80.9 49.7 63.4
CUB 57.9 34.7 43.4
SUN 75.3 18.5 29.7

Furthermore, other recent works, e.g., AFRNet [46] and GEM-ZSL [47] showed com-
petitive results compared to our approach using different experimental settings. In AFR-
Net [46], authors proposed an adversarial network consisting of a residual generator,
a prototype predictor, and a discriminator to synthesize compact semantic visual features
for ZSL. Furthermore, authors in GEM-ZSL [47], their goal is the estimation of the real
human gaze position to determine the visual attention areas for recognizing an unseen
object using the semantic description of attributes. Thus, a feedback module combined
with the decoder of each VAE may improve the overall performance of the GZSL problem.
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6. Conclusions

Zero-Shot learning is related to building machine learning models that can classify
or predict classes (labels) that are not included in the training set. In this work, a genera-
tive zero-shot learning model is developed. The model can be extended to different use
case scenarios. In addition, this work provided intensive tests and detailed coverage of
state-of-the-art technology. According to our results, the model shows promising results in
some cases compared to the state-of-the-art methods considering three benchmark datasets,
even in the case of generalized zero-shot learning. Our proposed method showed that:
(a) excluding the Kullback–Leibler (KL) divergence from the conditional VAE loss synthe-
sizes discriminative image features for classifying unseen classes in ZSL problem settings,
(b) Using multiple VAEs generates an improved discriminative image space where data
are easier to separate for classification purposes. Moreover, a limitation of the proposed
approach is that the proposed model lacks a feedback module that can improve the re-
constructed pseudo-image space. In our future work, we will add a feedback module
and extend our generative model to combine the generative model with an additional
embedding model. It means the model maps both the real and the pseudo-generated
samples produced by the generative model into a new embedding space where classes are
better separable.
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