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Abstract: With a wide range of applications, image segmentation is a complex and difficult prepro-
cessing step that plays an important role in automatic visual systems, which accuracy impacts, not
only on segmentation results, but directly affects the effectiveness of the follow-up tasks. Despite the
many advances achieved in the last decades, image segmentation remains a challenging problem,
particularly, the segmenting of color images due to the diverse inhomogeneities of color, textures and
shapes present in the descriptive features of the images. In trademark graphic images segmentation,
beyond these difficulties, we must also take into account the high noise and low resolution, which are
often present. Trademark graphic images can also be very heterogeneous with regard to the elements
that make them up, which can be overlapping and with varying lighting conditions. Due to the
immense variation encountered in corporate logos and trademark graphic images, it is often difficult
to select a single method for extracting relevant image regions in a way that produces satisfactory
results. Many of the hybrid approaches that integrate the Watershed and K-Means algorithms involve
processing very high quality and visually similar images, such as medical images, meaning that either
approach can be tweaked to work on images that follow a certain pattern. Trademark images are to-
tally different from each other and are usually fully colored. Our system solves this difficulty given it
is a generalized implementation designed to work in most scenarios, through the use of customizable
parameters and completely unbiased for an image type. In this paper, we propose a hybrid approach
to Image Region Extraction that focuses on automated region proposal and segmentation techniques.
In particular, we analyze popular techniques such as K-Means Clustering and Watershedding and
their effectiveness when deployed in a hybrid environment to be applied to a highly variable dataset.
The proposed system consists of a multi-stage algorithm that takes as input an RGB image and
produces multiple outputs, corresponding to the extracted regions. After preprocessing steps, a
K-Means function with random initial centroids and a user-defined value for k is executed over the
RGB image, generating a gray-scale segmented image, to which a threshold method is applied to
generate a binary mask, containing the necessary information to generate a distance map. Then, the
Watershed function is performed over the distance map, using the markers defined by the Connected
Component Analysis function that labels regions on 8-way pixel connectivity, ensuring that all regions
are correctly found. Finally, individual objects are labelled for extraction through a contour method,
based on border following. The achieved results show adequate region extraction capabilities when
processing graphical images from different datasets, where the system correctly distinguishes the
most relevant visual elements of images with minimal tweaking.

Keywords: K-Means; clustering; region extraction; image segmentation; connected component
analysis; watershed

1. Introduction

To the human visual system, an image is not just an arbitrary set of pixels, but rather a
meaningful arrangement of regions and objects. Perceiving the interesting parts of a scene
is a preliminary step for recognizing, understanding and interpreting an image.
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The segmentation of an image consists of subdividing the image into its constituent
parts (or objects), considering certain characteristics of the image such as color, intensity,
texture and text, among others. In this context, an object refers to a convex component.
Segmentation can be seen as a classification problem, where the objective is to classify
N elements in K regions, where k 6 n, such that elements in the same K region have
properties similar to each other and distinct from the properties of elements in other re-

gions, K 6 N;
i=1⋃
K

Ki = image and Ki ∩ Kj = ∅, if i 6= j. In this sense, segmentation can

also be modelled as a combinatorial optimization problem, where an optimal region is
sought according to a certain similarity criterion between the elements of the same region.
Traditionally, image segmentation can follow two strategies: discontinuity, where the image
partition is performed based on sudden intensity changes (e.g., contour detection) [1–3];
and similarity, where the partition is performed based on the similarity between pix-
els, following a certain criterion (e.g., binarization, region growth, region division and
joining) [4,5].

Image segmentation is a complex and difficult preprocessing step that plays an im-
portant role in automatic visual systems. It has a wide range of applications such as
biometrics [6–8], medical image analysis [9–11], disease detection and classification in cul-
tures [12–16], traffic control systems [1,17–20], self driving cars [21–24], locating objects in
satellite images [25], and content image retrieval systems [26–29], among others.

Many image segmentation algorithms have been proposed in the literature, from
the traditional techniques, such as thresholding [30–33], edge-based segmentation [34,35],
histogram-based bundling, region-based segmentation [36–39], clustering-based segmen-
tation [40–44], watershed methods [45–49], to more advanced algorithms such as active
contours [50–53], graph cuts [54–57], conditional and Markov random fields [58–61], and
sparsity-based methods [62–64].

Given that the accuracy of segmentation not only has an impact on segmentation
results, but directly affects the effectiveness of the follow-up tasks, many efforts have
been made by the scientific community to develop efficient image segmentation methods
and techniques. Despite the many advances achieved in the last few decades, image
segmentation remains a challenging problem. Particularly, the task of segmenting color
images is challenging due to the diverse inhomogeneities of color, textures and shapes
present in the descriptive features of the images. In trademark graphic images segmentation,
beyond these difficulties, we must also take into account the high noise and low resolution,
which are often present. Trademark graphic images can also be very heterogeneous with
regard to the elements that make them up (pictures, text, etc.), which can be overlapping
and with varying lighting conditions. In addition, in the case of trademark graphic images,
we have a large amount of images to process, due to the number of new trademarks
registered daily worldwide in the range of tenths of thousands, which can compromise the
use of computationally heavy image segmentation methods.

In this paper, we propose an image segmentation method based on the K-Means and
Watershed algorithms. The K-Means algorithm is implemented as a means to simplify
image data and propose image regions based on color differences, while the Watershed
algorithm performs analysis on the resulting infographical map for extracting the proposed
regions, with the help of 8-way component analysis for component separation and contour
detection for the final extraction. Although there are some proposals for image segmenta-
tion based on the K-Means and Watershed algorithms [65–68], to the best of our knowledge,
the approach architecture we present in this paper was not previously proposed. The
developed method was applied in the segmentation of trademark graphic images, which
we consider to be a challenge given their characteristics. The results obtained demonstrate
the robustness and efficiency of the proposed method, so we consider that the approach
presented constitutes a positive contribution in the field of image segmentation.

Images with high color variation, overlapping objects and difficult shapes are rarely
documented in image segmentation approaches given that they are highly variable in terms
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of outcome. Dealing with so many inconsistencies in images at once can either produce
unusable results or require extreme amounts of fine-tuning. With our system, the usage
of prior knowledge provided by K-Means and Connected Component allows for superior
control over what kind of objects the user desires to extract. Simply adjusting the cluster
value gives the algorithm more or less room to identify distinct blobs, while the distance
value lets us directly adjust the size and distance of each object. As such, we believe our
approach offers improved robustness and ease-of-use in the scope of trademark images.

In addition to integrating the proposed system into a series of image comparison
systems, our objective is to develop a model matching system capable of identifying the
objects extracted by this approach in other images, as well as a review of image comparison
metrics as a means of obtaining results comparable to those of graphical search engines.

The remainder of this the paper is structured as follows: Section 2 describes related
work and different state-of-the-art approaches used for image segmentation, focusing on
methods using the K-Means and Watershed algorithms. Section 3 describes the proposed
framework and related details of the proposed work. Section 4 deals with experimentation
and discussion, including a sensitivity analysis of system’s variables. Section 5 presents a
comparison of the proposed approach with several algorithms proposed by other authors.
This section also presents the main differences between the proposed approach and those
based on deep learning. Section 6 provides brief concluding remarks with conclusions and
proposed future work.

2. Related Work

In the early 20th century, the clustering quality of the human visual system was
extensively studied by psychologists following the Gestalt school [69], who identified
several factors related to the human visual perception of clustering: similarity, proximity,
continuity, symmetry, parallelism, the need for closure, and familiarity. In the scope of
computer vision, such factors have been used as a guide for the study of many clustering
algorithms and, in particular, for the investigation of the image segmentation problem [69].
The use of clustering algorithms for image segmentation stands out among the approaches
available in current literature. The grouping of the characteristics of an image in the space
of features implies obtaining regions in the space of the image, for which the clustering
algorithms are classified as methods based on regions. In clustering methods applied to
image segmentation, pixels are grouped according to similarity regarding color, texture
and luminosity attributes.

2.1. K-Means Segmentation

Among the several clustering algorithms possible to use in image segmentation,
K-Means is one of the most popular, given its simplicity and computational speed, an
important feature when there are large amounts of images to be processed, and capacity to
deal with a large number of variables. In this section, we discuss some of the most recent
works where image segmentation follows an approach based on the K-Means algorithm.

To non-destructively detect defects in thermal images of industrial materials,
Risheh et al. [70] proposes a method based on segmentation of images generated by
enhanced truncated correlation photothermal coherence tomography (eTC-PCT), combined
with a computer vision algorithm. The filtered eTC-PCT reconstructed image is segmented
using the K-Means algorithm, and the result is applied to the delineation of the disconti-
nuity limits using the Canny edge detection algorithm. The results presented show that
the combination of these algorithms is optimal to achieve significant enhancement in the
delineation of blind holes and crack contours in industrial materials.

In order to improve the reusability of part structural mesh modules, Lian et al. [71]
propose a structural mesh segmentation algorithm based on K-Means clustering, where
the K value is set as a controllable variable. The experimental results presented show good
segmentation and friendly real-time interaction.
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Nasor et al. [72] propose a fully automated machine vision technique for the detection
and segmentation of mesenteric cysts in computed tomography images of the abdominal
space that combines multiple K-Means clustering and iterative Gaussian filtering. Regard-
less of the mesenteric cysts texture variation and location with respect to other surrounding
abdominal organs, the results presented show that the proposed technique is able to detect
and segment mesenteric cysts, achieving high levels of recision, recall, specificity, dice score
coefficient and accuracy, indicating a very high segmentation accuracy.

Zheng et al. [40] propose an adaptive K-Means image segmentation method that starts
by transforming the color space of images into LAB color space, after which the relationship
between the K values and the number of connected domains is used to adaptively segment
the image. The authors conclude that the proposed method achieves accurate segmentation
results with simple operation and avoids the interactive input of K value.

To classify the quality of Areca nut, Patil et al. [73] propose a method where the nut
boundary is detected using K-Means segmentation, followed by Canny edge detection.
When compared with eight different techniques of image preprocessing, the authors con-
clude that K-Means segmentation achieves one of the three best results for applications
involving Areca nut segregation.

2.2. Watershed Segmentation

An investigation of the utility of a two-dimensional Watershed algorithm for iden-
tifying the cartilage surface in computed tomography (CT) arthrograms of the knee up
to 33 min after an intraarticular iohexol injection is made in [74]. The proposed approach
shows that the use of watershed dam lines to guide cartilage segmentation shows promise
for identifying cartilage boundaries from CT arthrograms in areas where soft tissues are in
direct contact with each other.

Hajdowska et al. [57] propose a method that combines Graph Cut, Watershed segmen-
tation and Hough Circular Transform to improve automatic segmentation and counting
living cells, to overcome image segmentation difficulties on top-down pictures with over-
lapping cells.

Banerjee et al. [75] propose a method where Watershed segmentation is used to
cross-validate the classification of lung cancer.

To tackle the problem of identifying authentic and tampered images created by the
copy-move forgery technique, Dixit et al. [76] propose a method in which Stationary
Wavelet Transform (SWT) and spatial-constrained edge preserving Watershed segmentation
are applied over input images in preprocessing steps. The results obtained show that
the proposed approach can effectively distinguish between forged and original images
containing similar appearing but authentic objects, being also able to detect forged images
sustaining different post-processing attacks.

Shen et al. [77] propose an adaptive morphological snake based on marked Watershed
algorithm for breast ultrasound image segmentation, where the candidate contours of the
marked areas are obtained with a marked watershed. The results presented show that
the approach is robust, efficient, effective and more sensitive to malignant lesions than
benign lesions.

Hu et al. [78] propose a text line segmentation method based on local baselines and
connected component allocation, where the Watershed algorithm is used to segment touch-
ing connected components. The results presented show that the proposed approach can
effectively reduce the influence of text line distortion and skew on text line segmentation,
presenting a high degree of robustness, and a good segmentation accuracy for image text
lines in Tibetan documents with touching and broken strokes.

Tian et al. [46] proposed a successful approach based on Watershed segmentation to
build automatic citrus decay detection models in image-level.
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2.3. Hybrid Segmentation

In literature, we can find some proposals for hybrid approaches, where the K-Means
and Watershed algorithms are used simultaneously for image segmentation.

Desai et al. [66] propose an automatic Computer-Aided Detection for early diagnosis,
and classification of lung cancerous abnormalities, where the segmentation process is
performed through Marker-controlled watershed segmentation and the K-Means algorithm.

An improved hybrid approach to detect brain tumor is proposed by Tejas et al. [65]
by combining sequentially watershed segmentation, K-Means clustering and level set
segmentation. When compared with other techniques like Threshold segmentation, K-
Means clustering, Watershed segmentation and Level set segmentation, the proposed
hybrid approach show a better specificity, accuracy, and precision, and more precise
tumors detection.

3. Methods

As previously stated, image segmentation is a complex and difficult task, where its
accuracy not only has an impact on segmentation results, but directly affects the effective-
ness of the follow-up tasks. It plays an important role in automatic visual systems, with a
wide range of applications. In this paper, we propose a hybrid algorithm for segmentation
and extraction of graphical objects in trademark images. The focus on this type of images
comes from the fact that the proposed method will integrate a trademark content-based
image retrieval system, to be used in the intellectual property surveillance.

3.1. System Description

The proposed system consists of a multi-stage algorithm that takes a single input
image and produces multiple outputs. Given any RGB image, the standard procedure is
as follows:

Step 1: Preprocessing steps resize the input image to size 224 × 224 and reshape image
information into a three-dimensional array. When the image is first read, it is
saved as a one-dimensional numerical array containing information relative to each
and every pixel. Because we are going to work with RGB images, reshaping this
information into three dimensions assures one channel is used for each of the three
red, green and blue color ways.

Step 2: A K-Means function with random initial centroids and a user-defined value for
k is executed. This step performs initial segmentation in the input image and
removes noise caused due to inferior image quality. In typical implementations,
using randomized cluster centroids may negatively impact the clustering result.
However, in this scenario, K = 2 is persistently used as a default value, given that
the main objective of this algorithm is to separate foreground from background,
where randomized cluster centroids should not produce adverse results.

Step 3: A gray-scale version of the K-Means segmented image is generated to be input
into a threshold function. Thresholding is a method in which each pixel of a
certain image is replaced by a black pixel, given that the image intensity Ii,j is
lower than a user-defined fixed constant, T, or a white pixel, given that the image
intensity is higher than the constant [79]. For the proposed system, a constant T
value of 225 was used, due to the K-Means implementation already performing
basic segmentation of image components by creating two distinct color labels and
thus eliminating the need for a lower (generally 128) T value. The goal of this
threshold method is to generate a binary mask containing information necessary
for distance mapping.

Step 4: The binary mask produced in step 3 contains information regarding foreground
and background labeled-pixels and is then used to generate a distance map calcu-
lated through the exact distance transform formula. The exact distance transform
computes the distance from non-zero (foreground) points to the nearest zero (back-
ground) points and allows for binary input [80]. The distance map is an input
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step necessary for Watershed functions as it labels each pixel with the distance
to the nearest obstacle pixel (in this case, another object boundary). Connected
Component Analysis is then performed over the distance map, labelling regions
based on 8-way pixel connectivity and generating markers that ensure all regions
are correctly found.

Step 5: The Watershed function is performed over the distance map with the mask gener-
ated in step 3, and using the markers defined by the CCA function as described
in the scikit image documentation [81]. This step unifies the processes performed
in earlier steps and aims to separate any overlapping objects. Finally, individual
objects are labelled for extraction via the contours method. The minimum distance
to consider for each local maximum can be set by a user-defined parameter.

Step 6: Because the output of the previous watershed step is a binary image, using an edge
detection system like Canny is not necessary for Contour detection. The proposed
method uses a border proposed by Satoshi Suzuki [82] for finding extreme outer
contours through the labels created in the previous step, outlining each separate
object and extracting it into a separate file. Each of the outputs is presented as a
binary mask.

Overall, the proposed method aims to deliver a linear solution capable of processing
graphical images with low visual complexity, as the main goal of this method is to be
implemented in an brand image processing system, where simplistic logos and emphasis
on graphical elements are the predominant features found. As a means to provide visual
aid to the typical algorithm function cycle, we present a proposed approach block-diagram
in Figure 1.

Figure 1. Proposed approach block diagram.

3.2. Time Complexity of the Proposed Approach

In order to define the time complexity of the multi-stage algorithm proposed, it is
necessary to define the time complexity of each of its steps. The preprocessing techniques
performed in step 1 have a linear complexity of O(n), where n is the number of image
pixels. The complexity of K-Means is O(n × k × m × i) [83], where k is the number of
clusters to consider, to which corresponds the number of colors in the output image, m is
the dataset dimensionality, that is, the number of features, and i the number of iterations
needed to achieve convergence. Given that the number of clusters required is much lesser
than the data size, k << n, and that the data are not dimensionally big (m = 3), step 2 of the
proposed approach takes the linear time complexity O(n) to label all the image pixels. Step 3
performs an RGB to gray-scale image transform, which has a linear complexity, followed by
a threshold function, whose complexity is O(L× n), with L the number of pixel intensities.
With the threshold function applied to an 8-bit grayscale image, we have L = 256. Thus,
step 3 has a time complexity of O(n). Step 4 begins by generating a distance map from the
binary mask produced in step 3, which has a linear complexity of O(n) [84]. CCA has a
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complexity of O(d× n), for a d-way connectivity [85,86]. In the proposed approach, the
markers are generated considering an eight-connectivity. The marker-controlled Watershed
function, performed in step 5, has a complexity of O(n) [87–89]. In the last step of the
proposed approach (step 6), a contour detection method with a time complexity of O(n) is
performed, bringing the overall time complexity of the proposed approach to O(n) [82].

Although the time complexity of the proposed approach is as linear as O(n), where
n is the number of image elements, the system processing speed is heavily influenced by
the used data structures, software optimizations, algorithms implementation, among other
factors [90]. In addition to the computational complexity, it is important to estimate the
overall number of operations of the proposed system, given its impact on its processing
speed. Given the block-diagram of the proposed approach (Figure 1) and assuming that
each elementary operation is counted as one floating point operation (flop), the estimated
number of operations performed by each block is the following:

• Preprocessing: the resizing of the image to be processed and its representation in a
three-dimensional RGB array have n operations each.

• K-Means: Considering the sequential implementation of the K-Means algorithm, the
amount of computation within each K-Means iteration is constant. Each iteration
consists of distance calculations and centroid updates. Distance calculations require
roughly (3nkm+ nk+ nm), where 3nkm is the number of operation needed to compute
the squared Euclidean distance, nk is the number of operations needed to find the
closest centroid for each data point, and nm is the number of operations needed
for the reassignment of each data point to the cluster whose centroid is closest to it.
Centroid updates require approximately km operations. Hence, the estimated number
of operations performed by the sequential implementation of the K-Means algorithm
can be estimated as (3nkm + nk + nm + km)× i.

• Grayscale function and Threshold: each block requires n operations.
• Exact Distance Transform: The proposed approach calculates the distance map us-

ing the function provided by the OpenCV library, which implements the algorithm
presented by [84], whose number of operations is 2n.

• Connected Component Analysis: performed using the two-pass algorithm implemen-
tation proposed by [85], based on the Rosenfeld algorithm [86], where the number
of operations performed in each scan of the image is 2NGn, with NG = 8, for 8-
connectivity neighbourhood.

• Watershed: the Watershed function is performed over the previously generated dis-
tance map and using the markers defined by the CCA function, according to the
algorithm proposed by Beucher and Meyer [88]. Considering a NGn-connectivity,
where NG = 8, and the implementation proposed by Bieniek and Moga [89], the
estimated number of operations required for the execution of the Watershed algorithm
is 4NGn.

• Contour Detection: performed through the implementation of the algorithm proposed
by Satoshi Suzuki [82], requires NGn operations, with NG = 8, for 8-connectivity
neighbourhood.

Hence, the estimated overall operation number of the proposed approach is 46 n +
(10 kn + 3 n + 3 k) i C1n + (C2)kn + C3(k + n))× i floating point operations, with NG = 8,
m = 3, and i ≤ 100.

3.3. K-Means Clustering

The clustering analysis algorithm divides the data sets into different groups according
to a certain standard, so it has a wide application in the field of image segmentation.

K-Means is a clustering function that aims to partition a set of observations
(x1, x2, . . . , xn), where each observation is a d-dimensional real vector, into k(≤ n) sets
S = (S1, S2, . . . , Sk) so as to minimize the within-cluster sum of squares. The most common
implementation of the K-Means algorithm, and the one used throughout this experiment,
uses an iterative refinement technique. Given an initial set of k means m(1)

1 , . . . , m(1)
k , the
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algorithm functions by alternating between the assignment step and the update step. The
assignment step aims to assign each observation to the cluster with the nearest mean:

S(t)
i =

{
xp :

∥∥xp − µ
(t)
i

∥∥2 ≤
∥∥xp − µ

(t)
j

∥∥2 , ∀j, 1 ≤ j ≤ k
}

, (1)

After assigning an observation, the update step recalculates means (centroids) for
observations assigned to each cluster:

µ
(t+1)
i =

1

|S(t)
i |

∑
xj∈S(t)

i

xj, (2)

The K-Means algorithm will continue alternating until it converges, meaning the
assignments are no longer changing with each iteration. It is not guaranteed that the
algorithm will find the optimum. See Figures 2 and 3 for demonstration of the K-Means
functionality. The K-Means clustering function can be applied to image data as a means to
reduce the quantity of information, while still providing an accurate representation of the
image contents. More often than not, unprocessed color image files contain noise around
image edges, mostly due to compression techniques. This noise is usually unnoticeable
until the image is thresholded as to only display pure black or white pixels. By clustering
similarly colored pixels together, noise of this nature is completely removed as it is merged
with background pixels.

(a) (b)

Figure 2. K-Means assignment step. (a) k initial means are randomly generated, k = 3; (b) k clusters
are created by associating observations with the nearest mean clustering.

(a) The centroid of each cluster (k)
becomes the new mean.

(b) Stages 2 and 3 repeat until the
algorithm converges.

Figure 3. K-Means update step (a) and loop (b).
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3.4. Watershed Algorithm

The watershed algorithm is mainly used for segmentation within an image, that is, for
separating objects in an image [91]. This approach is mainly used for separating two or more
overlapped objects due to the way it operates. Given a gray scale image, the watershed
technique consists of treating pixel values as a local topography map, the brighter the
pixel, the bigger its height. Once every pixel has a height value, the algorithm proceeds
by simulating flooding, starting at the basins (lower points) and stopping once the lines
that run along the tops of ridges are found [92]. From this point on, an estimated distance
between the middle-points of both objects is calculated and the objects are separated. The
distances between peaks are calculated using the two-dimensional Euclidean distance
formula. In the Euclidean plane, let point p have Cartesian coordinates (p1, p2) and let
point q have coordinates (q1, q2). Then, the distance between p and q is given by [93]:

d(p, q) =
√
(q1 − p1)2 + (q2 − p2)2 (3)

After the Euclidean distance between peaks is computed, the distance map can be
worked upon to find the local maxima of the image. It is possible to set a minimum distance
to consider between each peak, as this is important when processing images with very
densely packed objects. Upon finding all peaks, most watershed implementations resort
to an eight-way connected component analysis for finding objects defined by connected
pixels. Figure 4 demonstrates how a typical watershed algorithm operates in three steps.

(a) (b) (c)

Figure 4. Watershed algorithm functionality in three steps. (a) overlapping objects; (b) distances;
(c) segmented objects.

3.5. Connected Component Analysis

In addition, referred to as Connected Component Labelling, CCA is an algorithmic ap-
plication of graph theory that focuses on subsets comprised of connected pixels. It is widely
used in computer vision to detect connected regions in binary digital images. It operates
upon image information, constructing a graph containing vertices and connected edges. A
typical CCA algorithm traverses the graph, labelling vertices based on their connectivity
with surrounding neighbours. Graphs are usually 4-connected (Figure 5a) or 8-connected
(Figure 5b) [94]. Four-connected pixels are neighbours to every pixel that touches one of
their edges, either horizontally or vertically. Coordinately, every pixel containing coordi-
nates (x± 1, y) or (x, y± 1) is connected to the pixel at (x, y). Eight-connected pixels are
neighbours to every pixel that touches one of their edges or corners, vertically, horizontally
or diagonally. Apart from 4-connected pixels, any pixel with coordinates (x± 1, y± 1) is
connected to the pixel at (x, y).
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(a) (b)

Figure 5. CCA with 4-way and 8-way connectivity. (a) 4-way connectivity; (b) 8-way connectivity.

3.6. Contour Detection

Contour Detection is an application of edge detection for outlining thresholded images
by detecting color changes and marking them as contours. Contour detection is widely
used in motion detection systems or segmentation mechanisms. A typical contour detection
algorithm reads an input image in gray-scale format before applying a threshold method,
converting the image to pure black and white. Finding contours involves comparing pixels
with their neighbours and detection any color changes. Because every pixel is either black
(0) or white (255), the difference is easily noticeable. Contour locations are recorded and
drawn over the original RGB image. This technique can be useful not only for highlighting
objects in an image (Figure 6), where an obvious difference in pixel intensity is tagged as a
contour, but it can also be exceptionally functional when highlighting text (Figure 7), since
fonts are usually properly spaced out and allow for easy detection. The following examples
were produced with the same extreme outer contour mechanism used in the proposed
approach and described in the opencv documentation [82].

Figure 6. Contour detection in objects.

Figure 7. Contour detection in text.
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4. Results

This section describes the experimental results when processing a portion of the
dataset mentioned in Section 4.1. Although the used dataset is not publicly available as a
whole, it is entirely comprised of public images and can be reproduced. Overall, the system
we presented correctly separates recognizable shapes and objects in most given images. For
evaluation and testing purposes, we input images of variable visual complexity into the
system. Table 1 shows the average processing times needed for extracting regions out of the
datasets images using the proposed system. This algorithm execution was performed on a
remote machine offered by Google Colab’s services, running Python 3.6.9 and containing a
Tesla K80 graphics card paired with 12 GB of RAM.

Table 1. Average algorithm execution time.

Dataset Sample Size Elapsed Time

National jurisdiction trademark images
19,102 2865 s

1 0.1538 s

International jurisdiction trademark images
45,690 6542 s

1 0.1542 s

During the following experiments, textual features found in images are usually dis-
regarded completely by the algorithm. This occurs during the watershed step, as the
minimum distance defined to be considered between each local maxima tends to be higher
than the character spacing used in most fonts that are not heavily stylized or large in
size. Most text found in images does not provide relevant information unless semantically
analysed, so this does not constitute a fault in the algorithm.

4.1. Dataset

The aforementioned system was tested on two datasets comprised of images of vari-
able size, content and complexity, representing trademark images. Trademark images are
aggregated in sets corresponding to different jurisdictions, namely international, national
and regional, which together constitute the totality of trademark images registered in the
world. The images used belong to two datasets of different scopes, one corresponding to a
national jurisdiction and the other to an international jurisdiction. The morphologies of the
two datasets are considerably different, the first corresponding to more complex images
with more textual elements, mostly in one language (Portuguese) and the second dataset
containing simpler images, with faster visual identification, with fewer textual elements and
a large diversity of languages. Dataset 1 is comprised of 19,102 images of varied jurisdic-
tions and dataset 2 contains 45,690 images registered solely on the Portuguese jurisdiction.

4.2. Experimental Results

Next, the results obtained for a set of images from the two previously mentioned
datasets are presented and analysed. For each input image, the output images of the main
blocks of the proposed approach are presented.

4.2.1. Experiment A

Experiment A consists of the benchmark test carried out for system performance
evaluation. Initially, the input image (Figure 8a) was simplified through the use of K-Means
clustering with k = 2, resulting in a binary (though not black and white) image. With the
K-Means labels used as reference for the watershed and CCA techniques, and considering
the minimum distance between the edges of objects d = 30, each distinct region is processed
and tagged for the contour detection algorithm to identify and extract. In this scenario,
both major regions of the input image were correctly extracted, although a separation
between the upper two objects in output Figure 9a would be ideal. We believe that the
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small artifact in the bottom-right corner of the original image was not properly labelled
during the watershed function and therefore was lost in the contour drawing process.

(a) Input A (b) k = 2 clustering

Figure 8. (a) Experiment A input; (b) Experiment A K-Means clustering (k = 2).

(a) (b)

Figure 9. Experiment A extracted regions (a) First extracted region; (b) Second extracted region.

4.2.2. Experiment B

Experiment B, with the input image presented in Figure 10a aims to represent the usage
of this system for removing unnecessary visual elements from images, such as text, frames
and complementary visual components. In image segmentation implementations, text is
often regarded as noise due to the little information it provides as an object. Figure 11a
displays the Watershed function’s ability to separate overlapping objects, the underlying
frame shape receives a label different to that of the object in front and, as such, CCA and
Contour Detection successfully extract the more meaningful object. Since the distance
between the letters is less than 30, taken as a minimum distance between the edges of
objects d = 30 is possible to disregard the text present in the image. This value of d also
allows not extracting the image frame, which is a meaningless object given the purpose of
the developed system.

(a) Input B (b) k = 2 clustering

Figure 10. (a) Experiment B input; (b) Experiment B K-Means clustering (k = 2).
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(a) (b)

Figure 11. Experiment B extracted regions (a) Object A; (b) Object B.

4.2.3. Experiment C

Experiment C also displays the object isolating capabilities of the system. Figure 12a
contains a single main object and other minor, surrounding visual elements. By setting the
adequate minimum distance to consider between objects (d = 30), the watershed function
effectively removes unnecessary artifacts such as vertical lines and text because they usually
are either grouped together (text), meaning the distance between each component is very
low, or are simply not dense enough to constitute a meaningful object (lines). In this case, a
higher minimum distance (d = 20) has been defined and the algorithm correctly separates
a single region from the image.

(a) Input C (b) k = 2 clustering (c) Object

Figure 12. (a) Experiment C input; (b) Experiment C K-Means clustering (k = 2); (c) Experiment C
extracted region.

4.2.4. Experiment D

Experiment D aims to represent the noise removal capabilities of the techniques
utilized. The input image (Figure 13a) contains noise that could not be completely removed
during the clustering phase (Figure 13b). However, consider that only objects formed by
grouped up pixels (Connected Component Analysis) deal with most of the static found
around the central object, while watershedding with proper distance values eliminates
other features such as text and meaningless objects.

(a) Input D (b) k = 2 clustering (c) Object

Figure 13. (a) Experiment D input; (b) Experiment D K-Means clustering (k = 2); (c) Experiment D
extracted region.
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4.2.5. Experiment E

The current experiment aims to demonstrate the algorithm functionality in a more
visually dense environment. The two objects we aim to extract from the image in Figure 14a
are in front of a colored background and there are stylized font elements that can create
a difficult extraction scenario. By tweaking the watershed distance value between local
maxima (d = 25), we managed to obtain a clean detection and extraction of both animals in
outputs Figure 15a,b. In this scenario, we observe the K-Means function’s use of simpli-
fying image information, where the yellow object behind the two significant objects was
merged into the background and therefore eliminated, allowing for easier background and
foreground labelling.

(a) Input E (b) k = 2 clustering

Figure 14. (a) Experiment E input; (b) Experiment E K-Means clustering (k = 2).

(a) (b)

Figure 15. Experiment E extracted regions (a) Region A; (b) Region B.

4.2.6. Experiment F

We chose contender image Figure 16a as a relevant test due to the visual complexity
of the object we wish to extract. There are many tree branches with underlying elements
which can cause unsatisfactory extraction if not properly identified, such as an incomplete
tree or background elements bleeding onto the proposed region.

(a) Input F (b) k = 2 clustering (c) Object

Figure 16. (a) Experiment F input; (b) Experiment F K-Means clustering (k = 2); (c) Experiment F
extracted region for d = 25.
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The result is satisfactory, with detailed branches and a degree of elimination for
smaller objects (leaves). However, as expected, the character “M” was carried over to the
extracted object.

4.2.7. Experiment G

Lastly, Figure 17a presents an image with a big number of distinct, well-separated
regions of variable sizes and evaluated how the system performs in identifying them. We
expect each individual bird to be proposed as an individual region with no text elements in
the outputs. The results presented in Figure 18 show good accuracy in capturing most birds,
but due to connected component labelling, one of the outputs is attached with the letter ‘e’.
This unfortunately could not be solved by adjusting watershed distances or increasing the
number of clusters, and as such, the difficulty associated with images containing attached
visual elements requires some refinement.

(a) Input G (b) k = 2 clustering

Figure 17. (a) Experiment G input; (b) Experiment G K-Means clustering (k = 2).

Figure 18. Experiment G extracted regions for d = 25.
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4.3. System Variables Sensitivity

Sensitivity analyses involve varying system inputs to assess the individual impacts
of each variable on the output and ultimately provide information regarding the different
effects of each tested variable. The developed system has an RGB image as input, producing
from 1 to p outputs, depending on the number of objects extracted from the processed
image. The system variables are the number of clusters in the K-Means algorithm (k) and
the minimum distance to consider between the edges of objects (d). The threshold value is
not considered a system variable since the value remains fixed to T = 225, as previously
stated. To evaluate system variables sensitivity, a set of experiments were performed on
several input images using different values for the variables k and d.

For images where the objects are inherently separated from each other, it is verified
that the system performs as expected, extracting the same objects for different values of
k, with k ≥ 2, which show its stability for different considered clusters. In the presence of
overlapping objects, the value of k must be greater than 2, allowing complete extraction of
objects at the top level. From the results obtained, it is possible to verify that, also in these
cases, the system remains stable for different values of k, with k ≥ 3.

Regarding the variable d, it can be seen that, as its value increases, less separate objects
are extracted. Although this represents that the system is sensitive to the d variable, this
is intended, giving the user more freedom for adjusting the system to extract the most
relevant objects. In the proposed approach, and taking into account the objective for which
it is intended, the value of d that is considered adequate is the one that allows only the
extractions of relevant graphic objects, disregarding non relevant information, such as text.

Figure 19 shows the segmented images resulting from K-Means clustering of the input
image Figure 19a for k ∈ {2, 3, 4, 5}. Since the image is formed only by a graphic object,
its segmentation from the background is correctly performed by the K-Means algorithm,
performed with k = 2.

(a) (b) (c) (d) (e)

Figure 19. (a) Input image; (b) k = 2 clustering; (c) k = 3 clustering; (d) k = 4 clustering; (e) k = 5
clustering.

Figure 20 shows, for each value of k, the extracted regions from the input image
Figure 19a, for different values of d. From the results, it is possible to see that, for
k ∈ {2, 3, 4}, the proposed approach achieves a good performance for d ≥ 30. For these
values of k, when d = 25, more than one object is extracted, which is a consequence of the
minimum distance between possible objects being greater than this value. When this hap-
pens, the Watershed algorithm considers different objects whenever the distance between
two possible different objects exceeds d = 25. For k ≥ 5, the proposed approach provided
extra details in the proposed regions opposed to K ≤ 4, where objects are mostly comprised
of flat textures depicting their overall shape. This is due to the fact that the value of k has a
direct impact on the connected component analysis function effectiveness. A lower value
for k means the overall image has larger color blobs, which usually translates into more
generalized connected regions, lacking detail and often representing the overall shape of
the objects.
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Figure 21 shows the segmented images resulting from K-Means clustering of the
input image Figure 21a for k ∈ {2, 3, 4}. In this image, the graphic objects representing the
continents are superimposed on the graphic representation of the oceans. The application of
the K-Means algorithm with k = 2 only allows the segmentation of the circle that represents
the shape of the planet Earth and the tree that emerges from its upper portion. When the
K-Means algorithm with K ≥ 3 is applied to the image, it is possible to segment the regions
corresponding to the continents, thus enabling their extraction.

k = 2
(a) (b) (c) (d) (e)

k = 3
(a) (b) (c) (d) (e)

k = 4
(a) (b) (c) (d)

k = 5
(b) (c) (d)

Figure 20. Extracted regions for different values of d (a) d = 25; (b) d = 30; (c) d = 40; (d) d = 45;
(e) d = 50.

(a) (b) (c) (d)

Figure 21. (a) Input image; (b) k = 2 clustering; (c) k = 3 clustering; (d) k = 4 clustering.

Figure 22 shows, for k = 2, the extracted regions from the input image Figure 21a, for
different values of d.
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(a) (b) (c)

Figure 22. Extracted regions for k = 2 and different values of d (a) d = 25; (b) d = 40; (c) d = 50.

Figures 23–25 show, for k ∈ {3, 4}, the extracted regions from the input Figure 21a, for
different values of d.

(a)

(b)

Figure 23. Extracted regions for d = 20 and different values of k (a) k = 3; (b) k = 4.

(a)

(b)

(c)

Figure 24. Extracted regions for different values of k and d (a) k = 3 and d = 30; (b) k = 3 and d = 40;
(c) k = 4 and d = 30.

(a) (b)

Figure 25. Extracted regions for d = 50 and different values of k (a) k = 3; (b) k = 4.

From the results, it is possible to see that, for k = 2, the extracted regions are the
same for all the tested values of d. When k ≥ 3, and given the proximity of different
regions, greater values of d result in the extraction of bigger regions. These results show
the sensibility of the developed approach to the variable d, allowing an adjustment of the
system regarding the details of the regions to be extracted.
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5. Comparison of the Proposed Solution with Other Approaches

Although the proposed approach aims to extract regions of interest, more specifically
relevant objects, in graphic images, its performance was evaluated by comparing its results
in natural images. Natural images depict real life objects and subjects, usually presenting
textures, smooth angles, larger, but less saturated, variety of colors [95,96], not being
common to find regions of constant color. Pixel to pixel color transitions have different
models in natural and synthetic images. Despite these differences, it is possible to verify
that the proposed approach presents better results when compared to some algorithms
proposed by other authors.

5.1. Comparison with Colour-Texture Segmentation Algorithms

Over the years, several algorithms have been proposed in the area of image segmenta-
tion. In order to evaluate the performance and highlight the contribution of the proposed
approach in the image segmentation field, side-by-side comparisons are presented between
the results returned by the proposed system and the results returned by some algorithms
proposed by other authors. To perform this comparison, we took as reference the work
presented by Ilea et al. [97], where an evaluation and categorization of the most relevant
algorithms for image segmentation are done based on the integration of colour–texture
descriptors.

Table 2 identifies and briefly describes the algorithms considered in the comparison.

Table 2. Approaches proposed by other authors with which the results obtained by the proposed
approach were compared.

Colour-Texture Segmentation Algorithm Summary

Hoang et al. [98]

The colour and texture information is included in the segmentation process. The RGB image is converted into a
Gaussian colour model. Primary colour–texture features are extracted from each colour channel using a set of Gabor
filters. Feature vectors, whose dimensionality is reduced by applying Principal Component Analysis, and used as
inputs for a K-Means algorithm, providing initial segmentation that is refined by a region-merging procedure.

JSEG-Deng and Manjunath [99]

Consisting of two independent steps: color quantization and spatial segmentation. In the first step, image colors are
quantized in different classes, which are used to create an image class map. The image segmentation results from
the application of a region growing method to the set of multiscale images, formed through the application of the
class map based segmentation evaluation criterion.

CTM-Yang et al. [100]

Colour–texture features at pixel level are extracted simultaneously by stacking the intensity values within a 7x7
window for each band of the CIE Lab converted image. Segmentation is formulated as a data clustering process. To
reduce the dimensionality of the colour–texture vectors, Principal Component Analysis is used. To overcome the
difficulty related to the fact that often the colour–texture information cannot be described with normal distributions,
a coding-based clustering algorithm is employed that is able to accommodate input data defined by degenerate
Gaussian mixtures.

Chen et al. [101]

Segmentation of natural images into perceptually distinct regions with application to content-based image retrieval.
Local colour features are extracted using a spatially Adaptive Clustering Algorithm. Texture features are computed
through a multi-scale frequency decomposition procedure. Colour and texture features are integrated using a region
growing algorithm that generates a primary segmentation that is improved through a post-processing step that
implements a border refinement procedure.

Han et al. [102]

A segmentation framework developed to identify the foreground object in natural colour images. Colour features
are extracted from the CIE Lab converted colour image. Texture features are computed from the luminance
component of the input image using the multi-scale nonlinear structure tensor. To reduce the dimensionality of the
colour–texture feature space, the colour information is clustered using a binary tree quantisation procedure and the
features in the texture domain are clustered using a K-Means algorithm. The resulting colour and texture features
are modelled by Gaussian Mixture Models and integrated into a framework based on the GrabCut algorithm. The
accuracy of the algorithm is improved by an adaptive feature integration strategy that consists of adjusting a
weighting factor for colour and texture in the segmentation process.

GrabCut-Rother et al. [103]
A graph-cut approach extension, with a simpler user interaction and an iterative version of the optimization
method. An algorithm for “border matting” is used to estimate simultaneously the alpha-matte around an object
boundary and the colours of foreground pixels.

Blobworld-Carson et al. [104]

The goal of the proposal is to partition the input image in perceptual coherent regions. It includes an isotropy,
polarity and contrast features in a multi-scale texture model. Colour features are extracted on an independent
channel from the CIE Lab converted image previously filtered with a Gaussian operator. For automatic
colour–texture image segmentation, the distribution of the colour, texture and position features are jointly modeled
using Gaussian Mixture Models. The Blobworld algorithm is able to segment the image into compact regions, being
suitable to integrate a content-based image retrieval system.
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Table 2. Cont.

Colour-Texture Segmentation Algorithm Summary

CTex-Ilea and Whelan [105]

Colour and texture are treated on separate channels. Colour segmentation involves the statistical analysis of data
using multi-space colour representations. After filtering the input data using a Gradient-Boosted Forward and
Backward anisotropic diffusion algorithm, the colour segmentation algorithm extracts the dominant colours and
identifies the optimal number of clusters using an unsupervised procedure based on a Self Organising Map network.
After, the image is analysed in a complementary colour space where the number of clusters previously calculated
performs the synchronisation between the two computational streams of the algorithm. Finally, clustered results
obtained for each colour space form the input for a multi-space clustering process that outputs the final colour
segmented image. The extraction of the texture features from the luminance component of the original image uses a
multi-channel texture decomposition technique based on Gabor filters. The colour and texture features are
integrated in an Adaptive Spatial K-Means framework that partitions the data mapped into the colour-texture space
by adaptively sampling the local texture continuity and the local colour smoothness in the image.

Malik et al. [69]

An algorithm for partitioning grayscale images into disjoint regions of coherent brightness and texture, where cues
of colors and texture differences of natural images are exploited simultaneously. Contours are treated in the
intervening contour framework, while texture is analysed using textons. Given the different domain of applicability
of each cue, a gating operator is introduced based on the texturedness of the neighbourhood at a pixel. Given a local
measure of the similarity between nearby pixels, the spectral graph theoretic framework of normalized cuts is used
to find partitions of the image in regions of coherent texture and brightness.

Figure 26 shows the results obtained by the proposed approach and by the algorithms
proposed by Ilea and Whelan [105], Hoang et al. [98], and Yang et al. [100].

(a) (b) (c) (d)

(e) (f)

Figure 26. Results obtained using (a) Ilea and Whelan [105] algorithm; (b) Hoang et al. [98] algo-
rithm [105]; (c) Yang et al. [100] algorithm when γ = 0.1; (d) Yang et al. [100] algorithm when γ = 0.2;
(e,f) the proposed approach. Images (a–d) referenced from Ilea and Whelan [105].

When compared with the algorithms of Hoang et al. [98] and Yang et al. [100], it can
be verified that the proposed approach presents a more accurate segmentation of the objects
in the image. Regarding the algorithm of Ilea and Whelan [105], despite the segmentation
accuracy being very similar, the approach we propose has the advantage of being able to
separate the two objects of interest present in the image.

Figures 27 and 28 shows the results obtained by the proposed approach and by the
algorithms proposed by Deng and Manjunath [99], Chen et al. [101], Han et al. [102] and
Rother et al. [103].
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(a) (b) (c) (d)

Figure 27. Results obtained using the algorithms proposed by (a) Deng and Manjunath [99]; (b) Chen
et al. [101]; (c) Han et al. [102]; (d) Rother et al. [103]. Images referenced from Ilea and Whelan [105].

Figure 28. Objects extracted by the proposed approach.

With the analysis of the results presented in Figures 27 and 28, we can observe that
the proposed approach is more accurate than those proposed by the authors Deng and
Manjunath [99], Chen et al. [101], Han et al. [102] and Rother et al. [103], extracting in a
more complete way the object of interest present in the image.

Figure 29 shows the results obtained by the proposed approach and by the algorithm
proposed by Carson et al. [104].

(a) (b) (c)

Figure 29. (a) Original image; (b) results obtained using the algorithm proposed by Carson et al. [104];
(c) results obtained using the algorithm proposed by the proposed approach. Images (a,b) referenced
from Ilea and Whelan [105]

Unlike the algorithm proposed by Carson et al. [104], the approach we propose has
the ability to segment the tiger in the image, separating its tail from its body, thus achieving
a more accurate result.

Figure 30 shows the results obtained by the proposed approach and by the algorithm
proposed by Malik et al. [69].
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(a) (b) (c) (d)

Figure 30. Results obtained using (a) the algorithm proposed by Malik et al. [69]; (b) the proposed
approach; (c) the algorithm proposed by Malik et al. [69]; (d) the proposed approach. Images
(a,c) referenced from Malik et al. [69].

Finally, and when compared with the algorithm proposed by Malik et al. [69], it
is possible to verify once again that the approach we propose is capable of performing
the segmentation of regions of interest in a more accurate way. Note its accuracy in the
segmentation of the image of the Sunflowers painting, where it is possible to differentiate
the flowers from their stems.

5.2. Comparison with Deep Learning Approaches

When compared to a deep learning mechanism (object classification and detection),
the approach proposed in this work presents the following main differences:

• Typical deep learning approaches require exhaustive training phases so that the model
can correctly identify objects in an image. The results produced by the proposed sys-
tem are achieved with only image processing techniques and require no training data.

• Deep Learning mechanisms are usually very limited regarding what they can identify
in images, typically being capable of correctly identifying a small number of very
general classes.

• Deep Learning mechanisms work much better with natural images and are mostly
unbeatably accurate in real-life datasets. Building and training a network for graphical
images (trademark images) requires a huge amount of data and would most likely
never be as accurate as necessary, given the extreme variety of color composition,
graphical styles, calligraphy and typography used in images.

• The system proposed in this work can be manually adjusted to each image’s complex-
ity and graphical density, whereas deep learning models would require significant
amounts of fine-tuning and retraining to achieve the same level of versatility.

• Unlabeled Detection: The proposed system is not prepared to identify a series of
predetermined objects in images. Regions are proposed with regard to pixel blobs and
distance measuring, meaning it is practically unlimited in regard to what it can extract.

6. Conclusions and Future Work

The main goal of this work was to develop an image region extraction system capable
of overcoming the difficulties associated with having a highly diversified dataset of trade-
mark graphic images. The proposed system consists of a multistage algorithm that takes
an RGB image as input and produces multiple outputs, corresponding to the extracted
regions. The proposed approach has a linear complexity, presenting runtimes compatible
with real-time applications. The experiments performed investigated several different
image segmentation techniques, including K-Means Clustering, watershed segmentation
and connected component analysis to achieve the best possible results. The results obtained
show adequate features of region extraction when processing graphic images from the test
datasets, where the system correctly distinguishes the most relevant visual elements from
the images with minimal adjustments, disregarding irrelevant information such as text.
Notwithstanding other hybrid approaches that make use of one or more of the algorithms
that integrate this system have been proposed, such proposals are not adequate in the
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context in which this work is inserted, as they do not allow the extraction of only the
graphical objects considered relevant, disregarding irrelevant objects, such as the text. By
comparing the results obtained by applying the proposed approach to natural images, with
those presented by other authors, it is possible to verify that the developed system performs
the segmentation of regions of interest of an image in a more accurate way. Although the
main scope of the work presented is to integrate the proposed system in a series of image
comparison systems, we aim to develop a model matching system that can identify the
objects extracted by this approach in other images, as well as a review of image comparison
metrics as a means of obtaining results comparable to those of graphical search engines.
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