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Abstract: Early Parkinson’s Disease (PD) diagnosis is a critical challenge in the treatment process.
Meeting this challenge allows appropriate planning for patients. However, Scan Without Evidence of
Dopaminergic Deficit (SWEDD) is a heterogeneous group of PD patients and Healthy Controls (HC)
in clinical and imaging features. The application of diagnostic tools based on Machine Learning (ML)
comes into play here as they are capable of distinguishing between HC subjects and PD patients within
an SWEDD group. In the present study, three ML algorithms were used to separate PD patients from
HC within an SWEDD group. Data of 548 subjects were firstly analyzed by Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA) techniques. Using the best reduction
technique result, we built the following clustering models: Density-Based Spatial (DBSCAN), K-
means and Hierarchical Clustering. According to our findings, LDA performs better than PCA;
therefore, LDA was used as input for the clustering models. The different models’ performances were
assessed by comparing the clustering algorithms outcomes with the ground truth after a follow-up.
Hierarchical Clustering surpassed DBSCAN and K-means algorithms by 64%, 78.13% and 38.89% in
terms of accuracy, sensitivity and specificity. The proposed method demonstrated the suitability of
ML models to distinguish PD patients from HC subjects within an SWEDD group.

Keywords: Machine Learning; SPECT imaging; Parkinson’s Disease; SWEDD; clustering algorithms

1. Introduction

PD is a progressive, irreversible and complicated brain disorder characterized by a
combination of both motor and nonmotor symptoms, including tremor, rigidity, bradykine-
sia, postural instability, depression, sleep disturbances and olfactory issues [1,2]. One of
the most common causes of this disease is the gradual neurodegeneration of dopaminergic
neurons of the substantia nigra, which results in a diminution in the dopamine in the
striatum and destruction of dopamine transporters (DaT) [3,4]. As the dopamine continues
to decline, the disease progresses, while a significant change is taking place in the striatum’s
shape [4]. By the time that PD signs become clinically detectable, the dopaminergic neurons
are damaged. Indeed, PD progression starts before symptoms are clinically detected.

At present, there is no cure for PD and no way to restore neurons once they are de-
stroyed, because the reason for the dopamine neurons’ death is still mysterious. However,
with the help of certain drugs, the symptoms of this disorder can be controlled and the
patient can continue his normal life with no further degradation of dopamine neurons [5].
At this stage, it is important to make an early and accurate diagnosis and identification
of this disease to initiate neuroprotective therapies. However, early and accurate clinical
diagnoses are complicated because they are only possible at a late stage when symptoms
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are obvious enough. Thus, the introduction of Single-Photon Emission Computed Tomog-
raphy (SPECT) neuroimaging modality in PD diagnosis has improved the accuracy rate of
predicting early PD disease. SPECT with 123I-Ioflupane (DaTSCAN) shows that there is a
significant depletion of DaT in PD patients, even at an early stage. Indeed, 123I-Ioflupane is
a popular radiotracer used for PD which has a high binding affinity for DAT. Consequently,
DaTSCAN is a suitable diagnostic tool for early PD patients whose interpretation is visually
carried out by experts [6]. Nevertheless, some patients are clinically diagnosed as having
PD but have a normal imaging, a phenomenon termed as SWEDD [7,8]. After the follow-up
period of SWEDD, some subjects of this group develop PD while others do not (Healthy
Control (HC)) [7,8]. Consequently, early clinical PD, SWEDD and HC groups are mild
and overlap. Thus, the separation of early PD patients and HC subject from the SWEDD
group has become debatable, because early PD needs different strategies for therapeutic
intervention. In recent years, a semi-quantification technique has been used in clinical prac-
tice to enhance visual reporting and interobserver variability by providing SBR values [9].
These values give neutral measures of dopaminergic function. However, the striatal uptake
shape information and particular pattern are not reflected in the SBR results, which leads
to a wrong early PD diagnosis. Hence, the semi-quantification technique, which is based
only on imaging information, is a relatively limited tool for analyzing SPECT images. The
limitations of this technique are resolved through the development of Computer-Aided
Diagnosis and Detection (CADD) systems based on Machine Learning (ML) methods that
receive several input features (clinical scores and SPECT imaging information). Thus,
CADD systems have become popular with results surpassing standard benchmarks [10–15].
As in various medical applications, CADD systems are extensively used for PD diagnosis,
often with effective findings [16–19]. Therefore, a number of ML algorithms were evaluated
in order to find a useful and automated approach for early PD identification [17–20].

1.1. Related Works

In the literature, many studies applied ML algorithms to automate PD diagnosis. Most
of them focused on using the SVM method and PPMI dataset in their research [21–27].
Indeed, these approaches outperformed conventional (visual interpretation and semi-
quantification technique) data analysis tools. For instance, Diego et al. [21] performed
an Ensemble Classification model that combines SVM with linear kernel to differentiate
between PD patients and HC subjects. The dataset obtained from the PPMI consists
of 388 subjects (194 HC subjects, 168 PD patients and 26 SWEDD subjects). PD and
SWEDD subjects were both labeled as the PD group. Morphological features extracted from
DaTSCAN images with biomedical tests were split into training and test sets. The proposed
method’s performance was evaluated using the Leave-One-Out (LOO) Cross-Validation
(CV) method and reached a high accuracy rate of 96%. Nicolas Nicastro et al. [24] applied
the SVM method to identify PD patients from other parkinsonian syndromes and HC
subjects using semi-quantitative 123-FP-CIT SPECT uptake values. Striatal Volumes-Of-
Interest (VOIs) uptake, VOIs asymmetry indices and the caudate/putamen ratio were used
as input for the proposed method. The latter was evaluated for 578 samples divided into
280 PD patients, 90 with other parkinsonian syndromes and 208 HC subjects (parkinsonian
syndrome patients and HC subjects were considered to be in the same group) obtained
from a local database. It achieved an accuracy rate of 58.4%, sensitivity of 45%, specificity
of 69.9% and AUC of 60% using the five-fold CV technique. Additionally, Yang et al. [22]
developed a two-layer stacking ensemble framework to classify PD patients and HC
subjects. The data used in this study consisted of 101 subjects divided into 65 PD patients
and 36 HC subjects, as obtained from PPMI dataset. The proposed method combined
multimodel neuroimaging features composed of MRI and DTI with clinical evaluation. The
formed multimodel feature set was the input for the first layer, which consists of SVM,
Random Forests, K-nearest Neighbors and Artificial Neural Network. In the second layer,
the Logistic Regression algorithm was trained based on the output of the first layer. The
proposed method was evaluated using a ten-fold CV method and achieved an accuracy
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of 96.88%. Dotinga et al. [23] presented linear SVM to identify PD patients from non-PD
patients. This approach was developed using eight striatal I-123 FP-CIT SPECT uptake
ratios, age and gender as input features. These inputs of 210 subjects were split into three
sets, which were training (90), validation (80) and testing (40). The proposed method
performance was evaluated using the ten-fold CV technique and achieved an accuracy of
95%, a sensitivity of 69% and a specificity of 93.3%. Lavanya Madhuri Bollipo et al. [25]
applied incremental SVM with the Modified Frank Wolfe algorithm (SVM-MEW) for early
PD diagnosis and prediction using data from the PPMI dataset. The latter contained
600 samples, out of which 405 were early PD subjects and 195 were HC subjects divided
into training and testing sets. Each sample was composed of 11 features of clinical scores,
SBRs values and demographic information. The model’s optimal hyperparameters were
obtained through 10-fold grid CV. The proposed method was used with several kernels:
linear, polynomial, sigmoid, RBF and logistic functions. It was evaluated using the LOO-CV
technique and reached an accuracy of 98.3%. Lavanya Madhuri Bollipo et al. [26] presented
an optimized Support Vector Regression (SVR) algorithm to diagnose early PD and predict
its progression. This algorithm was trained with weights associated with each of the
sample datasets by giving 12 sets of features (motor, cognitive symptom scores and SBR).
The dataset consisted of 634 subjects, out of which 421 were early PD and were 213 HC
subjects, taken from the PPMI dataset. It was normalized for balancing the influence of
each feature and divided into training and testing sets. The proposed method was used
with linear, 4th order polynomial, sigmoid, Radial Basis Function (RBF) and logistic kernels.
SVR with RBF kernel achieved the best accuracy of 96.73% in comparison with the other
kernel functions. Diego Castillo-Barnes et al. [27] assessed the potential of morphological
features computed from 123I-FP-CIT SPECT brain images to distinguish PD patients from
HC subjects. A dataset of 386 samples obtained from the PPMI database and divided into
193 HC subjects and 193 PD subjects was used in this study. The optimal morphological
features were selected using Mann–Whitney–Wilcoxon U-Test, and then classified through
SVM, Naive Bayesian and Multilayer Perceptron (MLP) algorithms. The proposed method
was evaluated using the ten-fold CV technique and achieved an accuracy of 97.04%.

These research works found that ML techniques have good potential for classification
and help to improve the accuracy of PD diagnosis [21–27]. Classification methods, datasets
and performance metrics of the related works are summarized in Table 1. However, the
common issue in neuroimaging research is the high dimensionality of data. The feature
reduction method is one of the most effective ways to solve this issue. It selects a relatively
small number of the most representative, informative, relevant and discriminative subsets
of features to construct reliable ML models. In addition, most of these studies focused on
using the SVM method. Nevertheless, the latter is not suitable for large databases. It does
not perform well when the classes in the database overlap. Moreover, in cases where the
number of features for each data point exceeds the number of training data samples, the
SVM underperforms.

1.2. Contributions

Motivated by the recent works that distinguish PD patients from HC subjects, and
since the PD, SWEDD and HC groups overlap, we propose an unsupervised classification
approach to differentiate between HC subjects and PD subjects within SWEDD groups,
which is a more difficult task compared with previous studies. The proposed method
is based on ML clustering models (DBSCAN, K-means and Hierarchical Clustering) and
feature reduction methods (PCA and LDA). It will help medical practitioners in determining
early PD diagnoses.
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Table 1. Summary of existing classification approaches for PD diagnosis.

Authors Objectives Sample Size Features Methods Accuracy

Diego et al. (2018) [21]
Classify PD

patients and HC
subjects

388 subjects
obtained from
PPMI database

Morphological
features extracted
from DaTSCAN

images with
biomedical tests

SVM classifier with
LOO-CV method 96%

Nicolas Nicastro et al.
(2019) [24]

Distinguish PD
patients from other

parkinsonian
syndromes and

HC subjects

578 subjects (local
database)

Semi-quantitative
123-FP-CIT SPECT

uptake values

SVM with five-fold
CV method 58.4%

Yang et al. (2020) [22]
Classify PD

patients and HC
subjects

101 subjects taken
from PPMI dataset

Multimodel
neuroimaging

features composed
of MRI and DTI

with clinical
evaluation

SVM, Random
Forests, K-nearest

Neighbors,
Artificial Neural

Network and
Logistic Regression
with ten-fold CV

method

96.88%

Dotinga et al. (2021) [23]
Distinguish PD
patients from

non-PD subjects
210 subjects

SBR values
computed from

I-123 FP-CIT
SPECT, age and

gender

SVM with ten-fold
CV method 95%

Lavanya Madhuri
Bollipo et al. (2021) [25]

Classify early PD
patients and HC

subjects

600 subjects
obtained from
PPMI dataset

Clinical scores,
SBRs values and

demographic
information

Incremental SVM
with LOO-CV

method
98.3%

Lavanya Madhuri
Bollipo et al. (2021) [26]

Distinguish early
PD patients from

HC subjects

634 subjects taken
from PPMI dataset

Motor, cognitive
symptom scores
and SBR values
computed from

DaTSCAN

SVR 96.73%

Diego Castillo-Barnes
et al. (2021) [27]

Distinguish PD
patients from HC

subjects

386 samples
selected from

PPMI database

Morphological
features computed
from 123I-FP-CIT

SPECT

SVM, Naive
Bayesian and MLP
with ten-fold CV

method

97.04%

The key contributions and objectives of the proposed study are summarized as follows:

1. A diagnostic tool based on ML methods is proposed to improve the performance of
early PD diagnosis within SWEDD groups, as the regular SWEDD subjects are likely
to have PD at follow-up;

2. The PPMI dataset was used as an input (548 samples with nine features) for the
proposed method, as it is a large database that includes healthy and unhealthy subjects
from different locations, which adds diversity in the dataset and makes the proposed
method robust. Those heterogeneous features are divided into four features derived
from DaTSCAN SPECT images (SBR values of left and right caudate and putamen),
and five scores were derived from computer clinical assessments (Unified Parkinson’s
Disease Rating Scale (UPDRS III), Montreal Cognitive Assessment (MoCA), University
of Pennsylvania Identification Test (UPSIT) State-Trait Anxiety Inventory (STAI) and
Geriatric Depression Scale (GDS));

3. The optimum features were chosen from the nine features of the three groups (PD, HC
and SWEDD) through PCA and LDA feature reduction algorithms to keep relevant
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information. This resulted in a reduction in the computational cost and improvement
of the proposed method’s performance;

4. Clustering assessments were used to distinguish PD patients from HC subjects within
SWEDD using DBSCAN, K-means and Hierarchical Clustering (the reduction technique
result of the SWEDD group was used as input for these ML clustering algorithms);

5. The proposed model was evaluated for accuracy, specificity, sensitivity and F1 score by
comparing clustering outcomes with the SWEDD ground truth (after follow-up, some
SWEDD subjects developed PD, whereas other subjects continued to have normal
dopaminergic imaging (HC)).

This research is organized as follows: Section 2 presents the proposed approach,
which includes dataset information, feature reduction methods (Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA)) and clustering methods (Density-
Based Spatial (DBSCAN), K-means and Hierarchical Clustering) as subsections. Section 3
describes the experimental results and findings. Section 4 provides the discussion, and
Section 5 presents conclusions and future enhancements that can be elaborated upon
beyond this work.

2. Materials and Methods

This section introduces the proposed method for identifying PD within an SWEDD
group. As a first step, the dataset containing nine clinical and imaging features of 548 sub-
jects was prepared. Then, the feature reduction techniques were performed to compute the
projection matrices. The latter project the data to lower dimensions and generate 2D-LDA
and 2D-PCA data vectors that identify primary symptoms. Following this, the feature
reduction result with the best performance was used to build clustering models (DBSCAN,
K-means and Hierarchical Clustering) to naturally self-organize the SWEDD samples into
two groups (HC and PD). The evaluation was performed by comparing clustering outcomes
with the ground truth (follow-up). Each step of the proposed method is explained in the
subsequent subsection. Figure 1 presents the structure diagram of the proposed method.

Figure 1. The structure diagram of the proposed method.

2.1. Dataset Description

Clinical and neuroimaging data sourced from the Parkinson’s Progression Markers
Initiative (PPMI) database (http://www.ppmi-info.org/ (accessed on 4 January 2022))
were used in developing this study. PPMI is a partnership of scientists, investigators and
researchers that are committed to assessing the evolution of clinical, imaging and biomarker

http://www.ppmi-info.org/
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data in PD patients. They are dedicated to building standardized protocols for acquisition
and analysis of the data [28].

This research work explored 548 subjects divided into three classes (341 PD patients,
156 HC subjects and 51 SWEDD subjects) with clinical and DaTSCAN SPECT imaging data.
SWEDD group was limited to 50 subjects who underwent 2-year follow-up scans. Each
subject had nine features divided into five clinical features and four DaTSCAN SPECT
imaging features. Information about each group is given in Table 2.

Table 2. Means of clinical and imaging features of subjects.

HC SWEDD PD

Number 156 51 341

SBR (Best Putamen) 2.26 2.17 0.97

SBR (Worst Putamen) 2.04 1.89 0.66

SBR (Best Caudate) 3.08 2.94 2.16

SBR (Worst Caudate) 2.85 2.72 1.79

UPDRS III 1.20 14 20.61

MoCA 28.20 27.16 26.59

UPSIT 34.03 31.37 22.12

STAI −0.24 0.04 0.09

GDS 5.15 5.71 5.26

2.1.1. SPECT Imaging Features: Striatal Binding Ratio (SBR)

The SPECT neuroimaging data were acquired after radiopharmaceutical injection
(123I-FP-CIT known as 123I-Ioflupane) with a target dose of 111–185 MBq. 123-Ioflupane
is a ligand that binds the dopamine transporters in the striatum (putamen and caudate)
structures [29,30]. PD patients are marked with smaller dopamine density in the striatum
region, as shown in Figure 2. Prior to the injection, subjects were pretreated with a stable
iodine solution to reduce the radiotracer uptake by the thyroid. Due to the various types
of SPECT scanning equipment at different centers, PPMI uses a standardized scanning
acquisition protocol. Image data were acquired in a 128 × 128 matrix. Then, these raw
projections were iteratively reconstructed and the attenuation was corrected. The final
preprocessed images were saved in DICOM format with dimensions of 91 × 109 × 91.
These images were spatially and intensity-normalized according to the protocol of Montreal
Neurologic Institute to ensure that any voxels in different images corresponded to the
same anatomical position across the brain. These registrations were carried out using
Statistical Parametric Mapping (SPM8) software for the spatial normalization and the
Integral Normalization algorithm for the intensity normalization. Automated Anatomical
Labeling (AAL) was used for the extraction of regional count densities in the left and right
putamen and caudate. The SBR values of these four regions were calculated for each image
with reference to the occipital cortex [28]. Data were organized as following: the best
putamen and caudate had the highest SBR values, and the worst putamen and caudate had
the lowest SBR values.

2.1.2. Clinical Features

Several clinical measurements were used to evaluate PD symptoms [31,32]. In this
work, we used the data from the following measurements:

• Unified Parkinson’s Disease Rating Scale (UPDRS III): covers the motor evaluation of
disability;

• Montreal Cognitive Assessment (MoCA): assesses different types of cognitive abilities;
• University of Pennsylvania Identification Test (UPSIT): determines an individual’s

olfactory ability;



J. Imaging 2022, 8, 97 7 of 16

• State-Trait Anxiety Inventory (STAI); diagnoses anxiety and distinguishes it from
depressive syndromes;

• Geriatric Depression Scale (short form, GDS): identifies depression symptoms.

Figure 2. DaTSCAN SPECT imaging of the dopaminergic system for HC, PD and SWEDD subjects.

2.2. Data Dimension Reduction: Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA) Techniques

Feature reduction is a process of linear or nonlinear transformation of the raw space
into a small subset of features [33–35]. This transformation diminishes the computational
complications of learning algorithms. Both PCA and LDA are linear feature reduction
techniques that are commonly used for dimensionality reduction. PCA is an unsupervised
dimensionality reduction process [34]. It projects the data to a newly generated system of
coordinates in such way that the highest variance by any projection of the data is on the
primary dimension, the second greatest variance on the secondary dimension and so on.
Contrary to PCA, LDA is a supervised dimensionality reduction method that projects a
dataset into a shorter subspace while retaining the class discriminatory information [35]. It
calculates the linear discriminants that denote the directions that maximize the separation
across several classes.

The steps involved in PCA and LDA dimensionality reduction techniques are repre-
sented by Algorithms 1 and 2, respectively [33–35].

Algorithm 1: PCA steps

1: Ignore the dataset (consists of d-dimensional sample) class labels.
2: Calculate the d-dimensional mean vectors: the mean for every dimension of the whole dataset.
The mean vector is computed by the following equation:

m = 1/n ∑n
k=1 xk (1)

3: Calculate the scatter matrix or the covariance matrix of the dataset. The mean vector is
computed by the following equation:

S = ∑n
k=1(xk −m) (xk −m)T (2)

4: Calculate the eigenvectors and corresponding eigenvalues of the covariance matrix.
5: Sort the eigenvalues by decreasing eigenvalues and pick k eigenvectors with the largest
eigenvalues to form a d × k dimensional matrix W of eigenvectors.
6: Use the W eigenvector matrix to transform the sample (original matrix) into the new subspace
via the equation:

y = WT x (3)
where x is a d × 1-dimensional vector representing one sample and y is the transformed
k × 1-dimensional sample in the new subspace.

In this work, we used PCA and LDA techniques because of the relatively high number
of features in the PPMI dataset.
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Algorithm 2: LDA steps

1: Compute the d-dimensional mean vectors of the dataset classes:
mi = 1/ni ∑n

x∈Di
xk (4)

2: Compute the scatter matricesbetween-class and within-class scatter matrix.
The within-class scatter matrix SW is computed by the following equation:

Sw = ∑c
i=1 Si (5)

where Si = ∑n
x∈Di

(x−mi)(x−mi)
T (6)

The between-class scatter matrix SB is computed by the following equation:
SB = ∑c

i=1 Ni(mi −m)(mi −m)T (7)
where m is the overall mean, and mi and Ni are the sample mean and the size of the respective
classes.

3: Compute the eigenvectors and associated eigenvalues for the scatter matrices.
4: Sort the eigenvectors by decreasing eigenvalues and select k eigenvectors with the highest
eigenvalues to form a d x k dimensional matrix W.
5: Use the W eigenvector matrix to transform the original matrix onto the new subspace via the
equation:

y = X W (8)
where X is an n × d-dimensional matrix representing the n samples, and Y is the transformed
n × k-dimensional sample in the new subspace.

2.3. Clustering Algorithms: K-means, DBSCAN and Hierarchical Clustering

Clustering is an unsupervised learning technique that is effectively applied in various
fields such as data mining and image analysis [36,37]. It is used for partitioning an unlabeled
set into clusters based on similarities in the same cluster and dissimilarities between
different clusters; data in the same cluster are more similar to each other than in different
clusters [36]. Typically, similarity of data is compared using a distance measure [37]. Various
types of clustering algorithms are proposed to suit different requirements. In this work,
three clustering algorithms, namely K-means, DBSCAN and Hierarchical Clustering, were
used to identify PD patients within the SWEED set.

2.3.1. K-means Algorithm

K-means algorithm, also known as the K-nearest-neighbor algorithm, is a clustering
approach applied to cluster data into k partitions based on the distance between different
input data points. Every cluster is defined by its centroid [36]. The centroid is the point
whose coordinates are calculated by computing the average of each of the coordinates of
the sample points affected to the clusters. It is computed as follows:

c = 1/Nc

Nc

∑
j=1

xj (9)

where Nc is the vector’s number in the subset.
The centroid data point distances are computed by the Euclidean distance, cosine

dissimilarity or by other distance functions.
The steps involved in the K-means method are represented by Algorithm 3.

Algorithm 3: K-means steps

1: Select the required number of clusters, k.

2: Select k starting points to be used as initial estimates of the cluster centroids.

3: Attribute each point in the database to the cluster whose centroid is the nearest.

4: Recalculate the new k centroids.

5: Repeat steps 3 and 4 until no data point changes its cluster assignment or until the centroids no
longer move (until the clusters stop changing).
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2.3.2. Density-Based Spatial (DBSCAN) Algorithm

The Density-Based Spatial (DBSCAN) algorithm is a clustering algorithm that does
not depend on a predefined number of clusters. Data are divided into areas of high density
(clusters) separated from each other by areas of low density (noise) [36]. An area is dense if
it includes at least N patterns at a distance R for a given N and R. This approach considers
two input variables: ε and Nmin. The parameter ε defines a neighborhood of the input
data xi. The minimum point parameter Nmin determines a center object, a point with a
neighborhood composed of more elements than this parameter. The steps involved in the
DBSCAN approach are illustrated in Algorithm 4.

Algorithm 4: DBSCAN steps

1: The algorithm begins with a random sample in which neighborhood information is taken from
the ε parameter.

2: If this sample contains Nmin within ε neighborhood, cluster formation starts. Otherwise, the
pattern is marked as noise or may later be found in the ε neighborhood of a different pattern and,
hence, can be incorporated into the cluster. If a sample is found to be a core point, then the
samples within the ε neighborhood are also part of the cluster. So, all the samples found within ε

neighborhood are added, along with their own ε neighborhood, if they are also core points.

3: The process (step 2) restarts with a new point, which can be a part of a new cluster or labeled as
noise, skipping every sample already assigned to a cluster by the preceding iterations. After
DBSCAN completes the data processing, each sample is assigned to a particular cluster or it is an
outlier.

2.3.3. Hierarchical Clustering

There are two main types of Hierarchical Clustering, namely agglomerative (also
known as AGNES: Agglomerative Nesting) and divisive (known also as DIANA: Divisive
Analysis) [37]. The agglomerative type uses a bottom-up approach to form clusters. It starts
with single-element clusters, and then distances between these clusters are calculated and
the clusters that are closest to each other are merged. The same process repeats until one
single cluster is obtained. Divisive Hierarchical Clustering is the opposite of agglomerative
Hierarchical Clustering. It is a top-down approach that starts from one single cluster and
then divides the farthest cluster into separate clusters; at each step of the iteration, the most
heterogeneous cluster is divided into two. The process is continued until all elements are
in their own cluster.

The Hierarchical Clustering result is often plotted as a dendrogram. Nodes in the
dendrogram represent clusters, and the length of an edge between a cluster and its split is
proportional to the dissimilarity between the split clusters. In fact, the y coordinate shows
the distance between the objects or clusters.

3. Results
3.1. Data Dimension Reduction: Feature Extraction Based on PCA and LDA Techniques

Input data for PCA and LDA algorithms consisted of 548 rows and 9 columns; we
started with a 9D dataset that we reduced to a 2D dataset by dropping seven dimensions.
The first Principal Component (PC1) and the second Principal Component (PC2) had
eigenvalues > 1 (PC1 = 4.6 and PC2 = 1.1), which were sufficient to describe the data and
reduce the complexity of data analysis. The scatter plot in Figures 3 and 4 represents the
PCA and LDA projections, respectively, of PD, HC and SWEDD groups.
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Figure 3. The new feature subspace constructed using PCA with class labels.

Figure 4. The new feature subspace constructed using LDA with class labels.

3.2. Clustering Algorithm: K-means, DBSCAN and Hierarchical Clustering

The LD1 new feature subspace of the SWEDD group was used as the input for the
unsupervised learning analysis (K-means, DBSCAN and Hierarchical Clustering). These
algorithms were employed to automatically generate two clusters, PD and HC. Figures 5–7
present the K-means, DBSCAN and Hierarchical Clustering algorithms plots, respectively.
As the output algorithms were one-dimensional data, we plotted them in a horizontal
axis (one-dimensional graph) with the y-axis set to zero. Each clustering algorithm was
designated two distinct distributions with different colors representing two clusters that
corresponded to PD and HC groups.
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Figure 5. Distribution of predicted DBSCAN clustering result using LD1 as input.

Figure 6. Distribution of predicted K-means clustering result using LD1 as input.

Figure 7. Distribution of predicted Hierarchical Clustering result using LD1 as input.
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In order to identify the corresponding group of each cluster, we calculated the Eu-
clidean distance between each point and the centroid of each group (PD and HC). Then,
we assigned each point to the closest group.

Using the DBSCAN algorithm, 11, 31 and 9 subjects were identified as HC subjects,
PD patients and noise, respectively.

Using the K-means algorithm, 21 and 30 subjects were identified as HC subjects and
PD patients, respectively.

Using the Hierarchical Clustering algorithm, 15 and 36 subjects were identified as HC
subjects and PD patients, respectively.

In fact, after two years of follow-up with 51 subjects from SWEDD, 32 patients demon-
strated a reduced dopamine uptake on DaTscan SPECT, whereas 18 subjects continued
to have normal dopaminergic imaging (HC) and one subject remained SWEDD. Figure 8
shows the confusion matrices of the clustering models.

Figure 8. Confusion matrix of clustering algorithms: (a) DBSCAN, (b) K-means and (c) Hierarchi-
cal Clustering.

From the confusion matrices, performance measures in terms of accuracy, specificity,
sensitivity and F1 score were computed. Table 3 shows the performance of each cluster-
ing algorithm.

Table 3. DBSCAN, K-means and Hierarchical Clustering performance.

Measure DBSCAN K-means Hierarchical Clusternig

Accuracy % 60.98 61.29 64.00

Sensitivity % 76.92 59.38 78.13

Specitivity % 33.33 38.89 38.89

F1 score % 71.43 61.29 73.53

4. Discussion

The emergence of Machine Learning (ML) algorithms to identify hidden patterns in
complex and multidimensional data has offered unparalleled opportunities for numerous
researchers to assist in Parkinson’s Disease (PD) diagnosis. These algorithms are able to
distinguish between Healthy Control (HC) subjects and PD patients within Scan Without
Evidence of Dopaminergic Deficit (SWEDD) groups. However, there is an overlap among
the three groups in both clinical and Single-Photon Emission Computed Tomography
(SPECT) imaging features. The amount of overlap of these groups in clinical and imaging
features determines the difficulty of the classification problem. In this research work,
an automatic diagnosis system based on clustering models that involved nine variables
was developed to separate PD patients from HC subjects within an SWEDD group. We
considered SBR values of the four striatal regions as imaging features and UPDRS III, MoCA,
UPSIT, STAI and GDS SHORT as clinical features. These variables were reduced by PCA
and LDA algorithms that sought the directions of greatest variation in the dataset. They
eliminated and removed recursive and redundant data and retained important information
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with very minimal loss: out of nine features, two were selected to be the significant
contributors. The comparison of these two popular subspace projection methods showed
the superiority of the LDA algorithm. These results are explained by the fact that PCA
is less optimal for scattering interclass and removed only the information concerning the
linear structure in data. The LDA method overcame PCA’s shortcomings and removed
the nonlinear structure. It maximized the value of between-class scatter and the value of
within-class scatter. In addition, the first Linear Discriminant (LD1) and PC1 separated
the classes nicely. Nevertheless, the second Linear Discriminant (LD2) and PC2 did not
contribute much additional valuable information. As LD1 was the most significant axis, it
was retained and used as an input for the three popular clustering algorithms (DBSCAN,
K-means and HC). These algorithms classified SWEDD subjects into two subtypes, PD and
HC. The performance of each algorithm was evaluated by comparing the class assigned to
each subject (clustering output) with the standard of truth given by the diagnosis at the last
available follow-up. In fact, SWEDD subjects were clinically followed up and evaluated,
and the initial SPECT neuroimaging data were labeled. After the follow-up period, there
was variability within the SWEDD group; about 70% (35 subjects) experienced a decline
in SBR, which confirmed the PD disease, while the other 30% (15 subjects) demonstrated
a slight rise in SBR from baseline, which confirmed that these subjects were normal. The
slight rise in SBR in normal subjects is explained by the fact that these subjects were
on PD medication. The comparison of the standard of truth and the clustering output
showed that the truth does not totally coincide with predicted PD. This difference between
the truth and the prediction reflects the error rate of clustering algorithms. The three
clustering algorithms produced close results, and the highest performance was obtained by
the Hierarchical Clustering algorithm, with an accuracy of (64%), sensitivity of (78.13%),
specificity of (38.89%) and F1 score of (73.53%). Indeed, the proposed method revealed
a clear separation between PD and HC within the SWEDD group based on clinical and
imaging features.

The related research studies [18–20,33–36] used data with a different number of sub-
jects. Consequently, results are not directly comparable. However, as an indication, the
studies of Nicolas Nicastro et al. [33] achieved less accuracy (58.4%) and sensitivity (45%)
in identifying PD compared to our model (accuracy of 64% and sensitivity of 78.13%). The
approaches proposed in the research studies [18–20,34–36] achieved good accuracies, but
their algorithms were used for classification of PD and HC groups and also implemented
computationally intensive models. However, our approach distinguishes PD from HC
within an SWEDD group by implementing a computationally simple model. In addition,
it used a large dataset with a high number of heterogeneous features. These features
were optimized and selected using feature reduction techniques to retain important data,
eliminate recursive and redundant information and speed up the execution time, which
makes the model more robust.

Despite the promising results of the proposed method, which is fast, requires little
user intervention and can be easily extended to a clinical setting, it has several sources of
misclassification which should be specifically considered here: First, we limited the clinical
analysis to just five features, and imaging features analysis to four features, which did
not cover all the clinical features and the entire brain. Likewise, SPECT is the practical
option for assessing PD patients. However, the brain can be assessed not only using
SPECT, but also by other imaging modalities, including MRI and PET. Hence, multimodel
brain examination can permit the integration of supplementary information from various
modalities to enhance PD patients’ differentiation from HC subjects within an SWEDD
group. Moreover, despite the relatively large number of samples in the dataset used in this
study, we speculate that the number of subjects in the SWEDD group was too limited to
capture the full variability in clinical and imaging features. In fact, to date, ground truth
and the follow-up of SWEDD groups is difficult to achieve. Additionally, imbalanced data
from the two classes within the SWEDD group are associated with lower classification
accuracy in the minority class.
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5. Conclusions

The focus of this study was to separate PD patients from HC subjects within an
SWEDD group using clinical assessment and DaTSCAN SPECT imaging features. The
features were first minimized by two dimensionality reduction techniques, PCA and LDA,
to find a lower-dimensional subspace; 2D nine features were adjusted to two 1D features,
but it still retained the information of the large set. Indeed, the strongly correlated features
were obtained with the LDA algorithm. Thus, the LDA-reduced set was analyzed through
the clustering models DBSCAN, K-means and Hierarchical Clustering. Each clustering
algorithm produced two subsets within the SWEDD group (PD and HC). The different
clustering performance metrics were evaluated by comparing the clustering algorithms
outcomes with the known ground truth. In fact, after the follow-up, 70% (35) of the SWEDD
subjects versus only 30% (15) demonstrated a dopamine decline from baseline (had lower
SBR scores). Hierarchical Clustering exceeded DBSCAN and K-means algorithms and
achieved an accuracy of 64%, a sensitivity of 78.13%, a specificity of 38.89% and a F score of
73.53%. These promising results show that the separation between early PD patients and
HC subjects within the SWEDD group based on clinical and SPECT imaging features in the
cohort of 548 subjects can be adequately addressed by an automatic system using ML. In
future research works, different feature reduction and clustering methods, as well as other
types of data, such as motor test data and motion sensors for movement detection, will
be examined to improve the performance metrics. We also aim to explore deep learning
models for early PD identification as they show promising results in classification and
detection issues.
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