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Abstract: To establish an optimal model for photo aesthetic assessment, in this paper, an internal
metric called the disentanglement-measure (D-measure) is introduced, which reflects the disentangle-
ment degree of the final layer FC (full connection) nodes of convolutional neural network (CNN). By
combining the F-measure with the D-measure to obtain an FD measure, an algorithm of determining
the optimal model from many photo score prediction models generated by CNN-based repetitively
self-revised learning (RSRL) is proposed. Furthermore, the aesthetics features of the model regarding
the first fixation perspective (FFP) and the assessment interest region (AIR) are defined by means of
the feature maps so as to analyze the consistency with human aesthetics. The experimental results
show that the proposed method is helpful in improving the efficiency of determining the optimal
model. Moreover, extracting the FFP and AIR of the models to the image is useful in understanding
the internal properties of these models related to the human aesthetics and validating the external
performances of the aesthetic assessment.

Keywords: disentanglement-measure; F-measure; photo score prediction; optimal model; CNN;
aesthetics feature

1. Introduction

With the great growth of digital pictures, many researchers have been interested in
exploring the methods of image aesthetic auto-assessment. However, the research on this
field is still challenging due to the subjectivity and ambiguity of aesthetic criteria, and
the imbalance of the quality distribution. In [1], the authors give an experimental survey
about this field’s research. In this paper, besides the discussion of the main contributions
of the reviewed approaches, the authors systematically evaluate deep leaning settings
that are useful for developing a robust deep model for aesthetic scoring. Moreover, they
discuss the possibility of manipulating the aesthetics of images through computational
approaches. Recently, facing the issues of the subjectivity and ambiguity of aesthetic criteria,
besides predicting the mean opinion score provided by data sets, the approach of predicting
the distribution of human opinion scores using a convolutional neural network (CNN)
is proposed [2]. Furthermore, the authors use the proposed assessment technique to
effectively tune parameters of image denoising and tone enhancement operators to produce
perceptually superior results. However, due to the restriction of the CNN, all images
are rescaled to square images to feed into the network regardless of their aspect ratios.
Following the work in [2], Lijie Wang et al. propose a method of aspect-ratio-preserving
multi-patch image aesthetics score prediction [3] in order to reflect the original aspect
ratio of information to prediction. In [4], besides keeping the original aspect ratio, the
authors propose a spatial attentive image aesthetic assessment model to evaluate the
image layout and find spatial importance in aesthetics. In order to improve the learning
efficiency during the training process, a multi-patch aggregation method for image aesthetic
assessment with preserving the original aspect ratio is proposed [5]. In this method, the
goal is achieved by resorting to an attention-based mechanism that adaptively adjusts
the weight of each patch of the image. Moreover, in [6], the authors propose a gated
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peripheral–foveal convolutional neural network. It is a double-subnet neural network. The
former aims to encode the holistic information and provide the attended regions. The latter
aims to extract fine-grained features on these key regions. Then, a gated information fusion
network is employed for the image aesthetic prediction. In [7], the authors propose a novel
multimodal recurrent attention CNN, which incorporates the visual information with the
text information. This method employs the recurrent attention network to focus on some
key regions to extract visual features. However, it has been validated that feeding the
weighted key regions to CNN to train the image aesthetic assessment model degrades the
performance of prediction according to our preliminary experiments, because the aesthetic
assessment is influenced by holistic information in the image. Weakening some regions
results in the information degradation for aesthetic assessment.

Furthermore, these methods focus on training the model to predict the distribution
of human opinion scores so as to obtain the mean score of the image. So, the personal
opinion score that is important in the aesthetic assessment is not reflected. In [8], the authors
propose a unified algorithm to solve the three problems of image aesthetic assessment, score
regression, binary classification, and personalized aesthetics based on pairwise comparison.
The model for personalized regression is trained on the FLICKERAES dataset [9]. However,
the ground truth score was set to the mean of five workers’ scores. Accordingly, whether
the predicted score embodies the inherently personal aesthetics is not clear.

On the other hand, some researchers aim at extracting and analyzing the aesthetic
features to find the relation with the aesthetic assessment. In [10], the paper presents
an in-depth analysis of the deep models and the learned features for image aesthetic
assessment in various viewpoints. In particular, the analysis is based on transfer learning
among image classification and aesthetics classifications. The authors find that the learned
features for aesthetic classification are largely different for those for image classification;
i.e., the former accounts for color and overall harmony, while the latter focuses on texture
and local information. However, whether this finding is universal needs to be validated
further. In [11], besides extracting deep CNN features, five algorithms for handcrafted
extracting aesthetic feature maps are proposed, which are used to extract feature maps of
the brightness, color harmony, rule of thirds, shallow depth of field, and motion blur of the
image. Then, a novel feature fusion layer is designed to fuse aesthetic features and CNN
features to improve the aesthetic assessment. However, the experimental result shows that
the fusion only improves the accuracy of 1.5% over no-fusion. Accordingly, whether it is
necessary to incorporate the inefficiently handcrafted aesthetic features with deep CNN
features needs to be investigated.

Recently, the fusion technologies are focused on improving the accuracy of the aesthetics
assessment. In [12], the authors introduce a novel, deep learning-based architecture that
relies on the decision fusion of multiple image quality scores coming from different types of
convolutional neural networks. The experimental results show that the proposed method
can effectively estimate perceptual image quality on four large IQA benchmark databases.
In [13], the authors propose an aesthetic assessment method, which is based on multi-stream
and multi-task convolutional neural networks (CNNs); this method extracts global features
and saliency features from an input image. These provide higher-level visual information
such as the quality of the photo subject and the subject–background relationship.

On the other hand, applying image aesthetics assessment to the design field becomes
a hot topic in the resent years [14–17]. For example, in [14], the impact of cover image aes-
thetics on content reading willingness is analyzed. In [15], the food images are assessed by
learning its visual aesthetics. In [16], the abstract images are generated by using correction
structure with the aesthetics.

However, the above papers ignore the fact that the distribution of samples against
aesthetic scores in a data set is highly non-uniform [18,19]. Most images in the dataset
assessed by a professional photographer have the score of 4, and about 85% of the images
in the dataset concentrate on the scores of 3 to 5. The score classification model could be
overwhelmed by those samples in the majority classes if the parameters are learned by
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treating all samples equally. Accordingly, in order to solve the problem of the imbalanced
classification in image aesthetic assessment, the papers of [18,19] propose a mechanism of
repetitively self-revised learning (RSRL) to train the CNN-based image score prediction
model on the imbalanced score data set. As RSRL, the neural networks are trained repeti-
tively by dropping out the low likelihood photo samples at the middle levels of aesthetics
from the training data set based on the previously trained network, and the optimal model
that has the highest value of F-measure is selected from them. The experimental result
presents that this model outperforms the model trained without RSRL. However, because
the F-measure is dependent on the test dataset, whether it reflect the internal property of
the model is not clear.

In this paper, we focus on the issue of CNN-based RSRL to explore suitable metrics,
including one reflecting the internal properties of the model, to establish an optimal model
for image aesthetic assessment. Moreover, the learned feature maps of the model are utilized
to define the first fixation perspective (FFT) and the assessment interest region (AIR), so as
to analyze whether the aesthetics features are learned by the optimal model.

In details, the main contributions of this paper are summarized as follows.

• For RSRL, besides the external F-measure, an internal metric called the disentanglement-
measure (D-measure), which measures the degree of disentanglement of final FC layer
nodes, is defined.

• By combining the F-measure with the D-measure to obtain an FD measure, an algo-
rithm of determining the optimal model from many re-trained models generated by
RSRL is proposed, while these models are score prediction models.

• The effectiveness of the proposed method is validated by comparing the performances
of many re-trained models with different CNN structures.

• The FFP and the AIR of the model to the image are defined by the activated feature
maps. It is found that analyzing the FFP and AIR of the images is useful in understand-
ing the internal properties of the model related to the human aesthetics and validating
its external performances of the aesthetic assessment.

The reminder of this paper is organized as follows. Section 2 introduces the D-measure
and Section 3 describes how to establish the optimal model for image aesthetic assessment
via RSRL. Section 4 explains the method of extracting FFP and AIR. Section 5 gives the
experimental results and analyzes the effectiveness of the proposed methods.

2. Disentanglement Measure

The approach of RSRL is proposed in [18,19]. In this paper, in order to solve the
data imbalance in training the model for photo aesthetic assessment, the author focuses
on conducting repetitive self-revised learning (RSRL) to retrain the CNN-based photo
score prediction model repetitively by transfer learning, so as to improve the performance
of imbalanced classification caused by the highly non-uniform distribution of training
samples against scores. For RSRL, the network is trained repetitively by dropping out the
low likelihood photo samples with mid-level scores from the training data set based on
the previously trained model. Then, as the photo score predictor, the optimal model is
determined from the many re-trained models according to the F-measure. However, the
F-measure is an external measure of the model. Whether it reflects the intrinsic property of
the model is unclear. Accordingly, this paper conducts a new internal measure called the
disentanglement-measure (D-measure), which measures the degree of disentanglement
of final FC layer nodes of CNN. The idea behind it is that the nodes of the final FC layer
should be disentangled for the accurate classification. However, it is obvious that the
adjacent score classes are relevant. So, it is impossible for score classification to disentangle
the final FC layer nodes of CNN completely. Then, the D-measure of these nodes against
their weights with the nodes of the last FC layer is defined. In the following, we describe
how to define the D-measure in detail. Figure 1 shows the situation of the last two FC
layers of CNN.
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Let the node of the final FC layer be f cN
j , the node of the penultimate FC layer be

f cN−1
i , and the weight between f cN−1

i and f cN
j be wN−1,N

ij . Furthermore, the number

of f cN
j is J, and the number of f cN−1

i is I. The details of calculating the D-measure are
explained as the following steps.

• Normalizing wN−1,N
ij as w1ij;

• Calculating the correlation matrix of f cN
j based on w1ij;

R =
1

I − 1
w1′ij × w1ij , i ∈ [1, I], and j ∈ [1, J] (1)

where R is a matrix of J× J.

• Calculating and sorting the eigenvalues in a descending order, denoted eignm, and
obtaining the corresponding eigenvectors, denoted eign_vm;

• Calculating the factor loading of factor m (latent variable) against f cN
j , j ∈ [1, J];

f lm,j =
√

eignm × eign_vm,j, m ∈ [1, M] (2)

where M indicates the number of factors.

• Calculating the two-norm of factor loadings against the two nodes j1 and j2 of f cN
j ;

disj1,j2 = 2− norm
(

f lm,j1 − f lm,j2
)

(3)

The larger the value is, the more the two nodes j1 and j2 are leaved.
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• Calculating the minimum of two-norm regarding one node j to all of the other nodes jj
of f cN

j ;

dis_minj = min
(
disj,jj

)
(4)

• Calculating the mean of the minimum of two-norm regarding all of the nodes of f cN
j ;

We can see that the mean of dis_minj(j ∈ J) reflects the dispersion of all nodes. The
larger value indicates that the nodes are more scattered.

• Defining the D-measure

We define the D-measure of the nodes of f cN
j as the following expression.

D-measure = mean
(
dis_minj

)
(5)

In the next section, the role of D-measure in establishing an optimal model for image
aesthetic assessment via CNN-based RSRL will be discussed.

3. Establishing an Optimal Model for Image Aesthetic Assessment via RSRL

An improved mechanism of CNN-based RSRL is shown in Figure 3.
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The approach of CNN-based RSRL is to drop out the low likelihood samples of the
majority classes of scores repetitively, so as to ameliorate the invasion of these samples to
the minority classes and prevent the loss of the samples with discriminative features in
the majority classes. In this process, the previous model is re-trained by transfer learning
again and again. Accordingly, many re-trained models are generated with RSRL. Then, the
optimal model is determined among these models based on the F-measures [10]. However,
the F-measure is dependent on the test dataset reflecting the external property of the
models, so whether it embodies the internal property of the model is not clear. In this
purpose, we introduce the D-measure with F-measure to determine the optimal model
because the D-measure reflects the internal property of the classification. In detail, let the
F-measure of class j be Fj and the total F-measure of the classes be F_all. F_all is calculated
by Equation (6).

F_all =
J

∑
j=1

Fj (6)
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Then, the measure that aggregates F_all and D-measure is defined by Equation (7).
Here, the values of F_all and D-measure are normalized.

FD = w1F_all + w2D-measure (7)

where w1 and w2 are set as 0.5, respectively.
It is assumed that the optimal model should be one that has the maximal value of F_all

among the re-trained models, and the value of its FD is larger than a threshold T. Then, the
algorithm selecting the optimal model is expressed in Expression (8).

Loptimal =

 argmax
l∈L

F_alll

FDLoptimal > T
(8)

where the Loptimal indicates the index of the optimal model, and l and L indicate the index
and the number of the re-trained models, respectively. In this paper, T is set to 0.95, which
will be explained in Section 5.1.

On the other hand, if only the metrics of F_all or D-measure are used, the correspond-
ing optimal model is obtained by Expressions (9) or (10), respectively.

LF_all
optimal = argmax

l∈L
F_alll (9)

LD
optimal = argmax

l∈L
Dl (10)

Then, scores of images can be predicted by the combination of models LF_all
optimal and

LD
optimal . The formulation for predicting the score is expressed by Equation (11)

score = argmax
j∈J

(w1 f cF_all
j + w2 f cD

j ) (11)

where f cF_all
j and f cD

j indicate the sigmoid values of the final FC layers regarding the

models LF_all
optimal and LD

optimal , respectively. w1 and w2 are set as 0.5, respectively.

The effectiveness of utilizing the D-measure to obtain LD
optimal in the prediction is

validated by experiments. The results and analysis will be shown in Section 5.

4. Extracting FFP and AIR

Although there are composition attributes for taking good photos, such as rule of third
and depth of field, people are more likely to concern the first fixation perspective (FFP)
and the relation with other elements when enjoying photos, which are considered to be the
assessment interest region (AIR). Accordingly, for a CNN-based photo aesthetic assessment
model, it is supposed that the most activated feature map should be related to the FFP of
the image, and the sum of feature maps should be related to the AIR. So, the model’s FFP
and AIR of the image could be acquired by the following calculation.

• Obtaining the most activated feature map and the sum of feature maps of the final
convolutional layer of CNN regarding an image I(x,y) and normalizing and resizing
these to the size equal to the I, where x and y indicate the coordinates of the pixel,
respectively;

Let a feature map of the final convolutional layer be FMp(x, y), its index be p, the
number of feature maps be P, and the index of the most activated feature map be pmax.

pmax = argmax
p∈P

FMp(x, y) (12)
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Accordingly, the most activated feature map should be FMpmax (x, y). Then, let the
sum of feature maps be FMsum(x, y).

FMsum(x, y) =
P

∑
p=1

FMp(x, y) (13)

• Extracting FFP and AIR;

Let FFP be represented by FFP(x, y), and AIR be represented by AIR(x, y), then,

FFP(x, y) = I(x, y)× FMPmax (x, y) (14)

AIR(x, y) = I(x, y)× FMsum(x, y) (15)

Figure 4 shows the examples of FFP(x, y) and AIR(x, y) of an image, which are calculated
based on the learned feature maps of the model with three 1 × 1 convolution layers.
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Figure 4. Examples of FFP(x, y) and AIR(x, y). (a) Original image; (b) FFP(x, y); (c) AIR(x, y).

It seems that the highlighted regions of (b) and (c) are close to the human’s perception
regarding FFP and AIR when enjoying an image.

In Section 5, we will show whether the optimal model determined by (8), (9), or (10) could
learn the FFP(x, y) and the AIR(x, y), which are close to the human’s aesthetic perceptions.

5. Experimental Results and Analysis
5.1. Establishing Optimal Model

In this paper, we construct three kinds of CNN models with different structures to
validate whether the D-measure metrics are helpful for determining the optimal model.
These three kinds of CNN structures are fine-tuned AlexNet, changed AlexNet, and new
designed only 1 × 1 convolutions CNN, which are presented below. Although there are
many popular pre-trained models such as ResNet, we think that it is suitable to select
AlexNet as a representative to validate the effectiveness of the proposed method [20].

Type a: Fine-Tuned AlexNet
1–end-3 layers: transferring 1–end-3 of AlexNet
end-2 layer ‘fc’: 8 fully Connected layer, each corresponding to a score class of 2–9
end-1 layer ‘softmax’: Softmax
end layer ‘classoutput’: Classification Output

Type b: Changed AlexNet
1–end-9 layers: transferring 1–end-5 of AlexNet
end-8 layer ‘batchnorm_1’: Batch normalization with 4096 channels
end-7 layer ‘relu_1’: ReLU
end-6 layer ‘dropout’: 50% dropout
end-5 layer ‘fc_1’: 32 fully connected layer
end-4 layer ‘batchnorm_2’: Batch normalization with 32 channels
end-3 layer ‘relu_2’: ReLU
end-2 layer ‘fc_2’: 8 fully Connected layer, each corresponding to a score class of 2–9
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end-1 layer ‘softmax’: Softmax
end layer ‘classoutput’: Classification Output

Type c: Only 1 × 1 convolutions CNN
1 layer ‘imageinput’: 227 × 227 × 3 images with ‘zerocenter’ normalization
2 layer ‘conv_1’: 94 1 × 1 × 3 convolutions with stride [8 8] and padding [0 0 0 0]
3 layer ‘batchnorm_1’: Batch normalization with 94 channels
4 layer ‘relu_1’: ReLU
5 layer ‘conv_2’: 36 1 × 1 × 94 convolutions with stride [4 4] and padding [0 0 0 0]
6 layer ‘batchnorm_2’: Batch normalization with 36 channels
7 layer ‘relu_2’: ReLU
8 layer ‘conv_3’: 36 1 × 1 × 36 convolutions with stride [1 1] and padding [0 0 0 0]
9 layer ‘batchnorm_3’: Batch normalization with 36 channels
10 layer ‘relu_3’: ReLU
11 layer ‘fc_1’: 36 fully connected layer
12 layer ‘fc_2’: 8 fully Connected layer, each corresponding to a score class of 2~9
13 layer ‘softmax’: Softmax
14 layer ‘classoutput’: Classification Output

By using transfer learning, each of these CNNs are re-trained 29 times iteratively via
RSRL on the xiheAA dataset [10], which was mentioned in the section introduction. Four
out of the five samples are randomly selected as the training dataset, and the remaining
sample serves as the validation dataset. Here, it is indicated that the 29 times is only an
example for showing how to select the optimal model from the retrained models.

Figures 5–7 show the values of D-measure, F_all, and FD of 29 re-trained models
regarding three kinds of CNNs on the validation dataset, respectively. The values of
D-measure and F_all are all normalized.
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From the results shown in these figures, the optimal models of type a, type b, and
type c should be model 20, model 28, and model 2 by means of Expression (8). Moreover,
we can see that for the type b and type c; the optimal models have the maximal FD with
the maximal F_all. Simultaneously, these models have the comparatively high values of
D-measure. The FD measures can reach the values of more than 0.98.

For the type a, although the re-trained model with maximal FD is the model with
the maximal D-measure, the model 20 having the second largest FD is the one with the
maximal F_all. Moreover, the FD of that is 0.96, which is larger than the threshold 0.95. So,
this model should be selected as the optimal model based on Expression (8).

Now, let us analyze the effectiveness of Expression (8) in determining the optimal
model from the many re-trained models. For the various re-trained models, we notice that
the models with the maximal D-measure values are not necessarily ones with maximal
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F_all values, and vice versa. However, the model with maximal F_all should have the high
D-measure value. This means that although the D-measure reflects the dispersion of the
nodes, it cannot be said that it embodies the external property of the classification regarding
the models. However, the model having the maximal F_all possesses the comparatively
high D-measure. So, we can say that the D-measure measuring the internal classification
property of the model is a necessary condition for the good classification, but it is not a
sufficient condition. Accordingly, combining the metrics of F_all with the D-measure to
obtain the metrics of FD is helpful for determining the optimal model. The corresponding
algorithm is expressed by (8). If the value of FD reaches a threshold, for example, 0.95, and
the F_all is maximal at this iteration, the RSRL can be stopped, and the current re-trained
model is used as the optimal model. The benefits of doing so can improve the efficiency
of determining the optimal model compared with the only F-measure-based RSRL [18,19].
For example, in the case of Figure 6, RSRL can be stopped at the second iteration, while the
FD is larger than 0.95.

Next, the CUHK-PQ dataset [1] is used for the out-of-distribution validation. The
CUHK-PQ dataset contains 10,524 high-quality images and 19,166 low-quality images. So,
the images predicted of having the score of less than 5 are assigned to the low class, while
the others are assigned to the high class. Figure 8 shows the experimental results.
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The values of vertical axis indicate the F-measure’s average values regarding the different
optimal models of types a, b, and c. The yellow bar (FD) represents the optimal model
determined by Expression (8). The red bar (Fall) and blue bar (D) represent the optimal
models determined by Expressions (9) or (10), respectively. It is obvious that the heights of the
red bars and yellow bars are the same, but the height of the blue bar is a little low, although
it is very close to the yellow bar. The purple bar (Fall + D) represents the optimal model
determined by Expression (11). It is observed that the height of the purple bar regarding
type a is slightly lower than the yellow bar; that regarding type b is slightly higher than the
yellow bars; but, that regarding type c is obviously higher than the yellow bar.

The above analyses further show that the D-measure is a necessary condition for the
good classification, but it is not a sufficient condition. However, although the performance
of the optimal model determined by the FD measure, which is the aggregation of F_all
and the D-measure, is almost as same as the one determined by the metrics of F_all, the
efficiency of determining the optimal model from many re-trained models can be improved.

On the other hand, it is observed that the models of type b have about a 10% higher
average F-measures than the other two types of models. That is, inserting new layers into
the FC section of CNN can improve the performance of predicting scores. However, it is
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more interesting that the average F-measure of the optimal model of type c determined
by FD is almost as same as that of type a. Moreover, the average F-measure of type c
obtained by the aggregation of models LF_all

optimal and LD
optimal is 1.8% higher than that of

type a. Accordingly, we could deduce that the newly designed CNN with only three layers
1 × 1 convolutions via RSRL on a small dataset could outperform the fine-tuned pre-trained
CNN, such as AlexNet. Moreover, the size of type c is only about 1/620 of type a and type b.
So, in the view of the ratio of cost-effectiveness, the only 1 × 1 convolution CNN may be
better as a score prediction model, although the type b, which is the changed AlexNet, is
better in the view of F-measure.

5.2. Extracting FFP and AIR

Figure 9 is an example of the original image. Figures 10 and 11 show the FFP(x, y) and
AIR(x, y) of this image, which are acquired based on (14) and (15) using the FD-determined
and the D-determined optimal models of type a, b, and c, respectively. The FD-determined
optimal model means that the optimal model is determined by Expression (8), and the
D-determined optimal model means that the optimal model is determined by Expression (10).
This image is from the CUHK-PQ dataset with high-quality labeling. The predictions of the
three FD-determined models are score 5, score 7, and score 5, respectively; the predictions of
the three D-determined models are score 7, score 7, and score 5, respectively.

J. Imaging 2022, 8, x FOR PEER REVIEW 11 of 17 
 

 

On the other hand, it is observed that the models of type b have about a 10% higher 
average F-measures than the other two types of models. That is, inserting new layers into 
the FC section of CNN can improve the performance of predicting scores. However, it is 
more interesting that the average F-measure of the optimal model of type c determined 
by FD is almost as same as that of type a. Moreover, the average F-measure of type c 
obtained by the aggregation of models 𝐿 _  and 𝐿  is 1.8% higher than that of 
type a. Accordingly, we could deduce that the newly designed CNN with only three lay-
ers 1 × 1 convolutions via RSRL on a small dataset could outperform the fine-tuned pre-
trained CNN, such as AlexNet. Moreover, the size of type c is only about 1/620 of type a 
and type b. So, in the view of the ratio of cost-effectiveness, the only 1 × 1 convolution 
CNN may be better as a score prediction model, although the type b, which is the changed 
AlexNet, is better in the view of F-measure. 

5.2. Extracting FFP and AIR 
Figure 9 is an example of the original image. Figures 10 and 11 show the FFP(x, y) 

and AIR(x, y) of this image, which are acquired based on (14) and (15) using the FD-de-
termined and the D-determined optimal models of type a, b, and c, respectively. The FD-
determined optimal model means that the optimal model is determined by Expression (8), 
and the D-determined optimal model means that the optimal model is determined by Ex-
pression (10). This image is from the CUHK-PQ dataset with high-quality labeling. The 
predictions of the three FD-determined models are score 5, score 7, and score 5, respec-
tively; the predictions of the three D-determined models are score 7, score 7, and score 5, 
respectively. 

 
Figure 9. Original image. 

   
Type a Type b Type c 

FFP(x, y) regarding the FD-determined optimal model. 

Figure 9. Original image.

J. Imaging 2022, 8, x FOR PEER REVIEW 11 of 17 
 

 

On the other hand, it is observed that the models of type b have about a 10% higher 
average F-measures than the other two types of models. That is, inserting new layers into 
the FC section of CNN can improve the performance of predicting scores. However, it is 
more interesting that the average F-measure of the optimal model of type c determined 
by FD is almost as same as that of type a. Moreover, the average F-measure of type c 
obtained by the aggregation of models 𝐿 _  and 𝐿  is 1.8% higher than that of 
type a. Accordingly, we could deduce that the newly designed CNN with only three lay-
ers 1 × 1 convolutions via RSRL on a small dataset could outperform the fine-tuned pre-
trained CNN, such as AlexNet. Moreover, the size of type c is only about 1/620 of type a 
and type b. So, in the view of the ratio of cost-effectiveness, the only 1 × 1 convolution 
CNN may be better as a score prediction model, although the type b, which is the changed 
AlexNet, is better in the view of F-measure. 

5.2. Extracting FFP and AIR 
Figure 9 is an example of the original image. Figures 10 and 11 show the FFP(x, y) 

and AIR(x, y) of this image, which are acquired based on (14) and (15) using the FD-de-
termined and the D-determined optimal models of type a, b, and c, respectively. The FD-
determined optimal model means that the optimal model is determined by Expression (8), 
and the D-determined optimal model means that the optimal model is determined by Ex-
pression (10). This image is from the CUHK-PQ dataset with high-quality labeling. The 
predictions of the three FD-determined models are score 5, score 7, and score 5, respec-
tively; the predictions of the three D-determined models are score 7, score 7, and score 5, 
respectively. 

 
Figure 9. Original image. 

   
Type a Type b Type c 

FFP(x, y) regarding the FD-determined optimal model. 

Figure 10. Cont.



J. Imaging 2022, 8, 85 12 of 16J. Imaging 2022, 8, x FOR PEER REVIEW 12 of 17 
 

 

   
Type a Type b Type c 

FFP(x, y) regarding the D-determined optimal model 

Figure 10. FFP(x, y) of Figure 9. 

   
Type a Type b Type c 

AIR(x, y) regarding the FD-determined optimal model 

   
Type a Type b Type c 

AIR(x, y) regarding the D-determined optimal model 

Figure 11. AIR(x, y) of Figure 9. 

From the results, we can see that for all of the types, two kinds of AIR(x, y) are almost 
the same. In the case of types b and c, the highlighted region that is considered as the AIR 
is the one having the hand with goldfish, while it is very close to the human aesthetics 
assessment when enjoying the photo. However, in the case of type a, the highlighted re-
gion as AIR is the surrounding area that seems not to be consistent with the human aes-
thetic habit, although the predicted result is right. These observations may indicate that 
fine-tuning a pre-trained CNN on the small score dataset cannot make the re-trained 
model learn the aesthetic features, but it may be possible to make the CNN models learn 
the deep aesthetic features by changing the pre-trained CNN structure or training a new 
multi-layer only 1 × 1 convolutions CNN.  

Figure 10. FFP(x, y) of Figure 9.

J. Imaging 2022, 8, x FOR PEER REVIEW 12 of 17 
 

 

   
Type a Type b Type c 

FFP(x, y) regarding the D-determined optimal model 

Figure 10. FFP(x, y) of Figure 9. 

   
Type a Type b Type c 

AIR(x, y) regarding the FD-determined optimal model 

   
Type a Type b Type c 

AIR(x, y) regarding the D-determined optimal model 

Figure 11. AIR(x, y) of Figure 9. 

From the results, we can see that for all of the types, two kinds of AIR(x, y) are almost 
the same. In the case of types b and c, the highlighted region that is considered as the AIR 
is the one having the hand with goldfish, while it is very close to the human aesthetics 
assessment when enjoying the photo. However, in the case of type a, the highlighted re-
gion as AIR is the surrounding area that seems not to be consistent with the human aes-
thetic habit, although the predicted result is right. These observations may indicate that 
fine-tuning a pre-trained CNN on the small score dataset cannot make the re-trained 
model learn the aesthetic features, but it may be possible to make the CNN models learn 
the deep aesthetic features by changing the pre-trained CNN structure or training a new 
multi-layer only 1 × 1 convolutions CNN.  

Figure 11. AIR(x, y) of Figure 9.

From the results, we can see that for all of the types, two kinds of AIR(x, y) are almost
the same. In the case of types b and c, the highlighted region that is considered as the AIR
is the one having the hand with goldfish, while it is very close to the human aesthetics
assessment when enjoying the photo. However, in the case of type a, the highlighted
region as AIR is the surrounding area that seems not to be consistent with the human
aesthetic habit, although the predicted result is right. These observations may indicate that
fine-tuning a pre-trained CNN on the small score dataset cannot make the re-trained model
learn the aesthetic features, but it may be possible to make the CNN models learn the deep
aesthetic features by changing the pre-trained CNN structure or training a new multi-layer
only 1 × 1 convolutions CNN.
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However, the two kinds of FFP(x, y) are not the same for the models of type b, although
they are the same for the models of type a and type c. We think that the FFP of the image
should be the area of the goldfish for the human perception. The two optimal models of
type a and type c indeed learn the elements of FFP as the human; however, for type b, the
FD-determined optimal model extracts the surrounding of the hand as FFP, although the
D-determined optimal model extracts the goldfish area.

On the other hand, it is observed that the highlighted regions of FFP(x, y) and AIR(x, y)
obtained by the FD-determined optimal model is stronger, and the highlighted area is larger.
It may be the reason that the FD-determined optimal model either outperforms or rivals
the D-determined optimal model, because the aesthetics assessment to an image is related
to the element composition in the image but not the isolated object.

Figure 12 is another example of the original image. Figures 13 and 14 show the
FFP(x, y) and AIR(x, y) of this image, using the FD-determined and the D-determined
optimal models of type a, b, and c, respectively. This image is from the CUHK-PQ dataset
with a low-quality labeling. The predictions of the three type’s models are score 4, score 2,
and score 3, respectively.
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FFP(x, y) and AIR(x, y) of this image, using the FD-determined and the D-determined 
optimal models of types a, b, and c, respectively. This image is from the CUHK-PQ dataset 
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Figure 14. AIR(x, y) of Figure 12.

Similar to the above analysis, we can see that for all of the types, two kinds of AIR(x, y)
are almost the same. In the case of types b and c, the highlighted region that is considered
as the AIR has the weeds that result in the low assessment, while it is very close to the
human’s assessment to this photo. However, in the case of type a, the highlighted region is
unclear. This may be the reason that the prediction is score 4.

On the other hand, for all of the types, the two kinds of FFP(x, y) are almost the same,
too, although these are different for different types. We think that the FFP of the image
should be the area of the flower for the human perception. The two optimal models of
type c indeed learn the elements of FFP as the human; however, for type a and type b, two
optimal models extract the surrounding of the flower as FFP.

Figure 15 is the third example of the original image. Figures 16 and 17 show the FFP(x, y)
and AIR(x, y) of this image, using the FD-determined and the D-determined optimal models
of types a, b, and c, respectively. This image is from the CUHK-PQ dataset with a high-quality
labeling. The predictions of three FD-determined models are score 4, score 4, and score 3,
respectively; the predictions of three D-determined models are score 4, score 4, and score 4,
respectively. This means that the prediction is not consistent with the ground truth. The
image with a high-quality label is assigned to the low-quality class, especially in the case of
type c.

J. Imaging 2022, 8, x FOR PEER REVIEW 14 of 17 
 

 

   
Type a Type b Type c 

AIR(x, y) regarding the D-determined optimal model 

Figure 14. AIR(x, y) of Figure 12. 

Similar to the above analysis, we can see that for all of the types, two kinds of AIR(x, 
y) are almost the same. In the case of types b and c, the highlighted region that is consid-
ered as the AIR has the weeds that result in the low assessment, while it is very close to 
the human’s assessment to this photo. However, in the case of type a, the highlighted 
region is unclear. This may be the reason that the prediction is score 4.  

On the other hand, for all of the types, the two kinds of FFP(x, y) are almost the same, 
too, although these are different for different types. We think that the FFP of the image 
should be the area of the flower for the human perception. The two optimal models of 
type c indeed learn the elements of FFP as the human; however, for type a and type b, two 
optimal models extract the surrounding of the flower as FFP.  

Figure 15 is the third example of the original image. Figures 16 and 17 show the 
FFP(x, y) and AIR(x, y) of this image, using the FD-determined and the D-determined 
optimal models of types a, b, and c, respectively. This image is from the CUHK-PQ dataset 
with a high-quality labeling. The predictions of three FD-determined models are score 4, 
score 4, and score 3, respectively; the predictions of three D-determined models are score 
4, score 4, and score 4, respectively. This means that the prediction is not consistent with 
the ground truth. The image with a high-quality label is assigned to the low-quality class, 
especially in the case of type c.  

 
Figure 15. Original image. 

   
Type a Type b Type c 

FFP(x, y) regarding the FD-determined optimal model 

   
Type a Type b Type c 

FFP(x, y) regarding the D-determined optimal model 

Figure 15. Original image.

J. Imaging 2022, 8, x FOR PEER REVIEW 14 of 17 
 

 

   
Type a Type b Type c 

AIR(x, y) regarding the D-determined optimal model 

Figure 14. AIR(x, y) of Figure 12. 

Similar to the above analysis, we can see that for all of the types, two kinds of AIR(x, 
y) are almost the same. In the case of types b and c, the highlighted region that is consid-
ered as the AIR has the weeds that result in the low assessment, while it is very close to 
the human’s assessment to this photo. However, in the case of type a, the highlighted 
region is unclear. This may be the reason that the prediction is score 4.  

On the other hand, for all of the types, the two kinds of FFP(x, y) are almost the same, 
too, although these are different for different types. We think that the FFP of the image 
should be the area of the flower for the human perception. The two optimal models of 
type c indeed learn the elements of FFP as the human; however, for type a and type b, two 
optimal models extract the surrounding of the flower as FFP.  

Figure 15 is the third example of the original image. Figures 16 and 17 show the 
FFP(x, y) and AIR(x, y) of this image, using the FD-determined and the D-determined 
optimal models of types a, b, and c, respectively. This image is from the CUHK-PQ dataset 
with a high-quality labeling. The predictions of three FD-determined models are score 4, 
score 4, and score 3, respectively; the predictions of three D-determined models are score 
4, score 4, and score 4, respectively. This means that the prediction is not consistent with 
the ground truth. The image with a high-quality label is assigned to the low-quality class, 
especially in the case of type c.  

 
Figure 15. Original image. 

   
Type a Type b Type c 

FFP(x, y) regarding the FD-determined optimal model 

   
Type a Type b Type c 

FFP(x, y) regarding the D-determined optimal model 

Figure 16. FFP(x, y) of Figure 15.
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For all of the three types, we can see that the FFP(x, y) and AIR(x, y) do not meet the 
rule of thirds in photography. This may be the reason that it results in the incorrect pre-
diction.  
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For all of the three types, we can see that the FFP(x, y) and AIR(x, y) do not meet the rule
of thirds in photography. This may be the reason that it results in the incorrect prediction.

In fact, about 300 images selected randomly from the CUHK-PQ dataset and the
website are used to investigate the properties of their FFP(x, y) and AIR(x, y). Although
they are various for different images, for almost of the images, it is observed that the optimal
models of type b and type c, especially type c, can learn FFP and AIR, which are closer to
the human aesthetics. It seems that extracting the FFP and AIR of the image can help in
understanding the internal properties of the model related to the human aesthetics and
validating its external performances of the aesthetic assessment, although it is necessary to
do more experiments to validate these observations.

6. Conclusions

To establish an optimal model for photo aesthetic assessment, in this paper, an internal
metric called the D-measure, which reflects the disentanglement degree of the final layer
FC nodes of CNN was introduced. By combining the F-measure with the D-measure to
obtain an FD measure, an algorithm of determining the optimal model from many photo
score prediction models generated by a CNN-based RSRL was proposed. Furthermore, the
FFP and the AIR of the models to the image were defined and calculated. Compared with
the only F-measure-based RSRL, using the FD measure to determine the optimal model
from the re-trained models is helpful in improving the efficiency of selecting the optimal
model, although the D-measure is only the necessary condition for a model having the
high F-measure.

Furthermore, extracting the FFP and AIR of the models to the image can help in
understanding the internal properties of these models related to the human aesthetics and
validating its external performances of the aesthetic assessment. The experimental results
show that the optimal models of type b and type c, especially type c, can learn FFP and
AIR, which are closer to the human aesthetics.

In the next work, it is necessary to do more experiments to validate the above observa-
tions and the effectiveness of the proposed method.

On the other hand, we think that it is possible to apply the proposed method to the
different domains, which have the open issues of the imbalance classification.
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Abbreviations

CNN convolution neural network
RSRL repetitively self-revised learning
D-measure disentanglement-measure
FD measure combining F-measure with D-measure
FFP first fixation perspective
AIR assessment interest region
Type a Fine-tuned AlexNet
Type b Changed AlexNet
Type c Only 1 × 1 convolutions CNN
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