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Abstract: Accurate and reliable detection is one of the main tasks of Autonomous Driving Systems
(ADS). While detecting the obstacles on the road during various environmental circumstances add to
the reliability of ADS, it results in more intensive computations and more complicated systems. The
stringent real-time requirements of ADS, resource constraints, and energy efficiency considerations
add to the design complications. This work presents an adaptive system that detects pedestrians
and vehicles in different lighting conditions on the road. We take a hardware-software co-design
approach on Zynq UltraScale+ MPSoC and develop a dynamically reconfigurable ADS that employs
hardware accelerators for pedestrian and vehicle detection and adapts its detection method to the
environment lighting conditions. The results show that the system maintains real-time performance
and achieves adaptability with minimal resource overhead.

Keywords: real-time detection; hardware accelerator; partial reconfiguration; pedestrian detection;
vehicle detection; FPGA; Adaptive ADS; HOG; SVM; DBN

1. Introduction

Autonomous driving systems (ADSs) will be used more widely when their use on the
roads is legislated. ADS’ legal implications are mostly related to their reliability and safety
concerns, which could be addressed when these systems guarantee reliable actions in the
case of any hazardous situation. The safety-critical nature of ADS imposes hard real-time
requirements on the system. Real-time systems are responsible for completing their task
within a specified period; otherwise, it is considered a failure. Hard real-time systems, also
known as immediate real-time systems, should be able to complete their operation within
the stringent deadline. While missing a deadline in soft real-time systems may lead to a
significant loss, it would be catastrophic in hard real-time systems. A simple example of
such hard real-time applications is the anti-lock brakes in a car. Time constraints associated
with hard real-time applications add more complexity to the design of these systems.

ADSs are expected to provide safer and more reliable driving than human drivers.
Accurate obstacle detection is an essential prerequisite to making a reliable decision in these
autonomous systems, which results in the need for several complicated and advanced object
detection algorithms. There are various obstacles, and they could appear on the road in
different environmental conditions. A change in environment could affect the appearance
of objects and make the detection task more challenging. All these variations should
be considered for robust detection in a system designed for a safety-critical application
such as ADSs. Detecting variants of obstacles in different environments and lighting
conditions requires extra trained models and more computation during the detection phase.
These additional requirements result in more challenging resource allocations for real-time
applications where resource-aware and energy-efficient merits play a significant part in
design decisions.
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We look into the problem of pedestrian and vehicle detection in ADSs. Our design
targets real-time detection of pedestrians at different sizes and distances and car detection
in various lighting conditions for images of 1920 x 1080. To address the challenge of vehicle
detection in different environmental conditions, we consider three different scenarios of
day, dusk and dark. We base our design on our previous works where a pedestrian detec-
tion hardware accelerator was presented by introducing a specific memory hierarchy [1]
and algorithmic modification of the detection algorithm [2]. We also use the models that
were developed in our previous work [3] for vehicle detection for three different lighting
conditions and build our adaptive system on top of them. We deploy four ARM Cortex A53
processors on the Zynq UltraScale+ development kit to manage the data transfer between
the software and hardware accelerators and initiate and monitor the process of dynamic re-
configuration. The vehicle detection models and algorithms are updated through dynamic
and partial reconfiguration while pedestrian detection runs uninterrupted.

Considering that training and using different models for detecting an object in different
environmental conditions could result in better performance and exploiting the unique
reconfiguration feature of FPGA platforms, we develop a system that targets adaptive
vehicle detection. The main contribution of this work is creating the framework on a
heterogeneous computing platform where several hardware accelerators are deployed
on programmable logic (PL) and are coordinated through the ARM processors on the
processing system (PS). With our partial reconfiguration approach, we deploy three different
algorithms by utilizing the hardware resources required for only one algorithm. We use
the partial reconfiguration controller developed in our previous work [3] to minimize the
time overhead for the reconfiguration process. However, even during the reconfiguration
process, pedestrian detection is not interrupted. Our partial reconfiguration approach
results in added adaptability to the system with negligible increased hardware resources.

The rest of the paper is organized as follows. A review of pedestrian and vehicle detec-
tion methods is provided in Section 2. Section 3 presents our adaptive system design and
the task division between the hardware and software. The pedestrian and vehicle detection
algorithms, training and test datasets, and the accuracy of trained models are discussed
in Section 4. The hardware implementations of the accelerators and their performance
are provided in Section 5. Section 6 provides the hardware resource utilization and an
evaluation of the hardware implementations by comparing their processing time with the
required processing time of the same algorithms on the PS part of the Zynq UltraScale+
platform. The advantages of partial and dynamic reconfiguration in providing system
adaptability with minimal resource overhead are also discussed. Concluding remarks are
provided in Section 7.

2. Literature Review and Background

During the last few decades, various detection algorithms have been proposed and
evaluated for object detection. These methods can be divided into different categories of
shape-based detection, motion-based detection and a combination of shape and motion-
based detection [4]. They range from conventional machine learning (ML) approaches [5-9]
to deep learning (DL)-based techniques [10-12]. In conventional ML approaches, the
features are extracted and described through some human-defined algorithms and are
passed through a classification stage for the final decision. However, in the DL approach,
both feature extraction and classification stages are managed within the network, and it is
only the art of designing suitable network architectures so that the required features could
be extracted and distinguished efficiently.

Several algorithms are developed in the context of conventional ML. However, most
of them rely on a few well-known feature descriptors with some modification in either
the extraction algorithm or classification structure. One of these early developed features
is Haar-like features where a wavelet template is used to define the shape of an object
in terms of a subset of the wavelet coefficients of the image [13]. Cascades of Haar-like
features proposed by Viola and Jones in 2001 [5] are another early method used for object
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detection. Originally developed for face detection, this method has the advantage of low
computation by introducing a new image representation called “integral image” and yields
the detection rate of 15 frames per second (fps) in the original work of face detection [5].
A modified version of the AdaBoost classifier is used for the classification purpose in this
study [6]. This approach is tailored to human detection by taking into account the motion
information by Viola and Jones in 2003 [7].

Histogram of oriented gradients (HOG), introduced by Dalal and Triggs in 2005, is the
other well-known early approach in human detection [8]. HOG features are considered one
of the most efficient and promising features for human detection within the context of con-
ventional machine learning approaches where the features are handcrafted. These features
are usually used in conjunction with a classifier such as AdaBoost [6] or a support vector
machine (SVM) [9] to detect the specific class of objects [14]. HOG features have also been
employed in the detection of other objects, such as vehicles, and have shown reasonably
accurate detection results compared to other traditional vehicle detection algorithms [15].

Several research works have studied the detection of cars either based on its appear-
ance, its motion or a combination of both [15]. While motion-based methods look at the
sequence of frames and employ both detection and tracking algorithms [16,17], appearance-
based detection mainly relies on the pixel information of one image frame. In general,
these methods extract vehicle appearance features and compare them with a pre-trained
model through the classification stage. Various visual features of vehicles are used for
this purpose, including the overall shape of car, edges, corners, underneath shadow of the
vehicle, headlight or taillight position, and their color. However, all of these features are
somehow affected by the environmental condition, which makes the challenge of accurate
detection even more complicated.

Deep learning (DL) algorithms have become more popular due to the increased data
volumes and improvements in computing power and storage. Modern approaches for ob-
ject detection are mostly based on deep neural networks (DNNs) and convolutional neural
networks (CNNs). In these approaches, the features are not extracted by a human. Instead,
the first few layers of the networks are meant to extract the features and build up more
complicated features through the network layers. The final layers of the network act as the
classification stage to make the final decision and classify the image into several categories.

CNNs are mostly used in image processing, where the massive number of input pixels
results in a huge amount of calculations in feed-forward DNNs. The idea behind these
architectures is that within the image, nearby pixels constitute features of the objects and
applying convolution filters to the pixels could effectively extract these features. CNNs
consist of a series of convolutional layers where each convolutional neuron processes
the data only within its receptive field [18]. While CNNs are a good option for image
classification, applying them to object detection problems results in huge computations.
Detecting an object within an image requires several regions of the image to be examined at
different scales, which make CNNs inefficient for object detection tasks. Architectures such
as region CNN (R-CNN) [19], Fast R-CNN [20], Faster R-CNN [21], you only look once
(YOLO) [22] and some other lightweight variations of CNN [10-12] have been developed
to address this issue and bypass the problem of including too many regions.

Deep belief networks (DBNs) are a stack of separately trained restricted Boltzmann
machines (RBMs) [23] layered on top of each other. RMBs consist of one input layer, one
output layer and few hidden layers in between. Each hidden layer is considered as the
visible layer to the next layer RBM. There are no connections within a layer, and the nodes
of each layer are only connected to their next layer [24].

CapsNets are the most recent type of NN architectures with the capability of modeling
spatial relationships. While CNNs could extract the features of objects, the location infor-
mation between the features is not kept within the layers. Missing the location information
could result in incorrect classification where the object parts are available but are in the
wrong order. CapsNets address this failure of CNNs by introducing the concept of a
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capsule. Capsules are the nested set of a few neurons in a layer and output a vector to
represent the existence of the entity [25].

3. Adaptive System Design

Pedestrian and vehicle detection are the two main tasks of an ADS. While there are
many other obstacles on the road that these advanced systems should detect, we consider
the detection of these two objects and showcase our adaptive vehicle detection approach.

A variety of features are used extensively in vehicle detection to extract visual features
of vehicles, including Haar-like features and HOG features. However, all these methods
are affected by the change in environmental conditions to some extent. Even though HOG
features are extracted to minimize the lighting and luminance variance by including a
normalization stage, the visual features of the vehicle could vary significantly by the change
of ambient light from one extreme to the other, i.e., from day to night. This is because
the vehicle itself is not a static object with regard to its appearance in different lighting
conditions. In other words, since the object’s appearance may change under different
environmental conditions, the best approach is to update the detection method based on
the ambient light. This is on top of the fact that detecting any object in the dark could be
more challenging.

Mostly, the vehicle detection is categorized into two different conditions of light and
dark, and different datasets are provided in the literature for these two cases. We consider
the third situation of low light where the visual appearance of the object changes extensively,
but the vehicle shape features could be considered as an identifying feature and hence
could be considered in the classification stage [3]. We name these three different conditions
day, dusk and dark. We use different methods to detect the vehicles during these three
scenarios. While detection during the day and dusk only differ in their trained model, the
detection algorithm for the dark scenario is totally different and results in a completely
different hardware accelerator.

We deploy a hardware accelerator for pedestrian detection in parallel with a hardware
accelerator for vehicle detection. The vehicle detection hardware accelerator is dynamically
updated in the system as the environment lighting changes. At the same time, we maintain
uninterrupted pedestrian detection during the system update. The update process is achieved
through partial reconfiguration (PR) of the FPGA fabric on Zynq UltraScale+ MPSoC.

PR is an advanced feature of FPGAs, which allows time multiplexing the hardware
resources. PR results in having both the flexibility of software implementation and the
performance of hardware implementation simultaneously. There are several potential
advantages in PR, including but not limited to increasing the effective logic density, saving
cost and power by reducing the FPGA for a target functionality, and providing the feasibility
of adaptive and more secure systems.

Figure 1 shows a block diagram of our adaptive system implemented on Zynq Ultra-
Scale+ MPSoC. The interface between different parts of the PL and the interface between
the PL and PS are maintained through the advanced extensible interface (AXI). The system
consists of the pedestrian, vehicle detection hardware accelerators, PR controller on the
FPGA fabric and four ARM Cortex A53 processors on the PS side. Both P1 and PS have
access to their dedicated DDR3 modules. One processor reads the images from the DDR3
connected to the PS. The image information is then transmitted through high-performance
ports on the PS to the PL. These data are received by both the pedestrian and vehicle
hardware accelerators through their dedicated direct memory access (DMA) interconnect.
Two other processors capture the results of vehicle and pedestrian detection through two
separate high-performance AXI interconnects. The other processor is assigned to initiating
and monitoring the partial reconfiguration process when the request is generated and
triggered by the change in the environment’s lighting condition. While a signal from a light
sensor should trigger this process, we emulate this signal for the simplicity of our design.
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Figure 1. Block diagram of implemented adaptive system.

4. Pedestrian and Vehicle Detection

Pedestrian and vehicle detection are the vital tasks in driver assistance systems (DASs)
and autonomous driving systems (ADSs). Pedestrian detection is considered one of the
most challenging tasks due to the variation in human sizes, poses and their appearance.
Reliable detection of pedestrians and humans is also important in several other domains
such as video surveillance and robotics.

Vehicle detection is the main and primary task in an ADS, which has been a topic of
interest over the last decade. Several research works have studied the detection of cars
either based on its appearance, its motion or a combination of both [15]. While motion-
based methods look at the sequence of frames and employ both detection and tracking
algorithms [16,17], appearance-based detection mainly relies on the pixel information
of one image frame. In general, these methods extract vehicle appearance features and
compare them with a pre-trained model through the classification stage. Various visual
features of vehicles are used for this purpose, including the overall shape of car, edges,
corners, underneath shadow of the vehicle, headlight or taillight position and their color.
However, all of these features are somehow affected by the environmental condition, which
makes the challenge of accurate detection even more complicated.
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The DL approaches in object detection achieve more accurate results at the cost of
more computation [26]. Although, in some scenarios, the traditional ML approaches
might achieve lower detection accuracy than DL-based techniques, these methods are
considered good candidates in real-time applications with constrained computation power.
The combination of the HOG feature extractor and linear SVM has shown its competency in
human and vehicle detection. We base our pedestrian detection and our vehicle detection
during the day and dusk on this method. We use DBN-based taillight detection for vehicle
detection during the dark and in very low lighting conditions.

4.1. HOG+SVM Algorithm

The principle of object detection in the traditional approach consists of two different
stages of feature extraction and object classification. In the first stage, specific features of an
image are extracted. In the next stage, the classifier decides whether the object belongs to
the particular class based on the calculated features in the initial stage. Figure 2 shows a
block diagram of object detection using the HOG feature extractor and SVM classifier. In
this method, the HOG features of the input image are first calculated and then passed to
the SVM classifier. The classifier compares the HOG features of input with its pre-trained
model data, which represents the human model in this case. The result of the classifier
defines if the image belongs to the pedestrian class or not.

Pedestrian

Input HOG Feature SVM Classifier Detection
Image Extractor Result

Non Pedestrian

Figure 2. Block diagram of detection based on the HOG feature extractor and SVM classifier.

Calculating HOG features incorporates dividing the input image into small parts
called cells, normally 8 x 8 pixels, as shown in Figure 3. Then, the gradients in both x and
y directions are calculated for each pixel within the cell. Simple [~1,0,1] and [~1,0,1]T
gradient filters are applied to the pixel value f(x,y) in order to obtain both fy(x,y) and
fy(x,y), which are defined as

fx(oy) = fx+1y) — f(x—1Ly) )

fy(xy) = flxy+1) = floy —1) @

The gradient magnitude m(x, y) and gradient direction (x, y) are then computed as
m(x,y) = /R (xy) + f(xy) ()

6(x,y) = arctan m 4)

The gradient histograms are then generated for each cell within the image. The interval
of [0, ) is evenly divided into nine bins. This value chosen as the number of orientations
is offered by Dalal and Triggs [8] to result in better human detection. The association of a
bin with each pixel is based on the value of 6(x, y) and is weighted by the value of m(x, y).
The two nearest bins to the value of 6(x, y) are updated to avoid aliasing effect.

The normalization process is the final step in HOG feature extraction. The blocks are
the overlapping number of adjacent cells and usually consists of four cells, i.e., a set of 2 x 2
neighboring cells [8]. Feature vectors of the four cells within a block are accumulated to
generate a normalization factor. This factor depends on the normalization scheme adopted



J. Imaging 2022, 8, 106

7 of 21

for this step. We use the L1-sqrt normalization scheme, where € is a small constant and
LI-sqrt is defined as
v

LI—S rt _—_—
I (D

©)
With v as the unnormalized feature vector, ||v||;, known as the k-norm of the vector, is
defined as:

Il = (2 )’ ©

where x; are the feature vectors, and 7 is the number of feature vectors.

Once the features are extracted and normalized, a window of generated features are
passed to the classifier to evaluate the presence of a specific object, i.e., human in the case
of pedestrian detection. The concept of overlapping blocks and a sliding detection window
is depicted in Figure 3.

The classification stage is based on using an SVM classifier. The linear SVM is a
discriminative binary classifier, which is defined by the hyper-plane separating positive
and negative regions. Given the training data together with their class labels, the SVM
constructs an optimum hyper-plane by its support vectors, which define either a specific set
of features belongs to a class of objects or not [9]. In its simplest form for two-dimensional
feature space, the SVM generates a line to divide positive and negative samples. SVM
classifier looks for the answer of Equation (7) in a way that minimizes w so that E(w), the
total hinge loss, is minimized. w and x are the weight vector and feature vector, respectively,
and 7 is the number of elements in the weight vector and feature vector.

Input Image
A A

'
1l 172, [
| [

8 x 8 Pixel H

2x2Cel

Blockl: \f e

| i [
v, | [
[

16 x 8 Cell L

Esiidfing Window

Figure 3. Cell, block and sliding window in detection algorithm based on HOG and SVM. Detection
window of 64 x 128 pixels, equivalent to 8 x 16 cells is used for pedestrian detection [2].

E(w) = Gl + 5 Y mex{01 ~yiw, )} @)

During the detection and at the classification stage, the linear SVM classifier compares
the test data with the model data by calculating the dot product of the features vector x and
the weight vector w. The weight vector w is calculated and obtained during the training
stage. A bias value b is also calculated during the training stage and is used in Equation (8)
during the classification.

yx)=w-x+b 8)
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The resulting y(x) defines whether the feature vector belongs to the specific class of
objects or not by checking its sign as

{y(x) > 0 = positive (9)
y(x) < 0 = negative (10)

The detection accuracy of a classification is defined in Equation (11). The number of
correctly detected objects are called true positives shown by TP. The number of images
that are correctly classified as non-object are called true negatives and is shown by TN. FP
stands for the number of false positives, which are the images incorrectly classified as the
object. Similarly, FN is the number of false negatives, which are the images that include the
objects but are not classified correctly.

TP+ TN

TP+TN+FP+FN (1

Accuracy =

4.2. HOG+SVM Models for Pedestrian and Vehicle Detection

Figure 4 shows a block diagram of the training and test procedure. HOG features of
an input image are extracted through three main stages of gradient calculation, histogram
generation and block normalization, as explained earlier in this section. The features are
then classified against a pre-trained model in the SVM classification stage to provide the
final results. An SVM model is created during the training phase, where HOG features are
extracted for all the training images of a dataset and trained by LibLINEAR [27].

HOG Feature Extraction

Feature i
Input Image Gradient Histogram Block SVM Detection Result

Calculation Generation Normalization Data Classification

Positive HOG Feature Extraction & SVM Training

Trainin|

Image HOG

== Feature #=| LibLINEAR

Extraction

Trained
Negative Model

Trainin;

Image

Figure 4. Detection method by HOG+SVM for pedestrian detection, vehicle detection during the day
and vehicle detection during the dusk.

The first step in the implementation of the pedestrian detector is choosing a suitable
dataset. We use the INRIA pedestrian dataset [28], which has 2416 pedestrian images,
called positive images, and 1218 images where there is no presence of a human in them,
known as negative images. To create a richer training dataset, we generate negative images
by randomly sampling the negative train images. We generated 12,180 negative train
images, which are used in the training process. The test dataset of INRIA consists of
1126 positive images and 453 negative images. With the same random sampling method
applied to negative train images, we generate 4530 negative test images to evaluate our
classifier performance.

During the day and dusk lighting conditions, where the edge and shape boundaries
of vehicles are reliable identifying features, we use the HOG+SVM detection method, as
explained in [3]. For detection during the day, a subset of the UPM vehicle dataset [29],
which includes a subset of images extracted from the Caltech dataset [30] and the TU
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Graz-02 dataset [31], is used. The vehicle images in this dataset are aligned with the
conditions that we have defined for vehicle detection during the day. In moderate lighting
conditions—considered dusk conditions—the SVM classifier is trained using the images
in the SYSU dataset [17], which satisfies our definition of dusk scenario. Even though the
dataset is aimed at night vehicles, since the images are taken from near cars and in the
urban area with a reasonable level of lighting, their visual appearance is quite visible, and
we categorize them into the dusk condition. Table 1 summarizes the details of images that
are used for train and test our detection models.

Table 1. Details of training and test datasets. Test images of INRIA dataset [28], UPM dataset [29]
and SYSU dataset [17] are used for test of pedestrian, day and dusk condition respectively.

SVM Model Training Dataset Test Dataset
Name Size Image Size Positives Negatives Image Size Positives Negatives
Pedestrian 7 x 15 x 36 96 x 160 2416 12,180 70 x 134 1126 4530
Day 7 X7 %36 64 x 64 800 975 64 x 64 200 25
Dusk 7 x7 %36 64 x 64 450 1345 64 x 64 1063 752

Two different models for two different scenarios of day and dusk are generated.
The major difference in these two models is seen in the area where taillights are usually
positioned within the 64 x 64 window. The day model is created using the day training
dataset and is used as input for the classifier during the detection in day lighting conditions.
The dusk model trained by the dusk training dataset aims at detecting the vehicles in the
dusk scenario.

The trained SVM models were evaluated, and the results show that using the day
model for classification in moderate light results in about 20% decrease in detection accuracy.
Using the dusk model and the test set of the SYSU dataset [17] resulted in detection accuracy
of 82.37%. The achieved accuracy shows a noticeable decrease compared to the day scenario,
which could be expected as the detection in medium to low light is more challenging than in
bright conditions. Trying to improve this value, we trained the SVM classifier by applying
both the day dataset and dusk dataset at the same time. It is noticeable that the trained
models in these three cases look very different. The results of evaluation tests show that
the accuracy of detection in dusk improves up to the value of 85.34% with the combined
model. This could be justified by noting the fact that the visual appearance of vehicles in
the dusk scenario is very similar to their appearance in the day with a slight decrease in the
sharpness of edges as well as some added features around the taillights.

Figure 5 compares the results of different trained models in different test scenarios. It
is noticeable that the detection accuracy during the day drops from 96.00% to 20.89% when
the dusk model is used instead of the day model. This substantial decrease in accuracy
is justified by the fact that the dusk trained model relies mostly on the gradient change
around light positions, but the dominant gradient in a vehicle shape in the presence of
light happens around the physical boundaries of the car. The detection accuracy during the
dusk with the day model eventuates in more tolerable results as it decreases from 82.37%
to 73.78%. However, it is still considered as a substantial downfall and is not acceptable.
The results confirm the need for two separate SVM models for better accuracy.
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Detection Accuracy
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100.00% 85.34%
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73.78%

Day Test with UPM Dataset ~ Dusk Test with SYSU Dataset Dusk Test with Subset of
SYSU Dataset

Day SVM Model  ® Dusk SVM Model ~ ® Combined SVM Model

Figure 5. Comparison of accuracy in day and dusk test scenarios with different SVM trained models.

4.3. Multi-Scale HOG+SVM

We deploy the algorithmic modification to the conventional HOG+SVM multi-scale
object detection, which is presented in [2]. In this approach, the normalized HOG features
are down-sampled to detect different sizes of the object within an image. By shifting
the scale pyramid generation stage to the later stages after the feature extraction, the
computational complexity will be reduced significantly. The INRIA person dataset [28]
is used to verify the effect of our proposed modification. The original dataset is used to
provide an SVM model for pedestrian by training a linear SVM with the extracted HOG
features in LibLinear [27]. The model is then used to check the detection accuracy, where a
98.0375% detection rate is obtained over the INRIA test dataset. The original test dataset
of INRIA is then up-sampled using the scale value of 1.1 to 2 with the step size of 0.1 to
generate a test dataset for humans at various window sizes from 64 x 128 to 128 x 256.

The verification is accomplished by applying the up-sampled test dataset to two
different configurations of the detector, as shown in Figure 6. The first configuration
follows the conventional method of HOG+SVM detection, where the image is first resized
to the detection window size, and then the features are extracted and fed to the classifier.
The second configuration shows our proposed method in which the HOG features are
extracted at the first stage, and then the features are resized to match the detection window
size equal to the dimension of the trained SVM model.

V7777777777 V7777777777
Scaled Image HOG Feature Data
SVM Detection
(a) Lol ) P> Feature Classifier | Result
Dataset Sampling Extractor Trained
\ LY \ LY Model
07777777777 (GTTTTITTTT)
Scaled HOG N
(b) s i N Feature | FeatureData SVM | Detection
Down Classifier = Result
Dataset Extractor « Trained
Sampling
\ \ A Model

Figure 6. Setup test for two scenarios of (a) conventional detection method (b) proposed detection
method [2].

Figure 7 makes the comparison of detection accuracy in the conventional approach and
our proposed method in [2] for different scales of image and HOG features. The obtained
results for the accuracy shows that at near original scales, up to the scale value of around
1.5, our proposed method outperforms the conventional method, while as the scale value
increases from 1.5 to higher values, down-sampled HOG features are not as promising as
the resized image.
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Figure 7. Detection accuracy comparison between the results of the scaled image and scaled HOG
features at different scales.

4.4. DBN-Based Vehicle Detection

The vehicle detection is a more challenging task when the car headlights are the main
source of light on the road during the very dark conditions at night. In this scenario, only
the objects within a near distance of the light source could be recognized by their shape
and visual appearance. In this situation, the vehicle detection mainly relies on the detection
of taillights with the expected size, color, and position. We use a two-stage detection
method proposed in our other work [3]. During the first detection stage, taillights are
detected by a trained DBN. The second stage of detection uses the generated features of the
previous stage, which are considered spatially to match the detected taillights and detect
the existence of vehicles. Figure 8 shows the block diagram of vehicle detection in the dark.
Two preprocessing stages subtract the background and eliminate the noise.

. Noise Taillight .
Binary Reduction Detection gaatal .
Input | gp|it Threshold Correlation Detection
Channels & & Deep &
Image Contour Belief . Result
Downsample Matching

Smoothing Network

Figure 8. Block diagram of vehicle detection in dark.

The DBN is trained in Matlab and has 81 visible inputs. These inputs correspond to
the binary values of a 9 x 9 window of the image. The architecture of our DBN is shown
in Figure 9 shows the architecture of the DBN with two hidden layers with twenty and
eight hidden nodes, respectively. The number of hidden layers and their nodes is selected
based on the several iterations in training the DBN with different hidden layers and with
different node numbers. The current values generate the most promising results with the
smallest error rate.

The cropped images of taillights from the training images of the SYSU [17] dataset
are used to train the DBN. The final output layer consists of four nodes that determine
the presence of taillights with different sizes. Since the distance between the two taillights
is expected to be within a specific range, only a particular region around each detected
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Figure 9. DBN comprised of three separately trained RBMs.

5. Implementation

The hardware accelerator that is used for pedestrian detection and vehicle detection
during day and dusk scenarios includes two main stages of HOG extractor and SVM
classifier, as shown in Figure 10. The HOG feature extraction consists of a few computation
stages. Figure 10 shows two different processing stages within the HOG extraction stage.
The gradient calculation and histogram generation steps process the pixels within a cell,
while the final step of block normalization modifies the generated histograms within a
block. Processing the pixels within the cells has a different data access pattern than the
normalization stage. This means some intermediate storage elements are required between
these two functional blocks. Moreover, the histograms of cells are updated several times
during the processing of different pixels within a cell or its neighbor cells. In our hardware
implementation, the gradient calculation and histogram generation are merged into one
module named HOGDescriptor. Block normalization is kept as a separate module named
HOGNormalizer. Three different memory structures are considered at the start, middle and
end of the implemented pipeline to address different data access requirements of each
processing stage. The input image is read from off-chip memory and is passed through
a line buffer, ImageBuffers, where four rows of the image are stored. This is because three
rows of pixels are required for the calculation of f,(x,y). The other row is updated with
new data that are required for the calculations in the next row of pixels.

HOGEXxractor Pedestrian Classifier

1
Normalized
N-HOGMem
1

4x

Object etection
| Classification — "
HogWidth x 18 x ] |
Bin : Pedestrian :
: Model Dafa :
\ }

Figure 10. Block diagram of implemented hardware accelerator for pedestrian detection [2].
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As discussed above, memory access could impose latency in the processing pipeline,
especially in the case of off-chip memories. Furthermore, with the potential resource
constraints for on-chip memories and the power/energy overhead, considerations should
be taken into account for the wise and efficient use of storage elements. Defining a memory
hierarchy that is specifically designed to address the requirements of specific access patterns
within an algorithm is beneficial.

The generation of histograms starts with gradient magnitude and direction calculation.
The image pixels are read starting from the top left of the image, and gradient values
are calculated. The image is scanned through its rows. Since the pixel information from
three consecutive rows is required for calculating the gradient, we use four line buffers
in the ImageBuffers to access and reuse the data needed during gradient calculation. One
additional line buffer is considered to be updated while the gradient values in one row
are calculated.

The floating point calculations in the HOGDescriptor are replaced by fixed-point calcu-
lations, which is a common practice in hardware implementations. Moreover, trigonometric
functions are implemented through the use of lookup tables (LUTs). fy(x,y) and fy(x,v)
gradients are calculated in parallel, followed by the calculation of the gradient magnitude
and bilinear interpolation within the pipeline. The implemented architecture has an initial
delay of around 100 clock cycles and satisfies the timing requirements at the frequency of
300 MHz. However, the calculated gradient values should update the histograms of four
adjacent neighbor cells, which requires the possibility of simultaneous access to the memory
elements that are storing these updated values. This could potentially put constraints on
the throughput if not handled properly within the memory hierarchy.

The HOGMem is updated by the HOGDescriptor and accessed by the HOGNormalizer.
For an optimal result, memory access requirements at both ends should be taken into
account so that the feasibility of a parallel and high throughput processing pipeline is
obtained. Figure 11 shows how defining four different groups of cells results in all the
blocks containing only one cell from each group. Consequently, assigning separate memory
blocks to each group’s cells addresses the requirement of simultaneous access to the cells
and that their histograms are updated by calculating one gradient value.

Figure 11. Division of cells into four different groups of G1-G4 results in simultaneous access to all
cells contributing to each HOG block [1].

The cell division pattern represented in Figure 11 also guarantees that each block
during the normalization stage consists of cells belonging to different memory groups.
Consequently, the HOGNormalizer has simultaneous access to the data of these memories
during the calculation of normalized histograms.

We define a similar pattern for the memory storing the results of the HOGNormalizer,
called N-HOGMem. As shown in Figure 11, each cell contributes to four different blocks,
taking four different relative positions in four different blocks. As a result, the normalizer
generates four different versions of a cell histogram based on the normalization factors
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calculated for all four blocks that contain a specific cell. In this case, four memory banks
are associated with each group from GI to G4 to store four different versions of the cell
histogram. Figure 12 shows the structure of HOGMem and N-HOGMem and their relation
with the processing blocks within the HOGDescriptor.

HOGMem N-HOGMem
HOGDescriptor _ HOGNormalizer Normalized G4 Normalized G3
Final Copy RB RB
536 & G4 RULB RUL B
G2 Normalizer |™Normalized Value LU 1]
- G1 G3
o H%/ 2 x Histogram Values Normalizer %X %X
Gradient o HogWidth x HogWidth x|
. HogWidth ight X HogHeight x
Calculation & XBin ized Value Bin Bin
Histogram 61 Normalized G: Normalized G2
q Te C = T Nomaledvaie  Z—BEB RB
Generation e 5 R T
g\ @ Normalized Value w 1]
G1

4 x Histogram Values
Yx %X

- HogWidth x HogWidth x
4 x Histogram Values - HogHeight x HogHeight x
X Bin Bin Bin

Figure 12. Memory hierarchy of HOGMem and N-HOGMem. The HOGMem consists of two copies
updated by HOGDescriptor; one of them is accessed to update the gradient values, and the other

is used in calculating the normalized version of the histograms. Four instances of memory are
considered for each group cell in the N-HOGMem and are labeled based on their relative position in
the block [1].

HOGMem is an intermediate memory storing the un-normalized histograms. The
final values of the HOG descriptor are stored in N-HOGMem. Consequently, the size of
HOGMem is maintained as low as possible. The normalization of each row of HOG blocks
is completed before the new row of cell histograms are updated completely in HOGMem.
Consequently, HOGMem should only store four rows of cell histograms to minimize the
memory resource utilization.

Parallel and pipelined architecture is considered in the implementation of HOGNor-
malizer as well to avoid the addition of any extra delay to the processing pipeline. The
calculated normalization factor of a block is used for normalizing all cells within the block
at the same time in parallel. This approach results in data reuse and saves both power
and time.

As shown in Figure 10, the last stage in pedestrian detection is the classification of
HOG features through the linear SVMclassifier. The access pattern at this stage differs from
the order it is generated at the HOGNormalizer side. Therefore, the use of intermediate
memory, N-HOGMem is inevitable. We show how the choice of compatible pipelined
architecture for SVMclassifier helps in minimizing the size of N-HOGMem memory.

The classifier requires both the normalized feature data from N-HOGMem memory
and the model data to calculate the dot product of them. The trained pedestrian model is
stored in a separate memory and accessed by the SVMclassifier, as shown in Figure 10. Each
detection window for pedestrian detection is 16x8 blocks, and each block has a 36-element
feature vector.

N-HOGMem accesses 16 memory banks in parallel to read 16 different HOG features.
Even though 16 simultaneous data could be accessed in a cycle, these features do not
provide one full column of the detection window. However, in two cycles, one feature
for two columns of the window could be obtained from N-HOGMem. The SVM classifier
obtains the feature vectors of two columns every 72 clock cycles by circling through four
different categories of the feature data groups, i.e., LU, RU, LB and RB, shown in Figure 12.
This is equivalent to accessing the feature vector of one column every 36 clock cycles when
the buffers are full.

A parallel architecture matching with memory access is defined for the processing
units in the SVMclassifier. Balancing the processing speed at both feature extraction and
classification helps eliminate extra storage elements. The data features for one column of
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the window are accessed and fed to the classifier. At the same time, the dot products are
calculated by 16 different MAC units that are responsible for the multiplication and accu-
mulation required in the dot product. We name this processing unit MACBAR. Figure 13
shows the MACBAR parallel architecture, which consists of 16 MAC units working in
parallel, each fed with a model datum and data feature separately.

MAC BAR

___________________________________

|
i

: Feature 1 MAC1 Result 1
|

|

i

1 MAC 2

|

|

|

1 MAC3
|

|

|

|

1

| | Feature 4 MAC 4 Result4 > Accumulator
16 Feature Data! Accumulated Resul
] Stage

1

1

1

1 .

1 .
1 .
1
1
i
1
: MAC 15
1
1
1
1
1 6
1
1
1

LI 4

i
Nl

AN
6 Model Data)
—
V

E

Figure 13. The MACBAR parallel architecture consisting of 16 MAC units [2].

Figure 14 shows the implemented architecture of the SVM classifier with eight parallel
MACBAR computation units. The feature data are fed to the classifier and pipelined
through eight stages to calculate eight columns of eight different windows. Consequently,
once all eight MACBAR units are filled with the data, the classifier calculates the SVM result
of a window through 36 cycles. The detection window slides horizontally through the
image until it reaches to the end of the row, when a new window starts from the next row.
This approach results in a classification speed exceeding the rate of feature extraction. This
guarantees that the limited size of N-HOGMem considered in the design fully addresses
our requirements.

The same hardware architecture is used for the implementation of vehicle detection
during day and dusk. The only difference in these implementations is the size of the
detection window, which is 64 x 64 for the vehicle detection. The SVM classifier keeps
the same hardware architecture and processes two detection windows in 36 clock cycles,
which results in double the processing speed compared to the classifier speed in pedestrian
detection. However, since the HOG feature extraction stage requires more processing time,
this speed-up does not affect the final throughput.
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Figure 14. The parallel and pipeline architecture of SVMclassifier with 8 parallel MACBAR computa-
tion unit [2].

5.1. Multi-Scale Detection

Accurate and fast detection of pedestrians is one of the most challenging tasks of
an ADS. Humans of various sizes appear on the road at different distances from the car,
which results in the detection requirement of considering different sizes. Slight changes
in human size are considered within the training stage by feeding variations of positive
training samples to the SVM classifier. However, the classifier searches for a specific size
of a human within its defined window size. Consequently, the presence of objects with a
bigger or smaller size, which do not fit in the detection window, is not achieved through the
detection method shown in Figure 2. By using down-sampled images at different scales, the
detection of the objects with a bigger size or farther distance to the car will become possible.

The image pyramid is generated by down-sampling the original image by various
factors consecutively. The main parts of the detection pipeline, including both HOG feature
extraction and SVM classification, is then applied to each of the scaled images separately.
The final result is achieved by merging all the detection results and choosing the detection
with the highest probability based on the confidence score, as generated by the classifier.
The last part is usually handled by the non-maximum suppression (NMS) algorithm [32].
NMS considers the results of all windows that have an overlap of more than a specific
value and then choose the window with the highest classification result to represent the
final detection.

The real-time requirements of pedestrian detection in safety-critical applications, such
as an ADS, require the employment of hardware accelerators within the detection pipeline.
In the multi-scale detection scenario, where several scales of the image should be processed
to check the presence of an object, the utilization of a hardware accelerator could be
conducted in two different ways or a combination of both. Figure 15 shows two different
ways of instantiating the hardware accelerator, which processes the HOG feature extraction
and SVM classification.

In the first approach, shown in part (a), a functional block of image scaling reads an
input image and generates various scales by down-sampling the original image. These
scaled images are then processed in parallel by having several instances of the hardware
accelerator working in parallel. This approach helps in maintaining the high throughput
and real-time performance of the detection at the cost of higher resource utilization and,
consequently, higher power/energy consumption.
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Figure 15. Potential hardware implementations based on the conventional multi-scale detection
approach: (a) the fully parallel approach; (b) the sequential approach.

The second approach, as depicted in part (b) of Figure 15, maintains the resource
utilization as low as possible. The task of processing scaled images is handled by the same
hardware accelerator, which is in charge of processing the original image. The ScaleArbiter
functional block circulates through different images in the image pyramid and employs the
same hardware accelerator by time multiplexing the access of different scales of the image
to it. This approach benefits from low resource utilization; however, it lacks the capability
of providing real-time performance and throughput as the processing time is increased by
the factor of n.

A combination of these two approaches could be used based on the requirements and
constraints of the detection system. However, neither of them provides a good solution for
sophisticated real-time applications, where both resource and time constraints are critically
crucial. We base our hardware implementation on the algorithmic modification discussed
in Section 4.3.

Figure 16 shows the implemented pipeline for the multi-scale classification by down-
scaling the HOG features. We employ the memory architecture explained in the previous
section and keep the same hardware for the calculation of HOG features to avoid any
bottleneck in memory access. The interface between the HOG descriptor and SVM classi-
fiers is achieved through a few instances of feature memories for different scales. These
memories have the same architecture as NHOGMem, as explained in Section 4.2. These
memories provide the data for both the bilinear down-scaler of the next scale as well as the
current-scale SVM classifier.

HOG Feature Bilinear Scale 1 Featur Feature Scale 1 Featur Bilinear Scale 2 Feature Feature Scale n Featur Feature
Downscaler Memory Downscaler Memory Memory

1 (Scale 1) 2 (Scale 2) (Scale n)

HOG Feature
HOG Feature

L

Original HOG Feature > Scale 1 HOG Feature

Original
SVM SVM SVM

Classifier Classifier Classifier
16x8 Model Data> 16x8 Model Data > 16x8 Model Data >

Figure 16. Multi-scale classification using a series of pipelined down-scaling modules [2].

e
Scale n HOG Feature >
Scale 1 Scale n

5.2. DBN-Based

The implemented pipeline for vehicle detction in dark is shown in Figure 17. Parallel
and pipelined architecture is employed within each stage of the processing to maximize
the throughput and eliminate extra resource utilization. Vivado HLS high-level synthesis
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Figure 17. Pipeline of implemented vehicle detection in dark [3].

The results of Vivado HLS synthesis for vehicle detection in the dark show that
the latency of 2,122,251 cycles with the initiation interval of one cycle is achieved at the
frequency of 300 MHz. Consequently, an HDTV frame of 1920 x 1080 is processed within
less than 8 ms.

6. Evaluation and Comparisons

Dedicated hardware accelerators that are discussed in Section 5 are integrated together
to develop an adaptive system that is capable of reconfiguring itself dynamically during
the transitions between different lightning conditions. The partial reconfiguration (PR)
controller explained in our other work [3] is deployed on Zynq UltraScale+ MPSoC to
provide adaptability to the system with minimum reconfiguration time overhead. Zynq
UltraScale+ MPSoC includes four ARM Cortex A53 cores. With our hardware-software co-
design approach, one of these cores is responsible for initiating the dynamic reconfiguration
when the trigger signal is received. Our PR controller has the throughput of 390 MB/s [3]
and utilizes negligible hardware resources on FPGA.

The combination of parallel and pipelined architecture with a specific memory pattern
definition results in achieving higher throughput for HOG feature extraction and SVM
classification in our pedestrian and hardware detection accelerators. Our HOG+SVM
accelerators working at 300 MHz on Zynq UltraScale+ MPSoC are capable of processing an
HDTYV frame in less than 9 ms. This translates to the processing speed of 110 fps.

Table 2 presents the resource utilization of our implemented hardware accelerators.
Detailed resource utilizations for three hardware accelerators are provided in the table,
along with the final resource usage of the implemented adaptive system. It is evident
that by taking a dynamic reconfiguration approach, the resource utilization for three
different versions of vehicle detection algorithms is limited to the required resources for
one implementation only. Moreover, the PR controller utilizes less than 1% of the available
hardware resources on Zynq UltraScale+ MPSoC.

Table 2. Resource utilization of hardware accelerators and final adaptive design on Zynq UltraScale+
MPSoC.

Utilization LUT FF BRAM DSP48
Available 274,080 548,160 912 2520
Adaptive ADS 46% 28% 32% 21%
Pedestrian o o o o
Detection 16% 9% 13% 1%
Vehicle
Detection- 15% 9% 11% 1%
Day/Dusk
Vehicle 27% 18% 14% 20%

Detection-Dark
PR Controller 0.75% 0.55% 0.27% 0%
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For the purpose of evaluation, we use the performance event counters available
on ARM Cortex A53 performance monitor unit (PMU) to measure the number of cycles
required for pedestrian detection, multi-scale pedestrian detection and vehicle detection
ina 1920 x 1080 image. We use the OpenCV open source library in our C/C++ code and
run the program in Linux. The required time for processing one HDTV frame is measured
by ARM Streamline. It takes around 1.8 sec for one frame to be processed by the HOG
extractor and SVM classifier.

For the evaluation of speeding up the multi-scale detection, the C/C++ implemen-
tation is run on the ARM processor available on Zynq UltraScale+ MPSoC with different
values of scale ranging from 1.05 to 1.125. The results of profiling using the cycle counter
from ARM PMU is shown in Figure 18. The results show that with the scale value of 1.05, it
takes 5.0 s for an HDTV frame to be processed. The processing time decreases to around
2.4 s as the scale value increases to 1.125.
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Figure 18. The profiling result for multi-scale pedestrian detection with a scale factor of 1.05 on an
HDTV frame running on Zynq UltraScale+ ARM CortexA53 quad-core.

The chart in Figure 19 shows how increasing the number of down-sampled images in
the detection affects the processing time of a frame. While single-scale detection takes only
1.8 s to finish its task on the ARM processor, having multi-scale detection with the scale step
of 1.05 increases the processing time to 5.0 s while utilizing all the four available cores. This
value is about three times higher than the time required by single-scale detection, which
utilizes only one core.

Processing Time (sec)

5.00
4.50
4.00
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0.00

Single Scale  ®m Scale Step 1.125 mScale Step 1.1  m Scale Step 1.05

Figure 19. Comparison of ARM processing time for multi-scale detection of pedestrian in an HDTV
frame with different scale steps.
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7. Conclusions

This work presents an approach to improving the performance of embedded systems
in charge of data processing and decision making in an ADS. This goal is addressed
by introducing practical approaches to the development of hardware accelerators for
computationally intensive object detection tasks. A special memory hierarchy tailored to
the requirements of the algorithm at different processing stages is used in the development
of the HOG+SVM detection pipeline. Hardware implementation of the vehicle detection in
the dark is achieved by use of Vivado HLS tools. These implemented hardware accelerators
are then used as part of the final adaptive ADS through the hardware/software co-design.
Implemented work on the Zynq UltraScale+ MPSoC platform provides high-performance
and real-time detection. Our work shows that the adaptability of the system is achieved
through minimal time and resource overhead.

While our implemented system is mostly based on conventional ML algorithms,
the results show a significant improvement in the throughput between the hardware
implementation and the pure software implementation running on the ARM processors of
the Zynq UltraScale+ MPSoC. The detection accuracy of the algorithms deployed in this
work is reasonable but lower than the accuracy obtained in many newly developed deep
learning object algorithms. At the same time, with considerably lower resource utilization,
this presented work can achieve a high throughput of 110 fps. Moreover, adaptive detection
by means of dynamic and partial reconfiguration is applicable to any traditional or deep
learning ML algorithms.
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