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Abstract: Large vessels such as container ships rely on experienced pilots with extensive knowledge
of the local streams and tides responsible for maneuvering the vessel to its desired location. This work
proposes estimating time-to-collision (TTC) between moving objects (i.e., vessels) using real-time
video data captured from aerial drones in dynamic maritime environments. Our deep-learning-based
methods utilize features optimized with realistic virtually generated data for reliable and robust object
detection, segmentation, and tracking. Furthermore, we use rotated bounding box representations,
obtained from fine semantic segmentation of objects, for enhanced TTC estimation accuracy. We
intuitively present collision estimates as collision arrows that gradually change color to red to indicate
an imminent collision. Experiments conducted in a realistic dockyard virtual environment show
that our approaches precisely, robustly, and efficiently predict TTC between dynamic objects seen
from a top-view, with a mean error and a standard deviation of 0.358 and 0.114 s, respectively, in a
worst-case scenario.

Keywords: multiple-object tracking; convolutional neural networks; time-to-collision estimation

1. Introduction

Maritime environments are increasingly populated with vessels, which must have
a trained nautical pilot on board responsible for safely maneuvering the ship to its desti-
nation [1]. Nevertheless, safety inside dockyards is hard to ensure and accidents due to
human errors can be costly or deadly. An assisting tool working autonomously to support
the maritime pilot by predicting possible collisions would lower the risk of navigating the
vessel [2,3].

With a companion unmanned aerial vehicle (UAV), one may prevent potential colli-
sions and reduce vulnerabilities in waterway environments. By using artificial intelligence
(AI), autonomous systems must be capable of estimating when hazardous scenarios may
occur and provide helpful information to vessel and shipyard personnel for improved
decision-making to prevent physical and human losses. By using advanced deep learning
techniques to produce high-quality, real-time collision predictions, it is possible to assist
harbor personnel in ensuring a safer harbor environment for ships and staff.

The main goal of this work is to use UAVs and state-of-the-art machine vision and
learning algorithms to improve navigation safety and effectiveness in dockyard environ-
ments. We propose algorithms for an autonomous UAV and a monocular camera directed
downwards to predict time-to-collision (TTC) between ships in water environments. For a
UAV to correctly operate within a new environment, large amounts of image data from
the environment are needed for training. These training data are needed to help the AI
gain contextual knowledge of the environment so it can make correct predictions. We use
advanced simulation tools that simulate various maritime environments to collect large
amounts of data on demand. Furthermore, this environment can be used to validate and
test the system to obtain a qualitative understanding of our algorithms performance.
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To ensure safe navigation in water environments, the main contribution of the present
work, concerning our previous work [3], resides on producing reliable TTC estimations
from top-view video streams (see Figure 1). More specifically, we extend a data-driven
DNN semantic segmentation approach for precise object localization utilizing video streams
acquired from aerial top-views, and a robust deep-learning-based tracking method, which
ensures reliable data association of detections across frames of video streams, using refined
rotated bounding boxes for accurate multiple-object tracking. The main contribution of
this work is a novel accurate method for TTC estimation between all maritime vehicles
(i.e., vessels) within harbor environments that utilizes semantic segmentation and aligned
bounding box representations, and a visualization interface to present TTC in an easy-to-
understand manner.

The remainder of this paper is outlined as follows. First, we overview the related
work in object detection, segmentation, and tracking approaches, then we present the
developed approaches for estimating TTC of objects in shipyard contexts using top-view
images obtained from a drone.

Figure 1. Image of four vessels in collision route gathered by an autonomous UAV, and TTC estimated
using our real-time system.

2. Related Work

In the remainder of this section, we overview the state-of-the-art in machine learning
and vision approaches to solve the TTC estimation problem, with an emphasis on object
detection, segmentation, tracking, collision avoidance, and TTC estimation.

2.1. Object Detection and Semantic Segmentation

Object detection aims at determining where (localization) and what (classification)
objects reside in images [4]. Classical approaches attempted for object detection problem
can be decomposed in the following main steps: region selection, feature extraction, and
classification. However, due to the work of Krizhevsky et al. [5], AlexNet, an end-to-end
deep convolutional neural network (DCNN) approach for visual classification, achieved
top accuracy in the large-scale visual recognition challenge (ILSVRC) [6]. In [7], the deep-
learning based object detection method named Fast R-CNN that speeds up object detection
introduced the idea of using multi-scale pooling of images [8] and a single passage over the
entire input image, succeeded by a region of interest (ROI)-pooling layer that divides the
ROI into a fixed size, allowing to feed input images of arbitrary size. The computational
bottleneck of Fast R-CNN is the region proposal algorithm, which, like the original R-CNN,
utilizes selective search to generate region proposals. In Faster R-CNN [9], the authors
proposed further extensions to the previous approach. Namely, the RPN (region proposal
network) that jointly estimates object bounds and scores at each image location, reducing
the region proposals’ computation times. The state-of-the-art work of [10] proposed a faster
and more precise object detection neural network named YoloV4 than any other available
real-time object detectors at the time.
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While object detection provides each instance and location of a class, semantic seg-
mentation provides a pixel-level classification of all pixels in an image. On the other
hand, instance segmentation includes identification and spatial localization of objects using
bound boxes, and within each bounding box, the binary semantic segment of each pixel.
In [11], a further extension of the previously mentioned Faster R-CNN called Mask R-CNN
is introduced. Mask R-CNN adopts the same architecture and structure from Faster R-CNN,
but has significant improvements. The authors extend Faster R-CNN by adding a branch
for binary object mask prediction, in parallel with the existing branch for bounding box
estimation. In [12], a network called fast segmentation convolutional neural network was
introduced, which is suitable for embedded devices with low processing and memory
specifications. The network comprises four modules: Learning to Down-sample, Global
Feature Extractor, Feature Fusion, and Classifier. The network performs above real-time
(123.5) fps for high-resolution images (1024 × 2048 px) and implements skip-connections
popular in offline DCNNs with the shallow learning to downsample module. The Fast SCNN
network exhibits run-time improvements with a minor loss in accuracy when compared
with the previous semantic segmentation approaches. These data-hungry methods are
typically trained with simulation data and adapted to reality using domain randomization
and adaptation techniques [13,14].

2.2. Multiple-Object Tracking

Multiple-object tracking (MOT) tackles the association of object detection across video
frames to estimate and maintain object trajectories and identities over time simultaneously.
In this work, we employ the widely used a simple, online, and real-time tracking (SORT)
algorithm [15], which performs recursive state estimation via Kalman filtering in image
coordinates. Object detections association (i.e., data association) is achieved via the Hungar-
ian method with an association metric that assesses bounding box overlap. DeepSORT [15]
combines the former method with robust appearance-based features extracted with deep-
learning methods, allowing tracking objects through long periods of occlusion, and hence
reducing the amount of identity switches. Much of the computational complexity was
transferred to an offline pre-training phase in which a deep association metric is learned
on re-identification datasets to minimize inference time. The work of [16] introduces an
approach named Track R-CNN that simultaneously solves detection, tracking, and seg-
mentation, demonstrating that bounding-box tracking performance improvements are
attained when using fine classification (i.e., at the pixel level). Track R-CNN, a method
based on Mask R-CNN, extends the later by incorporating the time dimension through
3D convolutions to associate object identities over time. While the previous online greedy
approaches employ recursive inference techniques, for sequentially arriving images, of-
fline techniques optimize trajectories and identities for image batches, in a global manner.
These approaches use formulated multi-frame and multi-target data association as a graph
optimization technique [17,18].

2.3. Collision Avoidance

TTC was first introduced in [19] and deals with the problem of estimating the time
duration before two or more objects collide, given some certain initial conditions. In the
work of [20], the authors propose a method to calculate TTC between two vehicles to
improve vehicle safety. In [21], the authors introduced a system that, with the use of a
unmanned aerial surveillance system (UASS), can autonomously recognize objects in the
path of a traversing vessel at sea, resulting in a collision. The UASS sends information to the
vessels. Proper collision avoidance actions are made, and collision avoidance maneuvers are
taken considering the convention on the international regulations for preventing collisions
at sea (COLREGs) rules. The UASS detects objects using machine learning techniques.
The simulation results show that such a system is feasible and promising in assisting the
vessels to avoid obstacles by using a small drone scout. However, no details of the detection
techniques deployed on the system were provided, and many simplifying assumptions
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were made. In [22], the authors proposed a method for forecasting the TTC using only
a single monocular camera and a convolutional neural network (CNN) to process the
image data. A camera mounted on top of a suitcase-shaped robot and a CNN are used to
predict when the robot will collide with objects in the viewpoint of the mounted camera.
Furthermore, they produced a large dataset to train their network, with ground truth
annotations obtained using LIDAR data. Their results show that using a mounted camera
and predicting the TTC in a first-person view and using CNNs to make predictions is
promising and a relevant direction to forecast time to near-collision. Likewise, ships seen
from a top (aerial) view can be enclosed by rectangular bounding boxes in the image plane.

3. Methodologies

This section describes in detail our framework for TTC estimation between vehicles
seen from aerial images. Moreover, we overview our approach for generating a training
and validation dataset. Figure 2 depicts the proposed architecture, showcasing how each
module interacts with the others.

Object detector

Axis-aligned
b-boxes

Multiple object tracking

Velocity 
vectors

Rotated 
b-boxes

TTC estimation

ID

1

2

3

1 2 3

X

X

X

__

__ __

__

__

__

Collision image

Collision matrix

Input image

Figure 2. The individual modules that compose our system. The object detection module takes an
image as input and outputs bounding boxes and segmentation masks.The second module (object
tracker) receives output from object detector and performs tracking of these over time. The third
module utilizes output estimated bounding boxes of multiple-object trackers to estimate TTC between
all tracked objects.

3.1. Vessel Detection from Drone Aerial Images

The end goal of the proposed system is to be able to reliably estimate when ships
will collide with other ships, using a single UAV with a camera attached to the underside
pointing downwards. The system uses bounding boxes to represent the objects’ states and
to estimate whether and when these will collide.

In this work, the widely used YoloV4 [10] and Faster R-CNN [9] were considered as
candidates for object detection. However like other standard object detectors, these create
axis-aligned bounding boxes around the objects of interest. As almost all ships have an
elongated shape, an axis-aligned bounding box can negatively impact the ability to estimate
a TTC. This is caused by the fact that when a ship is located diagonally in the image frame,
the output from an object detector will be a square bounding box, which is not tightly fit
to the ship (see Figure 3). To overcome this issue, instance-based semantic segmentation
was preferred since it allows for more accurate representations of the detected objects in
an image, as each pixel in the image belongs to a class. However, since the TTC algorithm
uses an encompassing box around the vessel of interest, a new fitted bounding box needs
to be produced based on the segmentation. To perform this, an algorithm called rotating
calipers [23] is used, which finds the smallest possible rectangle that can fit a given convex
hull, which in our case is the segmentation result (see Figure 3). Details about this algorithm
will be discussed in Section 3.2.
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(a) (b)

Figure 3. (a) Axis-aligned bounding boxes where the bounding boxes of two ships intersect. (b) A
rotated bounding box computed from pixel-level segmentation (and the corresponding segmentation
masks superimposed on top of both ships), that allows representing vessel’s spatial location more
accurately and avoid bounding box intersections (figure reproduced from [3]).

3.2. Multiple-Object Tracking from Top-Views

For tracking, we rely on the recursive Bayesian estimation-based algorithm named
Deep SORT [24]. Deep SORT relies on Kalman filtering and a frame-by-frame data asso-
ciation approach. As illustrated in Figure 2, the object detector bounding boxes and the
associated segmentation masks at each frame outputted from the detector are fed to the
tracker. Low confidence score detections are filtered out using a confidence score threshold
to reduce the amount of false positives. Non-maximum suppression is a common approach
to avoid multiple bounding boxes for the same object. Each detection, starting with the
highest confidence score one, is compared with all the others through the intersection over
union (IoU). If the IoU is above a given user-specified threshold, the bounding box with
the lowest score is disregarded. Our method relies on aerial 2D image views, thus we
assume that objects never overlap. Hence, one should set the IoU threshold overlap to a
low value (e.g., 0.1). The rotated bounding boxes are used for non-maximum suppression.
They provide a more accurate representation of the object location, thus allowing lower IoU
thresholds, without erroneously suppressing correct bounding boxes. After filtering the
detections, the remaining bounding boxes are fed to the Deep SORT algorithm as (u, v, γ, h),
where (u, v) represents the center coordinate of the bounding box, γ the aspect ratio, and h
the height.

The tracking framework implemented by Deep SORT is a constant velocity Kalman
filter, defined as an eight-dimensional state vector (u, v, γ, h, ẋ, ẏ, γ̇, ḣ) for recursive object
state estimation. The data association problem between predictions (i.e., Kalman states) and
observed states (i.e., detections), both motion and appearance information are used using
the Hungarian method. The motion information is filtered considering the Mahalanobis dis-
tance [25] between the predicted Kalman states and the measured states. The Mahalanobis
distance is a good association metric when motion uncertainty is well modeled; however,
fast camera motion or temporary occlusions may introduce unpredictable and fast changes
in the image location of objects from frame to frame. In these cases, the Mahalanobis
distance metric may become unsuitable for accurate tracking. Therefore, we also consider
an additional metric based on the objects’ visual appearances. For each bounding box, an
appearance descriptor is obtained via pre-trained convolutional neural network (CNN)
comprising two convolution layers (one max pooling and a six-residual block layer) and a
fully connected layer that outputs a 128-dimension feature vector. The CNN assigned to
generate appearance descriptors is trained on 40 instances of each class. The appearance
metric is given by the smallest cosine distance between tracked and measured bounding
boxes (see [3]).

3.3. Time-to-Collision Estimation

The method from [20] was chosen to compute the TTC between dynamic objects. In
this method, the authors proposed an improved method to calculate the TTC compared to
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that of the prior method proposed in [26]. The improved method builds on the knowledge
that, when two objects collide, a corner of one of the objects will be the first area that comes
into contact. Unless the collision is perfectly perpendicular, then the two corners will come
into contact at the same time. Therefore, by calculating the intersection points aligned with
the corners of the two objects, the first point of iteration can be calculated. The intersection
point is calculated according to the following:

x+ =
(y2 − y1)− (x2 · tanθ2 − x1 · tanθ1)

tanθ1 − tanθ2
(1)

y+ =
(x2 − x1)− (y2 · cotθ2 − y1 · cotθ1)

cotθ1 − cotθ2
(2)

where x+ and y+ represent the intersection coordinates, x1, y1, x2 and y2 the corner co-
ordinates, and θ1 and θ2 the direction of the objects 1 and 2, respectively (see Figure 4).
The four intersection points are computed for the corner points of the two objects. This
is illustrated in Figure 4 where the intersection between points Q1 to Q4 and α represent
the collision angle between the two objects, calculated as α = θ1 − θ2. This is illustrated in
Figure 4, where the intersection points are Q1 to Q4. These four intersection points result
in 32 possible collision scenarios, as the four corners of an object can impact on any four
sides of the other object. However, out of these 32 situations, only 10 are possible. TTC
estimation requires computing the time for all corner points of both objects to reach the four
intersection points, resulting in 16 TTC values. The 10 possible situations are then divided
into two initial configurations, if the α < 90◦ and α > 90◦. In [20], they presented two tables
corresponding to the two initial configurations with a total of 10 collision conditions. The
16 time values are compared with the 10 collision conditions to find a match and estimate
the TTC between the objects. The shortest time for a corner point of the moving object to
reach an intersection on the stationary object is then estimated as the TTC between the two
objects, using the output of a multiple-object tracker.

A1

B1

C1

D1

A2

B2

C2

D2

Obj
ec

t 2

Object 1

Q1

Q2

Q3

Q4
α

θ1

θ2

Figure 4. Illustration of intersection point between two moving objects. A1, B1, C1, D1, A2, B2, C2,
and D2 represent corner point coordinates of two objects. Q1, Q2, Q3, and Q4 represent intersection
coordinates. α represents collision angle between two objects.
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The expected time-to-intersection between the two objects is computed according to:

TTX1 =
|−→r + −−→r 1|
|−→v 1|

sign((−→r + −−→r 1) · −→v 1) (3)

TTX2 =
|−→r + −−→r 2|
|−→v 2|

sign((−→r + −−→r 2) · −→v 2) (4)

where −→v 1 and −→v 2 represent the velocities of the objects, −→r n represents the coordinate
vector (xn, yn), and sign the sign function.

If the two objects obtain to their intersection point at the same time, i.e., TTX1 = TTX2,
then there is an expected TTC. We utilize the simplifying squared objects assumptions
defined in [20], to provide more accurate TTC estimates.

4. Results

In this section, we assess the performance of our MOT and TTC estimation pipeline
using a dataset obtained using a realistic simulation shipyard scenario that was modeled
using AirSim [27]. The UAV is equipped with a monocular camera with no lens distortion.

4.1. Benchmarking Metrics

Next, we introduce utilized metrics to assess the performance of our solutions.

4.1.1. Multiple-Object Tracing Accuracy (MOTA)

The multiple-object tracking accuracy (MOTA) [28] is a commonly used metric to
assess multiple-object tracking performance, by combining three sources of errors: the
number of false positives, false negatives, and ID switches, according to:

MOTA = 1− ∑t(FNt + FPt + IDSWt)

∑t GTt
(5)

where FN represents the false negatives, FP the false positives, IDSW the number of ID
switches, GT the ground truth, and t the frame index. MOTA results can range from (−∞,
100%), and negative values may only occur if the number of tracking mistakes exceed the
number of objects in the scene [29].

4.1.2. Multiple-Object Tracking Precision (MOTP)

Multiple-Object Tracking Precision (MOTP) [28] is used as a precision metric for the
tracker evaluation. This is performed by computing the average dissimilarity between true
positives and the corresponding ground truth, according to:

MOTP =
∑t,i dt,i

∑t ct
(6)

where ct is the number of matches in frame t and dt,i is the overlap between target i and its
assigned ground truth object. In other words, multiple-object tracking precision (MOTP)
gives an average overlap between all correctly matched bounding boxes and their respective
ground truth objects [29].

4.1.3. Mean Squared Error (MSE)

The mean squared error (MSE) is a measure of the average squared errors obtained.
The measure is the mean error between the estimated values and the actual values over
time. This metric assesses how far the predicted measurements are from the ground truth
values on average:

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (7)
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where n represents the number of predictions, i is the given time instance, Y represents the
predicted values, and Ŷ represents the ground truth values. This measurement will be used
to evaluate the TTC estimation as a metric to evaluate the prediction accuracy.

4.2. MOT Performance Evaluation

First, we assess the performance of the multi-object tracking approach using four
different scenarios, with increasing levels of difficulty. The first two scenarios involve the
UAV hovering at a stationary point (static viewpoint), where no occlusions disturb the
camera’s view. The third consists of an object continuously occluding the view of the camera.
The fourth and final scenario involves the UAV flying around in the simulated environment.
The objective of the first two scenarios is to evaluate the tracker’s performance in ideal
circumstances when no collision and changes of the viewpoint are applied. The objective
of scenarios three and four are to evaluate the tracker under challenging scenarios. To
assess the tracker’s performance, we use the standard multiple-object tracking evaluation
metrics [29], MOTA and MOTP, to obtain the number of true positives, false positives, false
negatives, and ID switches.

Table 1 shows that the tracker performs robustly when the camera viewpoint is fixed
with a score above 90 on both MOTA and MOTP. The tracker has the hardest time tracking
objects in scenario three, where occlusions are applied. This is due to the tracker wrongfully
detecting the flying occlusion object as class 1, resulting in increasing false positives. The
tracker performs well on scenario four and shows that the tracking performance is not
disturbed by the movement of the UAV, demonstrating the robustness of the tracker to
cases where the image plane is not parallel to the water surface.

Table 1. Combined results of our tracking methodology evaluated in four scenarios (results repro-
duced from our experiments published in our previous work [3]).

Scenario No. MOTA MOTP TP FN FP IDSW

1 98.55 93.82 5515 55 22 4
2 97.52 90.29 6058 69 62 21
3 74.65 88.22 4388 302 536 351
4 89.00 86.59 3141 199 111 65

Combined 90.89 87.98 19102 625 497 441

We note, however, that our framework could benefit from more recent globally op-
timal tracking approaches based on network flow formulations and minimum-cost flow
solvers [18], instead of data association performed on a greedy frame-by-frame basis, to
reduce ID switches and improve trajectory smoothness.

4.3. TTC Performance Evaluation

To validate the performance of the proposed TTC approach, we first investigate how
the angle between two objects on a collision course influences the TTC estimation precision.
We calculate the mean error and standard deviation of each test TTC to evaluate the
accuracy. An example sequence of frames taken at different time intervals of the output of
our TTC methodology can be seen in Figure 5.
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Figure 5. Sequential image samples of output of our TTC estimation approach. Each vessel is colored
with a translucent color that corresponds to its segmentation mask.

Figure 6 depicts an example of a simulated environment, where the collision between
two objects types—class 1 (large vessel) and class 2 (tugboat)—is validated. The large vessel
is stationary (0 velocity), and the tugboat is moving.
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Figure 6. Examples of collision angle test between two vessels on a collision course. (Left) Highlights
in red represent the test with vessels experiencing a collision angle of 60◦. (Right) Highlights in blue
represent the two vessels experiencing a collision angle of 40◦.

We showcase how the performance of the TTC estimation handles multiple collisions
in an all vs. all scenario. This experiment, like the others, is constructed in a simulated
environment. The scenario involves seven objects in the scene: one of the objects is at a fixed
point, and the others are moving at a constant speed in a fixed direction. In each frame,
the predicted TTC between all objects is compared to the ground truth TTC. The mean
error between the estimated and ground truth TTC and the standard deviation is used
for performance assessment. Table 2 shows an example scenario where our framework
estimates that four collisions between the seven dynamic objects in the scene will occur.

Table 2. Average TTC mean error and standard deviation over an entire sequence of all collisions for
an example scene where “X” represents no crossing paths.

IDS 1 2 3 4 5 6 7

1 - X 0.045 ± 0.049 X X X X

2 - - X X X X 0.237 ± 0.170

3 - - - X X X X

4 - - - - X X 0.075 ± 0.075

5 - - - - - 0.113 ± 0.177 X

6 - - - - - - X

7 - - - - - - -

Figure 7 shows the predicted TTC for all four collisions and the corresponding ground
truth TTC from scenario one. The missed estimations are represented as noncontinuous
data, and the line has a gap. The line chart shows a good estimation of the TTC as the
estimations and ground truths follow each other. The missed estimations shown in Table 3
are all located at the end of each prediction. This could result from the bounding boxes of
the objects having already collided. The average TTC mean error and standard deviation
of all collisions within the scene are shown in Table 2.

Table 3. Number of missed TTC estimations for each collision between two objects together with
total number of frames before a collision happens in a scenario.

Collisions No. Missed TTC Estimations Total Frames

ID 1↔ ID 3 3 81
ID 2↔ ID 7 2 254
ID 4↔ ID 7 0 185
ID 5↔ ID 6 9 177
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Figure 7. Predicted TTC for all four collisions from scenario 1, and corresponding ground truth TTC.

5. Conclusions

In this work, we introduced a framework for multiple-object detection and tracking
and time-to-collision estimation of maritime vehicles, from top-view video streams using
appearance features extracted with deep learning techniques. Our experiments conducted
in a virtual realistic environment validated the usability of our system.

Our method uses rotated bounding box representations for enhanced TTC estimation
accuracy. Collision estimations are presented in a real-time visual manner, as collision
arrows that gradually change their color to red to indicate increasingly potential collisions.
Experiments in a dockyard virtual environment show that our approach can accurately,
robustly, and quickly predict TTC between dynamic objects seen from a top-view, with
mean error and standard deviation of 0.358 and 0.114 s, respectively, in a worst case
scenario.

We note that the proposed system may also be used to assist large vessels when
sailing through critical and narrow passages, and is not constrained to be used in maritime
environments. Furthermore, although the proposed system was developed to operate in
maritime contexts, it may be easily adapted to other domains, if domain-specific training
data is provided, namely traffic monitoring.
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