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Abstract: Cure rates for kidney cancer vary according to stage and grade; hence, accurate diagnostic
procedures for early detection and diagnosis are crucial. Some difficulties with manual segmentation
have necessitated the use of deep learning models to assist clinicians in effectively recognizing
and segmenting tumors. Deep learning (DL), particularly convolutional neural networks, has
produced outstanding success in classifying and segmenting images. Simultaneously, researchers in
the field of medical image segmentation employ DL approaches to solve problems such as tumor
segmentation, cell segmentation, and organ segmentation. Segmentation of tumors semantically
is critical in radiation and therapeutic practice. This article discusses current advances in kidney
tumor segmentation systems based on DL. We discuss the various types of medical images and
segmentation techniques and the assessment criteria for segmentation outcomes in kidney tumor
segmentation, highlighting their building blocks and various strategies.
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1. Introduction

The kidney is an organ of a vital role that keeps the body fluid and solute balance
checked by excreting and filtering waste products. It also secretes many hormones and
helps control blood pressure. The human kidneys are depicted in (Figure 1) [1]. Kidney
cancer is one of the top 10 malignancies in men and women alike. The probability of
having kidney cancer throughout one’s lifetime is around 1 in 75 (1.34%) [2]. Renal cancer
(RC) is an acute urological disease that affects over 400,000 individuals each year [3,4].
According to the Global Cancer Observatory (GCO), more than 175,000 deaths are due to
this disease [5,6]. Renal cell carcinoma (RCC) has the third-highest disease rate after prostate
cancer and bladder cancer [7]. It is estimated that RCC is the seventh most frequent cancer
in men and the ninth most common cancer in women in the United States, with 48,780
new cases diagnosed and 27,300 new instances of RCC-related death [8]. On radiography,
distinguishing between benign kidney tumors and malignant renal cell carcinoma can be
challenging [9]. However, the majority of kidney tumors turn out to be cancerous [10].
Renal cell carcinoma (RCC) represents the vast majority of these tumors [11,12]. Clear
cell RCC is the most common subtype of renal RCC [13], accounting for approximately
80–90% of all kidney cancers. Overall, the worldwide incidence rate has increased by 2%
per year during the last two decades [8]. Kidney tumors are becoming more common,
and the disease develops for a long time without causing symptoms. Coincidence may
be the reason for detecting more than half of the cases of renal cell carcinoma [14,15].
Importantly, the cause of kidney cancer has not been determined. However, many risk
factors, including smoking, obesity, poor diet, substantial alcohol consumption, family
history of hypertension, exposure to radiation and chlorinated chemicals, and heredity, are
risk factors for getting sick [16]. Radical nephrectomy (RN) and partial nephrectomy (PN)
are the current therapeutic options for kidney tumors. The tumor and kidney are removed
in RN, but in PN, only the malignancy is removed [17].
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Figure 1. Diagram showing human kidney anatomy and Renal cell carcinoma developed inside
the kidney.

Image processing is a widely utilized technology in a range of industries, including
robotics, biometrics, security and surveillance, remote sensing, and medical imaging.
An image processing task’s overall applicability and performance are heavily dependent on
the quality of the test image [18]. Medical imaging techniques are divided into several types:
ultrasound sonography (US), computed tomography (CT), and magnetic resonance imaging
(MRI). Medical images (MI) have excellent homogeneity, make it challenging to identify
regions of interest and patterns and blurring the boundaries between organs and other
areas. Radiologists favor CT imaging over other imaging modalities because it produces
high-resolution images with good anatomical features. In addition, it gives images with
excellent contrast and exceptional spatial resolution. Therefore, CT imaging is an essential
tool for diagnosing any disease affecting the kidneys [1]. It is frequently utilized in clinics
for therapy planning and segmentation of kidney tumors [19]. In addition to that, some CT
results can be utilized to classify benign cancers (Figure 2) [20]. The most common method
of tumor delineation is by hand. An expert radiologist will carefully examine the patients
scanned medical photographs, segmenting all damaged areas. Manual segmentation is
time-consuming. It also has a lot of intra- and inter-rater variability [21]. CT technologies
can significantly enhance our ability to detect and monitor diseases and patients, and this
may improve patient care and facilitate the evaluation of treatment strategies.

Image segmentation is the process of splitting an image into several segments in
order to transform it into a more meaningful and easy-to-analyze representation [22].
The process of image segmentation may be conceived of in two steps: identification and
delineation. Identification is the process of identifying the location of an object in an image
and differentiating it from everything else in the image. Segmentation involves delineating
the boundaries of the region of interest for further analysis [1]. There are several methods for
segmenting images: Manual Segmentation, Semi-Automatic, Automatic Segmentation, and
Semantic Segmentation. Semantic segmentation is crucial for image analysis tasks and plays
a significant part in image interpretation. Image categorization, object recognition, and
border localization are all required for semantic segmentation [23]. Semantic segmentation
has several applications in computer vision and artificial intelligence-assisted autonomous
driving, and medical imaging analysis [24–26].
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Figure 2. CT scans showing: An axial slice of two patients’ 3D CT scans from the KiTS19 dataset;
the red tint denotes the kidneys, whereas the green color indicates the tumor site [5].

Since scanning and loading (MI) onto a computer became practical, researchers have
created automated analysis tools. MI analysis was done between the 1970s and 1990s by
combining low-level pixel processing (edge and line detector filters, region expansion)
with mathematical modeling (fitting lines, circles, and ellipses) to create compound rule-
based systems that handled specific tasks [27]. One of the most challenging problems
in medical image analysis (MIA) using traditional approaches such as edge detection
filters and mathematical algorithms is distinguishing the pixels of organs or lesions from
background medical images of CT or MRI scans to give vital information on the shapes
and sizes of these organs. Therefore, researchers have suggested numerous automatic
segmentation methods to extract the hand-crafted characteristics, such as machine learning
techniques [28]. Around the 1990s, supervised approaches involving training data to
develop a system became more prevalent in medical image analysis. Active shape models
(for segmentation), atlas techniques (in which atlases are fitted to fresh data extracted from
the training data), feature extraction, and statistical classifiers are just a few examples (for
computer-aided detection and diagnosis). This pattern recognition or machine learning
technique is still frequently utilized, and it is the basis for a large number of commercially
accessible medical image analysis products. As a result, we have seen a shift away from
human-designed systems toward systems that computers train using example data and
extract feature vectors. In the high-dimensional feature space, computer algorithms find
the best decision boundary. The extraction of discriminant characteristics from images is
a critical step in the construction of such systems. Humans still carry out this procedure,
and as a result, one speaks of systems with hand-crafted features [27]. As a result of these
technological advancements, deep learning techniques began to exhibit their significant
capabilities in image processing applications [28]. DL is a type of machine learning that
enables more precise and quicker results than traditional machine learning techniques [29].
Recently, DL techniques for semantic image segmentation have shown promising results in
a variety of medical image analysis applications [30–32]. Convolutional neural networks
(CNNs) are the most successful form of image processing model to date. CNN have
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multiple layers [27]. CNN has been under development since the late 1970s by Fukushima.
Moreover, they were used to analyze medical images in 1995 [33]. They witnessed their
first successful real-world application in 1998 for hand-written digit recognition. In the
December 2012 ImageNet competition, Alex-Net, the planned CNN, won the competition
by a huge majority. Using analogous but deeper designs, more work was done in later
years. Deep convolutional networks have emerged as the preferred method for computer
vision [27]. Due to their powerful non-linear feature extraction capabilities and the efficiency
of encoder–decoder architectures, CNNs have been used for complex segmentation tasks [5].
In computer vision tasks, CNN architectures have already surpassed classical methods [12],
particularly in the segmentation of CT scans [34]. On the other hand, fully convolutional
network (FCN) architectures are a notably powerful end-to-end training segmentation
solution. This architecture is state-of-the-art across several domains and can create raw-
scale, pixel-level labels on the images [12]. Other subsequent efforts, such as the feature
pyramid networks (FPN), primarily utilized in object recognition, have used FCN as a
starting point for deeper and more sophisticated segmentation structures [35]. Pyramid
scene parsing networks (PSPNets) are used to analyze scenes [36]. For object instance
segmentation, Mark R-CNN [37] is used.

Semantic segmentation using DL techniques: DL, a proliferating new machine learning
division, has proven their effectiveness in semantic segmentation. Deep learning techniques
play an important role in easing image understanding [23,38]. Deep learning techniques for
semantic segmentation have been divided into region-based, FCN, and semi-supervised
methods. Region-based methods adopt the pipeline method by first extracting free-form
regions from input images, then classifying them using region-based classification; finally,
they label pixels according to the scoring regions [38]. FCN-based methods, in contrast
to region-based methods, do not extract the region proposal. They learn a mapping from
pixel to pixel, making arbitrary-sized images [38]. Regarding semi-supervised methods,
usually, semantic methods depend on many images that require a long time to annotate
the masks. Therefore, some semi-supervised methods have been suggested to utilize the
annotation process [38]. In addition to the methods mentioned, more DL categories for
semantic segmentation have been proposed, including feature encoder-based methods,
recurrent neural network-based methods, upsampling/deconvolution-based methods,
increased resolution of feature-based methods, enhancement of feature-based methods,
spatiotemporal-based methods, and methods using CRF/MRF [23].

Semantic segmentation is a hot research area in medical image processing. This
is particularly true for abdominal CT scans, where many contests push academics to
continue developing approaches for improving segmentation performance [39]. Even
though medical segmentation is becoming increasingly prevalent, there are few ways for
segmenting kidney and renal tumors in the literature [40]. To our knowledge, only a few
review articles have examined kidney segmentation strategies. Nonetheless, numerous
articles have been published on the subject of kidney segmentation. Additionally, various
deep learning-based algorithms have been developed for segmenting images of other
diseases, such as skin lesions, dental imaging, and eye images. As a result, the research
barriers for adopting and applying these approaches to the kidney images have encouraged
study on kidney segmentation and detection. This study look at cutting-edge DL techniques
for segmenting CT kidney cancers. Additionally, the article highlights distinct challenges
and possible solutions for medical image interpretation.

2. Related Work

In recent years, we have seen tremendous advancement in development in many
fields as processing power have increased. Among the technologies that have succeeded
and evolved are those that are based on deep learning, most notably CNNs, which have
been successful in medical image processing. It has risen to the top of the list for various
medical image analysis applications, including medical image segmentation detection,
abnormality classification, and medical image retrieval. Many interesting techniques have
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appeared in the field of medical image segmentation using DL [41]. Moreover, the problem
of kidney image segmentation has attracted research earlier. Some approaches, such as atlas-
based methods, deformable models, graph cuts technique, and region growing, have been
developed and used. In [42] the authors describe the shapes of the local objects via contour
templates, which are used to capture specific properties of different organs. The authors
in [43] used 2D CNN for the segmentation of computerized tomography (CT) images.
At present, end-to-end segmentation and cascade segmentation are the two most commonly
used deep learning segmentation strategies in image segmentation. Cascaded segmentation
refers to multistage processing to achieve stepwise segmentation, whereas end-to-end
segmentation employs only one model to execute the segmentation operation directly.
On the other hand, end-to-end segmentation better prevents the buildup of mistakes in
multistage segmentation and streamlines the procedure. However, a single model with
great integrationreduces its flexibility, operability, and interoperability. Simultaneously,
a single model may require additional training data in order to obtain better outcomes. As a
result, many researchers still use cascade approaches in medical image segmentation [41].

2.1. One-Stage Methods

One-stage methods [39,44–56] are designed to predict the multi-class results directly
from whole images. Myronenko et al. [44], from arterial phase abdominal 3D CT images,
presented an end-to-end boundary aware fully CNN for accurate kidney and kidney
tumor semantic segmentation. Efremova et al. [45] combined U-Net and LinkNet-34 with
ImageNet-trained ResNet-34 to decrease the convergence time and overfitting. Their model
has shown success in a wide range of computer vision applications, including medical
image processing. Guo et al. [46] proposed an automatic segmentation model called
RAU-Net. Their model has been developed for renal tumor segmentation. With some
utilization of the cross-entropy function, the model can identify positive samples. However,
their generalizability is lacking. Isensee et al. [39] designed a U-Net model that performs
well with the KiTS2019 dataset and is able to learn segmentation tasks from reference
data. To achieve a regularizing effect, you can either lower the number of layers in the
typical U-Net or increase the number of residual blocks. Causey et al. [47] proposed a
deep learning model (Arkansas AI-Campus) that collects U-Net models produced after
several model variants were tested. Their model performs consistently on both the local
test dataset and the final competition independent test dataset; it takes place in the top five
of the KiTS19 Competition among US teams. Nazari et al. [48] developed a DL technique
to detect the borders of organs with high accuracy using computed tomography images.
They used the obtained inches to calculate dosimetry using cautery as the source organ.
Yasmeen et al. [49] demonstrate a deep neural network cascaded for semantic segmentation
of kidneys and surrounding anatomy. Ruan et al. [50] much of the work focuses on the
feature map at the network’s bottom, which enhances network performance by extracting
and fusing multi-scale information. Yu et al. [51] it is recommended that non-squared
patches with varying aspect ratios be used to train segmentation networks in order to
integrate more global contexts in local details. According to Pang et al. [52], automatic
image segmentation is a frequent application case in machine learning that has gotten
much attention in recent years. Tumor segmentation in computed tomography (CT) images
is a popular application. Shen et al. [53], to cope with kidney and tumor segmentation
problems, suggested the COTRNet. COTRNet uses a transformer to capture long-range
dependencies for accurate tumor segmentation, inspired by the DETR, which used one to
represent global characteristics. Yang et al. [54] suggested a 3D fully convolutional network
with a pyramid pooling module intended specifically for segmenting kidney and renal
pathologies. Experiments and comparisons with other methods show that their method
performs very well, with an average dice coefficient of 0.931 for kidney segmentation
and 0.802 for tumor segmentation. To make an attempt at resolving the class imbalance,
Heo et al. [55] presented a one-stage semantic segmentation model based on 3D abdominal
CT imaging for the KiTS21 Challenge. The model was constructed using U-Net and the sum
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of the Focal and Dice Losses. To improve performance. Christina et al. [56] benefited from a
strategic sampling approach based on clinical data. Using random sampling, a baseline 3D
U-Net was trained. The clinical features most strongly related to segmentation success were
determined using LASSO regression and then included into a mindful sampling method,
maximizing the influence of the identified clinical characteristics.

2.2. Two-Stage Methods

The goal of the two-stage approach is to overcome the problem of foreground/background
imbalance. Those approaches begin by detecting the volume of interest (VOIs) and then segment-
ing the target organs from the VOIs (VOIs) [57]. Regarding two-stage methods [12,41,58–69],
Cruz et al. [58] developed a method that uses deep convolutional neural networks with
image processing techniques to delimit the kidneys in CT images, where they achieved
up to 93.03% accuracy, so further improvements are required. Zhang et al. [59] studied a
cascaded two-stage framework using a 3D fully convolutional network (FCN) for kidney
and tumor segmentation. Their method locates the kidney and cuts off the irrelevant
background. Hou et al. [60] offered a triple-stage self-guided network for the kidney tu-
mor segmentation challenge. From down-sampled CT images, the low-resolution net can
approximately find the volume of interest (VOI). Still, the full-resolution net and tumor
refine net can extract the right kidney and tumor borders inside VOI from full-resolution
CT images. Their model squanders computational resources while training numerous net-
works. Hatamizadeh et al. [61] enhanced the edge representations in learned feature maps
with their module that can be combined with any generic encoder–decoder architecture;
the core idea of their model is to add an extra task of learning edges to the original network.
Some researchers attempt to push their networks to learn specific characteristics in an
ambiguous and multitasking manner, which is unacceptably inefficient. Zhao et al. [12]
developed a U-Net-based model called MSS U-Net, a multi-scale supervised 3D U-Net
for segmenting kidneys and kidney cancers from CT scans. They combined deep supervi-
sion with exponential and logarithmic loss to improve the efficiency of 3D U-Net training.
Santini et al. [62] combined Res-Net with Res-U-Net architectures in a multi-stage DL
approach called EMS-DLA that has been used for kidney tumor segmentation. The results
are promising, and they might be improved if an enhanced understanding of benign cysts
is factored in. Xie et al. [41] presented a cascaded SE-ResNeXT U-Net. Chen et al. [63]
presented a technique for segmenting kidney, tumor, and cyst in abdomen enhanced CT
images based on a multi-stage stepwise refinement strategy. In network training, a 2.5D
technique is utilized for data input to maintain certain contextual semantic information
while reducing memory strain. There are certain points in this report that need to be
further looked at. For smaller kidneys, tumors, and cyst segmentation, the network and
procedures can be enhanced. Wei et al. [64], to differentiate kidney cancers, employed
two-phase models, which are cascaded network structures. In a tumor, they achieved
0.75.He et al. [65], for kidney segmentation, suggested a novel two-stage cascade and
multi-decoding approach. They used U-Net to locate and extract the kidney area and then
MSD-Net for final segmentation. Yi Lv et al. [66] offered a three-step automated kidney
tumor and cyst segmentation approach based on 3D U-Net. According to the findings,
the average dice for kidneys, tumors, and cysts is around 0.93, 0.57, and 0.73, respectively.
The accuracy of tumors and cysts, on the other hand, is not sufficient. Li et al. [67] presented
a two-stage cascaded segmentation technique for the kidney, renal tumor, and renal cyst.
This was accomplished by embedding a Residual 3D U-Net architecture into each level of
the cascaded process. The suggested approach demonstrated good segmentation outcomes
for the kidney and tumor. Because the border between the tumor and the kidney is ambigu-
ous, the segmentation of the kidney and tumor is complicated. Xiao et al. [68] suggested a
two-stage detection and segmentation architecture for autonomously segmenting kidneys,
cysts, and tumor based on the KiTS21 benchmark. The ResUnet 3D was used as the foun-
dation. The two-stage architecture produced a mean dice of 0.6543 for kidney and messes,
0.6543 for kidney messes and tumor, and 0.4658 for the mean surface dice. Wen et al. [69]
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They presented a unique segmentation network named SeResUNet to segment the kidney
and tumor. Here, one must choose an encoder–decoder architecture such as U-Net and
utilize ResNet to deepen the encoder’s network and, simultaneously, to minimize severe
network degradation and accelerate convergence.

2.3. Hybrid Models

Tow introduced hybrid models in [70–72]. Abdul Qayyuma et al. [70] designed a
hybrid 3D residual network (RN) with a squeeze-and-excitation (’SE’) block to acquire
spatial information by utilizing cSE blocks. The reweighting function in a “three-D RN”
is used. Their network has been tested on various datasets and performs well in medical
image segmentation, especially in volumetric segmentation of the kidney, liver, and re-
lated malignancies. Cheng et al. [71] enhanced 3D SEAU-Net to develop a multi-class
segmentation architecture to improve the performance. Their model aggregates residual
network, dilated convolution, squeeze-and-excitation network, and attention mechanism.
The multi-class segmentation job is decomposed into two more easy binary segmentations.
Cruz et al. [72] provide an effective approach for segmenting kidney cancers in computed
tomography. Thus, post-processing was applied on the DeepLabv3+ 2.5D model with
DPN-131 encoder. Additionally, image processing methods such as normalization, propor-
tional distribution of training and validation datasets, and DART were employed. Finally,
the findings were achieved by integrating preprocessing, segmentation of the kidney tumor,
and postprocessing.

3. Overview of Deep Learning (DL) Models

This section discusses the DL concepts, techniques, and architectures of DL algorithms
for kidney and renal tumor segmentation that we discovered when reviewing the medical
image analysis articles examined in this work, as summarized in Figure 3.

DL is an artificial intelligence (AI) function concerned with decision-making algo-
rithms inspired by the structure and function of the human brain, referred to as “artificial
neural networks”. It is a branch of machine learning in artificial intelligence that utilizes
networks capable of unsupervised learning from unstructured or unlabeled input. They
are also referred to as deep neural networks or deep neural learning. In a variety of medical
image analysis applications, semantic image segmentation algorithms based on deep learn-
ing have demonstrated promising results. Deep CNNs have been state-of-the-art for many
image classification and segmentation applications. CNNs have been used for complex
segmentation problems due to their superior non-linear feature extraction capabilities and
the efficacy of their encoder–decoder architectures [73].

3.1. Neural Networks

Neural networks are a sort of learning algorithm that serves as the foundation for the
majority of DL techniques [21,27]. As seen in Figure 4, neural networks are nothing more
than a set of arithmetic operations that convert an input (x) into an output (y). Weights
and linear operators multiply the previous value of connected input and output to the
neuron. The function in the hidden layer can be anything. In the simplest example, with a
single neuron in the hidden layer (A), the input value is multiplied by the first weight,
and the resulting value Xxweight1 is then passed to the neuron’s function. The result is
calculated by multiplying the output of that function by weight2. When a neural network
is trained, it is fed inputs and the outcome is computed using mathematics. The output
value is compared to the known real value of y; the weights are slightly modified to get the
output value closer to the known actual value of y. A straightforward illustration of this is
presented in (B), where weight1 equals 2, function equals 2Xx, and weight2 equals 2 [74].
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Figure 3. Components architectures, and strategies for deep learning algorithms for segmenting
kidney tumors.

Figure 4. The building block of deep neural networks is an artificial neuron or node.

Each input xi has a corresponding weight wi in an artificial neuron or node.The total
of all weighted inputs (xi, wi) is then fed into a nonlinear activation function ( f ), which
translates the preactivation level of the neuron to an output (yj).The bias terms have been
deleted for simplicity. The result (y)j) is then used as an input for the following layer’s node.
Numerous activation functions are available, each with a somewhat different mapping of
a preactivation level to an output value. The rectifier function is the most often activated
function (neurons that employ it are referred to as “rectified linear units” (ReLU)), followed
by the hyperbolic tangent function, the sigmoid function, and the softmax function. As seen
in Figure 5, the latter is frequently utilized in the output layer to compute the likelihood of
multiclass labels.
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Figure 5. Artificial feedforward multilayer neural network.

A feedforward multilayer neural network with two classes (also known as a multilayer
perception). Each node in one layer is linked to every neuron in the subsequent layer (a
fully connected network). The weighted total of the inputs for each neuron j in the first
hidden layer is multiplied by a nonlinear function. The output (yj) of this transformation
is utilized as the input for the second hidden layer. The information is transferred to the
output layer through the network.

3.2. Convolutional Neural Network (CNN)

A CNN is a kind of neural network. It was first released in 1980 [75]. CNNs have
established themselves as the de facto technique for handling a wide variety of challenging
computer vision issues in recent years [76]. CNN is one of the most recent DL algorithms
in image recognition. CNN is inspired by the multi-layered structure of the visual cortex
in the human brain and has demonstrated outstanding performance in a variety of very
complicated application scenarios [76,77]. The traditional machine learning technique to
image identification consists of two distinct processes. Using several techniques, such as
HOG [78], SURF [79], or HOUP [80], the initial stage, dubbed feature engineering, attempts
to extract meaningful data representations from the raw image data. In the second stage, re-
ferred known as classification, a machine learning algorithm attempts to discover a pattern
that links previously created data representations to a target variable. The algorithm is only
capable of learning these patterns if they have already been retrieved via feature engineer-
ing. Manual extraction of appropriate data representations, in particular, frequently results
in unsatisfactory categorization results [76]. The combination of these two phases is the
essential distinction between convolutional neural networks and standard machine learn-
ing algorithms for computer vision [76]. CNN are feedforward neural networks intended
to analyze images and are physiologically inspired by the visual cortex [81]. Numerous
convolutional layers are used in common CNN topologies. Each image is processed in
three dimensions using a three-dimensional array. By applying several tiny filter kernels to
the image array, the convolutional layers convert the original input to feature maps [76],
as seen in Figure 6. The filter matrices are applied to the entire image, preserving spatial
information. Following that, these feature maps are processed via a nonlinearity function
such as ReLU,a batch-normalization layer , a convolutional layer, and a pooling layer.
CNN are capable of automatically extracting useful feature representations with fully con-
nected layers from raw images and optimizing them to represent specific target classes by
combining several convolutional, activation, batch normalization, and pooling layers [76].
In comparison to alternative models, CNN has recently become the de facto model for
medical image segmentation due to its record-breaking performance in conventional com-
puter vision tasks as well as medical image analysis [21]. CNN models may learn spatial
hierarchies of features within data, e.g., the first layer will learn tiny local patterns, such as
edges, while the second convolutional layer may learn bigger patterns constructed from the
first layer characteristics, and so forth. They are more suited to image analysis jobs because
of this capacity. Furthermore, convolutional layers’ units share weights, decreasing the
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number of parameters to train and improve the network’s efficiency [21]. CNN has recently
become the de facto paradigm for kidney tumor segmentation because of its superior
performance in traditional computer vision and medical image analysis when compared to
alternative models. CNN models can learn to create spatial hierarchies of features included
inside data.

Figure 6. Schematic diagram of a basic convolutional neural network (CNN) architecture [19].

A CNN’s architecture is hierarchical. Starting with the input signal, each succeeding
layer xj is calculated as follows [82]:

xj = PWJ XJ − 1

Here WJ is a linear operator, and ρ is a non-linearity. Typically, in a CNN, WJ is a convolu-
tion, and ρis a rectifier max(x, 0) or sigmoid 1

1+exp(−x) . It is easier to think of the Operator
WJ as a stack of convolutional filters. Thus, the layers are filter maps and each the layer can
be expressed as the sum of the previous layer’s convolutions [82].

xj(u, k j) = ρ(∑
k
(xj − 1(., k) ∗Wj, k j(., k))(u))

Here is the discrete convolution operator:

( f ∗ g)(x) =
∞

∑
u=−∞

f (u)g(x− u)

A CNN’s optimization issue is substantially non-convex. Thus, the weights WJ are
often taught by stochastic gradient descent, with the gradients computed using the back-
propagation process [82].

3.3. Building Blocks CNN

A convolutional network’s initial layer is the convolutional layer. Convolutional layers
can be followed by additional or pooling levels, but the wholly linked layer is the final
layer. The CNN becomes more sophisticated with each layer, recognizing larger areas of
the image. Earlier layers concentrate on essential elements like colors and borders. As the
image data goes through the CNN layers, and it detects more significant components or
forms of the item, eventually identifying the desired object. They have three main types of
layers, which are:

• Convolutional layer.
• Pooling layer.
• Fully-connected (FC) layer.

3.3.1. Convolutional Layer

This layer will determine the output of neurons connected to local regions of the
input through the calculation of the scalar product between their weights and the region
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connected to the input volume. This layer is the central constituent of a CNN, and it
is here that the majority of the processing takes place. It requires input data, a filter,
and a feature map, among other things. This layer consists of a set of learnable filters or
kernels (the typical size is usually 3 × 3 or 3 × 3 × 3, depending on whether the input is a
two-dimensional (2D) or three-dimensional (3D) image, respectively) [21].

3.3.2. Pooling Layer

A pooling layer is typically used in conjunction with a convolutional layer or a collec-
tion of convolutional layers. The objective is to minimize the size of the feature maps while
retaining critical features. A sliding window pooling method is conducted to a rectangu-
lar neighborhood. For instance, max pooling is used to maximize the size of a rectangle
neighborhood. Additionally, average and weighted average pooling are prominent pooling
methods [21]. Similar to the first layer, the pooling procedure sweeps a filter across the
whole input, except this filter does not include any weights. Rather than that, the kernel
populates the output array with values from the receptive field using an aggregation func-
tion. Pooling may be classified into two types: Max pooling, Average pooling. Pooling is
primarily concerned with down sampling in order to lessen the complexity of subsequent
layers. In the sphere of image processing, this is analogous to decreasing the resolution.
The number of filters does not change as a result of pooling. Max-pooling is one of the
most often used pooling techniques. It divides the image into rectangular sub-regions
and returns just the largest value contained inside each sub-region. One of the most often
utilized sizes in max-pooling is 2 × 2 [82].

3.3.3. Fully Connected (FC) Layer

The moniker “fully connected layer” is self-explanatory. As previously stated, with par-
tially linked layers, the pixel values of the input image are not directly connected to the
output layer. By contrast, each node in the output layer connects directly to the previous
layer in the eventually linked layer.This layer performs classification tasks based on the
characteristics collected by the preceding layers and their various filters. While convolu-
tional and pooling layers often employ ReLu functions to categorize inputs, (CL) are used
to extract features. The characteristics they generate are subsequently classified by the fully
connected (FC) layers. As seen in Figure 6, each unit in the FC layer is connected to every
unit in the preceding layer. Typically, the last layer is a softmax classifier that generates a
probability vector map across the various classes. Prior to passing the features to an FC
layer, they are all transformed to a one-dimensional feature vector. This results in the loss
of spatial information included in image data. A disadvantage of the FC layers is that
they have a greater number of parameters than other layers, raising computing costs and
needing identical input images. The primary disadvantage of a fully-connected layer is that
it has a large number of parameters that need complicated calculation during training. As a
result, we attempt to reduce the number of nodes and connections. The dropout approach
can be used to satisfy the deleted nodes and connections [21,82].

3.4. Deep CNN Architectures

Given the widespread usage of CNNs in medical image processing, we discuss com-
mon designs and architectural distinctions across the most extensively used models.

3.4.1. U-NET Architectures

U-Net is a CNN developed for biomedical image segmentation at the Computer Sci-
ence Department of the University of Freiburg [83]. The network is based on convolutional
networks. The encoder–decoder design of U-Net is a stable network for medical image
segmentation. Moreover, its architecture was modified and extended to work with fewer
training images and more precise segmentation. Segmentation of a 512 × 512 image takes
less than a second on a modern GPU [83]. Ronneberger et al. [83] developed a U-Net
network which consists of two stages (path contracting and symmetric expanding). Path
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contracting is used to capture, while symmetric expanding is used for precise localization.
However, the U-Net architecture depends highly on data augmentation techniques. The ar-
chitecture of U-Net is composed of 3 × 3 convolutional layers. Maximum of 2 × 2 follows
each pooling layer and the ReLU activation function.Finally, the 1 × 1 convolutional layer is
attached. The encoder–decoder design of U-Net [83] is a sustainably successful network for
medical image segmentation. Because volumetric data is more abundant than 2D images in
biomedical data analysis, 3D convolution is suggested and considered considerably more
successful in fully using the spatial information of 3D images such as CT and MRI. Based on
3D U-Net [83], Fabian [84] made minor changes. He placed first in several medical image
segmentation contests, demonstrating that an optimized U-Net can outperform many other
innovative designs.

3.4.2. V-Net Architectures

This section refers to the the proposed V-Net structure in [32]. As with the fundamental
U-Net design, the network architecture of the V-Net is composed of encoding and decoding
components. Thus, it is a derivation of the U-Net architecture, but with a volumetric
design that makes it suited for usage in tissues where organs and tumors are difficult to
recognize on CT imaging (such as the prostate or kidney) [32]. The convolutional nature of
the V-Net architecture enables it to extract features and reduce the resolution by following
the correct route. Because conventional pooling approaches sometimes overlook critical
features during the segmentation process, V-Net convolutions are employed to overcome
this by downsampling the data provided as input and transmitting it to the receiving
characteristics derived in the subsequent network layers [40]. Unlike standard neural
network architectures for classification, completely convolutional networks [85], along with
the U-Net and the V-Net, do not use a flattening process or contain fully connected layers.
Rather than that, it employs upsampling techniques that enable the network to produce an
image of the same size as the input, which may address segmentation issues. The V-Net
structure is composed of two sections: one for downsampling and one for upsampling. All
pooling layers created during the downsampling phase are converted to up-convolution
layers during the upsampling phase. Additionally, a “contracting path”, as they termed it,
is constructed at each layer from the up-sampling to the down-sampling portion in order
to concatenate the data. This method enables the network to view high-resolution data
again during the up-sampling phase [86]. Each layer on the encoder side of the V-Net
architecture is composed of two times the number of feature set computation sections as
the preceding layer. The network’s decoder portion is designed to perform two-channel
volumetric segmentation. As a result, feature maps are included to assist in obtaining the
relevant information. Following each layer in the encoder portion of the network design,
a deflection operation is done to increase the size of the entries, followed by the opposite
action in the decoder section to decrease the dimensions. The encoder phase’s neural
network attributes are passed to the decoder phase. This is schematically depicted by the
use of horizontal linkages [83].

3.4.3. Alex-Net Architectures

CNN is available in many different configurations, including Le-Net, Alex-Net, Google-
Net, Conv-Net, and Res-Net. Additionally, we chose the Alex-Net design since it is more
resilient to difficulties than alternative designs. Alex-Net has an eight-layer architecture,
with the first five layers being convolutional and maximum pooling layers, and the latter
three being wholly linked to the neural network [87].

3.4.4. Boundary-Aware FCN Architectures

Although U-Net overcomes the challenge of preserving the original information
during FCN upsampling via skip-connection, the boundary cannot achieve a reasonable
segmentation result due to the blurring of the border and internal pixels. This uncertainty
arises because convolution operators might provide comparable values in the voxel feature
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map at the tumor boundary, even in the first convolution layer [88]. Shen et al. [89]
proposed a boundary segmentation technique based on a Boundary-Aware FCN network.
The Boundary-Aware FCN transforms the single network segmentation problem into
a multitasking network. The two FCN networks share the downsampling phase but
operate independently of one another during the upsampling phase. The two upsampling
correspond to distinct segmentation goals; the first segments the tumor territory, while the
second segments the tumor border. The two segmentation results are then fused, and the
final segmentation result is produced after numerous convolutional layers.

3.4.5. Cascaded Network Architectures

In a cascaded architecture, the outputs of each CNN are concatenated [90]. The output
of one CNN becomes a direct input to another in this architecture. The input cascade is
utilized to provide extra image channels to the second CNN by concatenating contextual
information. This is an improvement over the dual-path approach, which separates multi-
scale label prediction from multi-scale label prediction. Concatenation of local pathways
is another variant of cascaded design [90]. Instead of concatenating the output of the first
CNN with the output of the second CNN’s first hidden layer, this architecture concatenates
the output of the first CNN with the output of the second CNN’s first hidden layer. Segmen-
tation in a hierarchical fashion [91]: Tumor segmentation is related to organ segmentation
in that tumor segmentation needs the location of the tumor based on organ segmentation.
A cascading network is proposed as a result of this. The first neural network determines
the organ in which the lesion is located, a process termed “rough segmentation”, and the
second neural network determines the precise tumor segmentation. As for the two-stage
cascaded tumor segmentation network, the entire network topology is composed of two
U-Net networks. To begin, the original image is sent over the first U-Net network, which
converts it to a binary image. After multiplying the image by the original, it is delivered to
the second U-Net network. The output result is the segmentation result in its entirety [88].

3.5. Deep Learning Uses in Medical Imaging
3.5.1. Classification

Classification of images or exams was one of the first areas where DL significantly
contributed to medical image analysis. Typically, in exam classification, one or more
photographs (an exam) are used as input, and a single diagnostic variable is used as an
output (e.g., disease present or not). Each diagnostic assessment serves as a sample in
this environment, and dataset sizes are often less than those used in computer vision (e.g.,
hundreds/thousands of samples vs. millions of samples). Transfer learning’s appeal for
such applications is unsurprising. Transfer learning is the process of utilizing pre-trained
networks (usually on natural imagery) in order to circumvent the (perceived) demand for
big data sets for deep network training. Two ways of transfer learning were identified:
(1) employing a pre-trained network as a feature extractor, and (2) fine-tuning a pre-trained
network using medical data. The former technique also has the advantage of avoiding the
need to train a deep network, which enables the extracted features to be simply integrated
into existing image analysis pipelines. Both tactics are frequently used and popular [27].

3.5.2. Registration

Registration (or spatial alignment) of medical images is a common image analysis
task that entails computing the coordinate transform between two medical images. This
is frequently done iteratively, with a specified (non-)parametric transformation assumed
and a predefined metric (e.g., the L2-norm) optimized. While segmentation and lesion
detection are more important topics in deep learning, researchers have demonstrated
that deep networks can assist in reaching the highest possible registration performance.
In general, two techniques are prevalent in the current literature: (1) employing deep
learning networks to quantify the similarity between two images in order to drive an
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iterative optimization strategy, and (2) directly predicting transformation parameters using
deep regression networks [27].

3.5.3. Segmentation

Segmentation is a typical job in both natural and medical image analysis, and CNNs
can easily identify each pixel in the image independently by providing it with patches
extracted from surrounding the pixel. A disadvantage of this naive sliding window tech-
nique is that input patches from adjacent pixels overlap significantly, resulting in several
computations of the same convolution. Because both convolution and dot products are
linear operations, and inner products may be represented as convolutions and vice versa.
The CNN can process bigger input images than those used for training and generate a
probability map rather than a single pixel output by rewriting the fully linked layers as con-
volutions. The resultant “fully convolutional network” (fCNN) may be applied efficiently
to an entire input image or volume [27].

On the other hand, pooling layers may result in output with a far lower resolution
than the input. Shift-and-stitch [27] is one of the proposed ways to prevent this loss of
resolution. On shifted versions of the input image, the fCNN is applied. A full-resolution
version of the final output is obtained by sewing the result together, minus the pixels lost
due to the “valid” convolutions. Ronneberger et al. [83] undertook the fCNN concept a step
further and suggested the U-Net architecture, which consists of a regular fCNN followed
by an upsampling section where up-convolutions are utilized to expand the image size. He
invented the terms “contractive” and “expansive” routes. Milletari et al. [32], instead of the
standard cross-entropy, presented a modification to the U-Net architecture that integrates
ResNet-like residual blocks and a Dice loss layer that directly reduces this extensively used
segmentation error metric.

3.5.4. Segmentation Evaluation

Image segmentation has a wide range of applications in most areas of digital im-
age processing. As a result, segmentation evaluation will be crucial in a wide range of
disciplines [92]. Manual segmentation defines the boundaries of the Region of Interest
(ROI). The bulk of studies in the literature employ manual segmentation to estimate re-
nal volume [93,94]. To check if the segmentation method is valid, first establish the true
boundaries of the region of interest. Unfortunately, the major difficulty with medical image
segmentation approaches are the lack ground truth. Manually segmenting the Region
of Interest (ROI) from the image and comparing those ROIs to ROIs generated by the
segmentation method regarding boundary differences or overlap, is a typical solution to
this problem [1]. The accuracy of the proposed kidney segmentation method is assessed
by comparing the ground truth marked by professional radiologists with the output of
the recommended algorithm. Measures for evaluation may be divided into two categories:
quantitative and qualitative metrics. A quantitative review includes obtaining mathe-
matical values, whereas a qualitative evaluation requires visually comparing the ground
reality with the silhouette generated [1]. The ground truth and the results are compared
using error measures. The following are some of the metrics that have been utilized in the
literature: Dice Similarity Coefficient (DSC), Specificity (SP), Sensitivity (SN), Accuracy
(AC), Jaccard index (JI), Hausdorff Distance (HD), Area Overlap (AO), Area Overlap Error
(AOE), Surface Distance (SD), Volume Overlap (VO), Relative Volume Difference (RVD),
and Volume Overlap Error (VOE) [95–97]. Some of the various metrics used in the literature
are presented in Table 1.
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Table 1. Evaluation metric for segmentation.

Metric Equation Description

True Positive
rate (TP) TPR = Sensitivity = Recall = TP

(TP+NF)

True positive rate, The proportion
of true positives or successes
that is accurately detected, is
calculated as true positive rate,
also known as sensitivity [98].

True Negative
rate (TN) TPR = Sensitivity = Recall = TP

(TP+NF)

The true negative rate, also
known as specificity, is the
true negative rate. Is there a
the chance that a non-diseased
will the person be classified as
negative by the test? It
demonstrates the test’s
sensitivity in identifying
the absence of illness [99].

False-positive
rate (FP) FP = FP

(FP+TN)

The false-positive rate refers to the
percentage of mistakenly classified
as positive or successful but
as negative [98].

Dice Similarity
Coefficient (DSC) DS = 2× |Sm

⋂
Sa |

|Sm+Sa |

The binary mask produced
by the domain experts’ manual
segmentation corresponds
to the binary mask produced
by the suggested approach.DC
must be close to unity to guarantee
that the manually drawn region
corresponds to the segmented
result correctly [99].

Jaccard Index
JI J I = |Sm

⋂
Sa |

|Sm+Sa |

The Jaccard Index (JI) was
used to compare the statistical
similarity of regions segmented
using a computational approach
to hand delineations [100,101].

Accuracy Accuracy = (TP+TN)
(TP+FP+NF+TN)

The correct predictions produced
by the prediction model across
all suitable forecasts completed
are referred to as the model’s
accuracy [102].

Precision Precision = TP
(TP+FP)

The number of correct positive
scores divided by the number
of positive scores anticipated by the
classification algorithm is the
positive predictive value,
or precision [103].

Sørensen–Dice DSC = 2TP
2TP+FP+FN

This coefficient: Indicates
the extent to which segmented
and reference volumes overlap
in mm3. (1 for ideal segmentation,
0 for the worst-case scenario)
When applied to Boolean data,
the terms true positive (TP),
false positive (FP), and
false negative (FN) are used (FN),
As in this case [47].



J. Imaging 2022, 8, 55 16 of 31

3.6. Datasets

There has been substantial scientific interest in automated kidney and renal tumor
segmentation during the last few years. As research output increased, objective assessment
of various algorithms got more difficult due to researchers’ usage of private datasets with
various features. Figure 7 and Table 2 summarize the most frequently used datasets for
segmenting kidney tumors.

Figure 7. Type of dataset in papers surveyed.

Table 2. Summary of commonly used public datasets for kidney and kidney tumor segmentation.

References Total Training Data Validation Testing Data

KITS19 [39,40,44,59,72] 300 210 - 90
KITS19 [12] 210 134 34 42
KITS19 [61] 300 240 - 60
KITS19 [62] 300 190 20 90
KITS19 [70] 300 240 30 30

KITS19 [41,58] 300 168 42 90
KITS21 [55,63,65,69] 300 240 - 60

OTHER [50] 113 70 23 20
OTHER [54] 140 90 - 50

The KiTS19 and KiTs21 Challenges and additional datasets provide a sizable dataset
that enables a variety of segmentation tasks. The challenge intends to further research on
general-purpose segmentation algorithms capable of performing a variety of tasks without
the need for human assistance for kidney segmentation and tumors.

3.7. Techniques for Kidney Tumor Segmentation
3.7.1. Pre-Processing

Typically, data is preprocessed before to being transmitted to the deep learning net-
work. Preprocessing is grouped into four categories: approach based on image attributes,
data augmentations, noise removal, and edge improvement. They have essentially agreed
that if the image is placed directly into the deep neural network without preprocessing,
the effect is considerably reduced, and in some cases, proper preprocessing is critical to the
model’s performance [88,104]. Among the different bias field correction strategies are the
non-parametric non-uniform normalization (N3) approach [105]. It has emerged as the pre-
ferred methodology owing to its ease of use and availability as an open-source project [106].
This approach was further enhanced in [106], and it is now often referred to as N4ITK.
These approaches are intended to be used with a single image. As a result, the intensity
normalization provided by Nyul et al. [107] may be used to achieve a consistent intensity
distribution across patients and acquisitions. Another often used preprocessing approach
is normalizing the image dataset such that it has a mean of zero and a standard deviation
of one. This approach aids in the de-biasing of characteristics. Cropping an image may also
be used to eliminate as many background pixels as feasible.
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3.7.2. Post-Processing

The output of the deep neural network may be used directly as the result of tumor
segmentation. However, the output of a deep neural network is not always immediately
applicable to the demands and is not interpretable. As a result, some researchers perform
post-processing techniques on the output of DL to obtain more accurate findings. Post-
processing is used to fine-tune the segmentation findings. It aids in reducing the number of
misclassifications or false positives in segmentation results when using algorithms such as
conditional random fields (CRF) [108] and Markov random fields [32]. CRF and MRF-based
techniques effectively eliminate false positives by combining model predictions with low-
level image information, such as local interactions of pixels and edges, when performing
finer adjustments. These approaches, however, are computationally intensive [109]. Related
component analysis entails locating and identifying connected components and removing
unnecessary blobs using a simple thresholding approach. Another strategy for reducing
false positives around the segmentation image’s boundaries is to perform successive
morphological operations such as erosion and dilation.

3.7.3. Data Augmentation

The purpose of data augmentation, which is to increase the number of training sets,
is to expand the size of the data set by graphical modification, hence making the model
more robust and less prone to overt error. Flip, Rotation, Shift, Shear, Zoom, Brightness,
and Elastic distortion are all common strategies for increasing the number of datasets [110].
To emphasize that when dealing with a limited data collection, the advantage of data
augmentation is equivalent to the benefit of model update [88]. However, it is easy to
implement. The problem of lack of access to huge data in kidney and kidney tumors can be
solved using Data Augmentation.

4. Overview of Kidney Tumor Semantic Segmentation

This section provides a quick overview of kidney tumor segmentation. Renal seg-
mentation is a complex operation; the difficulty of segmentation varies depending on the
imaging modality. Various imaging techniques are available.

4.1. Renal Imaging

The size of the kidney was established in the past by X-rays or using renal length for
urography. The results obtained using these methods showed several problems. Ultrasound
sonography (US), computed tomography (CT), and magnetic resonance imaging (MRI) are
examples of photography methods that may be used to examine the size and function of
the kidneys. It is the first method (US) for measuring two-dimensional kidney volumes.
To obtain 3D data, they employed CT and MRI techniques. Each of the current imaging
modalities has its imaging capabilities and may be used in various ways depending on the
treatment objective [111]. US can identify cysts, stones, and tumors, among other benefits; it
gives good anatomical information without exposing the patient to radiation and enabling
a low-cost, real-time inspection. However, the images on US are of poor quality [111]. This
is a flaw that makes the segmentation procedure difficult. On the other hand, computed
tomography (CT) is a technique that allows for higher-quality imaging and identifies small
lesions and cysts. However, there is a drawback to ionizing radiation exposure. The last
approach (MRI) is insufficient. Overall, the benefit of MRI is that it provides excellent
spatial resolution while posing minimal risk to the patient. Its downside is that it is more
expensive [111].

4.2. Image Segmentation

What exactly is an image? An image is a mathematical representation of what we can
see. An image can be defined as a 2D function like a CT image denoted by f (x, y), where
the value or amplitude off at spatial coordinates (x, y) gives the intensity (brightness) of
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the image at that point. A pixel is a visual element that is represented by each end in an
image. The function f can also be viewed here:

1. The size of the image array N × X, A where
2. S and M represent the number of rows and columns.

Thus,

A = f (x, y) =


f(0,0) f(0,1) · · · f(0,M−1)

f(1,0)
... · · · f(1,M−1)

...
... · · ·

...
f(N−1,1) f(N−1,1) · · · f(N−1,M−1)

 (1)

Image segmentation, defining objects in images, is the most important operation
performed on acquired images. Segmentation, ironically, is required for segmentation,
as object knowledge helps with segmentation. In image processing and computer vision,
segmentation is still a difficult task [112]. The assessment of segmentation algorithms is a
closely connected and strongly interrelated topics. The absence of a uniform framework
for evaluating segmentation algorithms is one of the challenges in creating them [112].
The initial stage in creating a wholly automated perception system is image segmentation.
It has been regarded as a primary challenge in computer vision. Generally speaking,
the mission of segmenting an image into parts might be to identify objects or districts of
interest [113]. The following section explains the types of image segmentation:

4.3. Types of Segmentation

The degree of human participation in image segmentation algorithms may be classi-
fied into four types: manual segmentation, semi-automatic segmentation, fully automatic
segmentation, and semantic segmentation [114]. A summary of the advantages and disad-
vantages of segmentation techniques is given in Table 3.

Table 3. Summary of the benefits and drawbacks of various segmentation techniques.

Type of
Segmentation Reproducibility Time Interactivity Complexity of

Implementation

Manual
Segmentation Good Too long Bad Easy

Semi-Automatic
Segmentation Good Long Not bad Easy

Fully Automatic
Segmentation Good Short Good Hard

Semantic
Segmentation Good Short Good Hard

4.3.1. Manual Segmentation

Manual segmentation is done drawing the member or sketching the member’s borders,
manually executed by a professional (physician, trained, technician, etc.) [115]. The person
operating the machine uses specialized tools to draw or paint around tumor regions.
Manual segmentation is a time-consuming and tiresome process. The result of segmentation
depends on the training and experience of the person. It also includes what is called “inter-
rater” variability (the image is segmented differently by various specialists) and “intra-rater”
variability (at various times, the same person segments the image differently). It serves as
the basis for various segmentation algorithms (semi-automatic, automatic, and semantic).
Even though manual segmentation is dependent on the rater, it is still commonly utilized
in clinical studies [116–118].
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4.3.2. Semi-Automatic Segmentation/Interactive Segmentation

To address manual segmentation problems, semi-automated or automatic segmenta-
tion approaches have been developed. Semi-automated segmentation approaches neces-
sitate the operator’s one-time manual startup and manual modification of the computer
segmentation result [1]. Semi-Automated Segmentation (SAS) takes less time than manual
segmentation, but its outcomes are still reliant on the operator [40,114,115].

4.3.3. Fully Automatic Segmentation

To have as little human interaction as possible, automatic segmentation methods
involve the segmentation of kidneys from CT images without human intervention, making
them free from human errors and biases [1]. Utilizing anatomical knowledge such as
volume, form, and position in automated segmentation algorithms is critical for creating a
robust algorithm [40,114]. Radiologists like this sort of approach since it is error-free and
operator-independent. Several types of segmentation approach in the literature may be
classified as thresholding-based methods, region-based methods, model-based methods,
atlas-based methods, and hybrid methods depending on the strategy used to segment the
region of interest. Depending on the user’s needs, these segmentation approaches can be
automated or semi-automatic [1].

4.3.4. Semantic Segmentation

Semantic segmentation, also known as pixel-level classification, aims to group portions
of images corresponding to the same object class. This sort of algorithm may be used to
recognize road signs, cancers, and medical tools in surgeries, among other things [40].
Semantic segmentation is a particular job that attempts to split an image into semantically
meaningful pieces, making it a step farther than image segmentation. (It is important to
remember that semantics is a discipline of linguistics concerned with meaning) [119]. It
is a high-level task that paves the way for complete scene comprehension in the broad
image. The importance of scene understanding as a crucial computer vision problem
is underscored by the fact that an increasing number of applications rely on inferring
knowledge from images. Classification of an image refers to assigning it to one of the
same categories. Detection is the process of locating and recognizing objects. Because it
classifies each pixel into its category, image segmentation may be considered pixel-level
prediction. In addition, there is a job called instance segmentation that combines detection
and segmentation [120].

4.3.5. Semantic Segmentation Metrics

Semantic segmentation metrics play an essential role in evaluating performance tech-
niques. Different semantic segmentation assessment criteria may produce disparate results
because it is unclear how to define successful performance segmentation. Pixel accuracy,
mean intersection over union, and representing per-class accuracy are three of the most
frequently used measures [121].

For all of them, let ni,j be the number of class, pixels predicted to belong to the classes,
j In addition, let k j = ∑i ni,j be the total pixel number belonging to class i. If we assume to
have a T total number of classes, then:

• Pixel accuracy can be computed as:

acc =
∑j ni,j

∑i ni,j

• Mean intersection over union can be computed as:

miou =
1
T ∑

i

ni,j

(ki + ∑j nj,i − ni,j)

• Mean per class accuracy can be computed as:
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miou =
1
T

∑i ni,j

∑i ki

5. Discussion

Deep learning algorithms for medical image processing have garnered considerable
attention in recent years. This is reflected in the year-over-year growth in the number of
published works [122]. Recent years have seen the use of LD approaches to a wide variety
of problems [123], most notably in computer vision [124], natural language processing [125],
and computational audio analysis [126]. DL algorithms have outperformed past state-of-
the-art performance in a number of these applications. The domain-independent concept of
effectively accomplishing high-level tasks via hierarchical layers of learned abstraction [123].
For instance, DL algorithms can be trained on a sufficiently big dataset to segment TC
images to segment kidney tumors. As a result of their effectiveness in tackling numerous
problems in computer vision, speech recognition, and natural language processing, CNN-
based models have been widely utilized in medical image analysis. Table 4 summarizes the
deep learning approaches discussed in this paper. Numerous techniques have significant
differences in terms of architectural design, with current works following the U-Net [83].
Additionally, numerous approaches have been developed to solve the inherent difficulties
associated with semantic renal TC analysis. Table 5 gives an overview of Deep Learning
methods for kidney tumor segmentation on other architecture.

Table 4. Overview of Deep Learning methods for kidney tumor segmentation: PA = Pixel accuracy,
SS = Specificity-Sensitivity, KD = Kidneys Dice, TD = Tumor Dice, CD = Composite Dice, DSC = Dice
= Dice similarity coefficient DSC, CD = Centroid distance, HD = Hausdorff distance, AC = Accuracy,
SGD = Stochastic gradient descent, SD = Surface Dice, BN = Batch Normalization, IN = Instance
Normalization, SGD = Stochastic Gradient Descent, IOU = Intersection over Union.

Reference Input Regulization Activation Loss Optimizer

U-Net Architecture

[127] 3D Dice Decathalon

[128] 3D
BN,Depthwise,
Weight Pruning RELU Mean IoU, AC Adam

[49] 3D,2D RELU Dice SGD
[129] 3D Dice Adam
[60] 3D Leaky ReLU Dice Adam
[53] 3D Dice, SD Adam
[12] 3D IN Dice Adam
[130] 3D,2D BN ReLU Dice Adam
[131] BN RELU IOU
[56] 3D ReLU Dice Adam
[55] 3D BN ReLU Dice Adam
[69] 3D ReLU Dice Adam
[68] 3D Batch norm ReLU Dice Adam
[67] 3D BN ReLU Dice Adam

Cascaded Architecture

[63] 2.5D BN ReLU,conv Dice Adam
[41] 3D BN SE-Net Dice Adam
[51] Dropout RELU Dice, CD, HD
[59] 3D BN ReLUs Dice Adam
[65] 2D BN RELU, LeakyRelu Dice

3D U-Net Architecture

[39] 3D RELU Dice SDG
[66] 3D RELU Dice
[132] 3D BN ReLU Dice
[57] 3D BN ReLU Dice Adam
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Table 4. Cont.

Reference Input Regulization Activation Loss Optimizer

Boundary-Aware Architecture

[44] 3D BN RELU Dice Adam
[5] 3D RELU KD, TD, CD Adam

V- Net Architecture

[40] Dice Adam
[19] 3D Dice

Ensemble Architecture

[47] 2D RELU Dice
[64] Dice Adam

Table 5. Overview of Deep Learning methods for kidney tumor segmentation on other architecture.

Reference Architecture Input Regulization Activation Loss Optimizer

[50]
MB-

FSGAN 3D BN RELU
PA,

Dice,
SS

RMSProp,
Adam

[58]
U-Net,

AlexNet 2D BN RELU

Dsc,
Jaccard
index,
AC, SS

Adam

[133]
Modified

CNN 2D
Weight
Decay Dice

[61]
EG-

CNN 3D RELU Dice Adam

[54] FCN 3D L2 Dice SDG

[46]
RAU-
Net 3D Dice SDG

[62]
multi-
stage
U-Net

2.5D BN
pre-

activation Dice Adam

[52]
CTumor

GAN 3D
BN,

Dropout RELU

Dice,
Jaccard
index,

SS

Adam

[73] nnU-Net 3D IN

Dice,
Jaccard,

Ac,
Precision,

Recall,
Hausdorff

Adam

[48]
FPN

(CNN) 2D Dice

[45] CNN 2D,3D Dice

[71]
3D SEAU

-Net 3D BN Dice

[134]
DeepLab

v3+ 3D BN RELU Dice Adam

5.1. Kidney Tumor

While the techniques listed below are quite effective in segmenting kidney tumors,
none of them quantifies kidney tumors. CT scans are frequently used to diagnose kidney
malignancies, and deep learning-based segmentation of kidney tumors is also focused
on CT images. Yang et al. [54] made one of the earliest attempts to use CNNs for this
goal. An enhanced residual fully connected network with a pyramidal pool module is
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presented to segment kidneys and kidney cancers in CT angiography images. To begin, an
atlas-based approach is used to extract two zones of interest from the entire images. Each
area is home to a single kidney. These patches are fed into a 3D CNN that is profoundly
linked, and additional post-processing is conducted using conditional random fields. Efre-
mova et al. [45] and Shen et al. [135] applied U-Net and 3D U-Net to the job of kidney
tumor segmentation, with all techniques achieving much better results than conventional
methods [51]. The next step was to analyze images from two distinct viewpoints and then
link them via two connected networks. Crossbar-Net, a new architecture for automatic
segmentation of kidney tumors in CT images, was described. The axial slice was created by
stacking three rectangular patches. These patch designs included extra spatial information
and were used to train two separate networks with cascading outputs. Cascaded network
architectures were used by Yang et al. [54], Vu et al. [136], Lv et al. [137] , Mu et al. [19],
and Wei et al. [64] to discriminate between kidney cancers. The difference between the
two methods is that Yang et al. [54] used a Gaussian pyramid to expand the receptive
field in the first stage’s network structure, while Vu et al. [136] increased the number of
layers in the cascade network to three, with the first layer obtaining the results directly,
the second layer obtaining the tumor and kidney regions, the third layer obtaining the
tumor segmentation results using the input of the second layer cascade, and the fourth
layer cascading the final results. The two cascade frameworks in [137] are U-Net and V-Net
to achieve distinct cascade characteristics. Recently, Xia et al. [138] suggested a two-stage
segmentation strategy for the kidney and the space-occupying lesion region. This approach
retrieves images using Spatial CNN (SCNN) and Resent, and smooths and matches pixels
using SIFT-flow and Madras Rubber Factory (MRF). Table 5 shows an overview of Deep
Learning methods for kidney tumor segmentation on other architectures. Table 6 shows a
summary of results on KiTs 2019, KiTs2021, and another dataset.

Table 6. A summary of results on KiTs 2019, KiTs2021, and another dataset.

Reference Kidneys Dice Tumor Dice Composite Dice

KiTS19

[61] 0.965 0.835 0.900
[60] 0.967 0.845 0.906
[39] 0.974 0.851 0.912
[129] 0.97 0.32
[59] 0.974 0.831 0.902
[12] 0.969 0.805 0.887
[62] 0.98 0.73 0.855
[40] 0.977 0.865 0.921
[19] 0.973 0.817
[70] 0.978 0.868 0.923
[5] 0.974 0.810 0.892

[134] 0.872 0.384
[41] 0.968 0.743 0.856
[47] 0.949 0.601
[44] 0.970 0.834 0.902
[46] 0.960 0.770
[66] 0.930 0.570
[64] 0.968 0.750
[45] 0.964 0.674
[71] 0.924 0.743
[72] 0.852
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Table 6. Cont.

Reference Kidneys Dice Tumor Dice Composite Dice

KiTS21

[63] 0.943 0.778
[49] 0.975 0.881 0.871
[53] 0.923 0.553
[65] 0.934 0.643
[67] 0.96 0.81
[68] 0.654
[69] 0.916 0.541
[55] 0.937 0.750 825
[56] 0.90 0.39

Other Dataset

[50] 0.859
[54] 0.923 0.826 0.875
[51] 0.925

While the method outlined above is quite effective in segmenting kidneys, the conse-
quence of a kidney tumor is clearly different for papers using KiTs19 . As seen in Figure 8,
the V-Net and U-Net are the optimal configurations. The comparison using KiTs21 and the
other dataset are shown in Figure 9. Table 7 shows a summary of results using other metrics.

Table 7. A summary of results using other metrics.

Reference Sensitivity Specificity Jaccard Accuracy Hausdorff

[12] 0.716 0.99 33.469
[70] 0.913 0.914 5.10
[50] 0.862 0.894 0.957
[72] 0.842 0.998 0.756 0.997 18.39

Figure 8. Diagram showing a comparison between different Architecture Methods using KiTs19.
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Figure 9. Diagram showing a comparison between different Architecture Methods using KiTs21 and
another dataset.

5.2. Deep Learning

The DL approach is trained to do segmentation on a pixel-by-pixel or region-by-region
basis. To begin, features are retrieved to distinguish the lesion from the background,
and different lesion characteristics can be integrated via feature extraction. However, due
to the lengthy training period and potential for over-training, test images should originate
from the same platform as the training images. DL techniques require a huge quantity
of training data to perform effectively on previously unknown materials. However, this
presents several difficulties in the medical area. First, annotating even a single CT volume
requires a substantial amount of time for a well-trained radiologist. Additionally, the work
is prone to intra- and inter-rater variability. As a result, all annotations are authorized by
an excessive number of expert neuroradiologists [139].

A significant amount of effort is spent obtaining permission, and fortunately, deep
convolutional neural networks have demonstrated exceptional performance in a variety of
computer vision applications. These networks, however, rely largely on massive amounts
of data to avoid overfitting. Overfitting is a term that refers to the process by which a
network learns a function with a very large variance in order to predict the training data
properly. Regrettably, many application fields, such as medical image analysis, lack access
to huge data [140]. Because the unavailability of large-scale datasets limits the potential
of deep learning models, researchers have turned to data augmentation as a quick fix
for the data issues described above. Other recent studies have examined unsupervised
learning [141]. Numerous augmentations have been proposed, most of which can be
categorized as data warping or oversampling techniques. Data augmentation has a very
bright future. The potential for using search algorithms that combine data warping and
oversampling techniques is immense. Deep neural networks’ layered architecture provides
numerous chances for data enhancement [81].

Regarding hardware requirements while training a model with huge datasets, DL
techniques demand massive computations processes. Due to the fact that the advantage
of a GPU over a CPU rises with the scale of the computations, the GPU is mostly used to
successfully optimize processes. Thus, GPU hardware is required to perform successfully
with deep learning training. As a result, DL is more reliant on high-performance machines
equipped with GPUs than on traditional machine learning approaches [142]. Additionally,
the use of 3D deep learning models significantly increases the computational and memory
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requirements. DL uses software libraries to define and train deep neural networks in a
parallel or distributed manner while leveraging multi-core or multi-GPU environments.
At the moment, researchers are constrained by the amount of GPU memory available to
them (typically 12 gigabytes). As a result, batch sizes and model complexity are constrained
by the amount of memory available [21].

The performance of kidney tumor segmentation algorithms have continued to improve
in recent years as more training data has been available and more sophisticated CNN
architectures and training techniques have been used. Their robustness, however, continues
to fall behind expert performance [21]. Interestingly, single U-Net [83] based models [143]
continue to perform well, corroborating the assertion that “a well-trained U-net is difficult
to surpass” [144]. As a result, concerns such as properly analyzing 3D slice data and
compressing the model as the number of network parameters rises, must be addressed in
the future. Additionally, because of the scarcity of medical imaging data, researchers must
consider how to avoid over tagging. Although the features of individual tumors vary, there
are several similarities between them. However, no successful study presently aims to unify
segmentation algorithms and transfer learning across tumor types [88]. The examined
literature demonstrates that careful initialization of hyper-parameters, pre-processing
techniques, sophisticated training schemes, and addressing the class imbalance problem
contribute significantly to the accuracy and resilience of segmentation algorithms.

6. Conclusions and Future Work

This paper discusses ways of segmenting kidneys and kidney tumors using deep
learning and building blocks, as well as state-of-the-art approaches and implementation
tools. The existing techniques serve two purposes: segmenting tumors correctly and
compensating for the lack of training data. Based on adequate training data, DL is capable
of adequately segmenting kidney tumors. With proper pre-processing, weight initialization,
sophisticated training schemes, segmentation with unambiguous borders, and obtaining
additional information for pixel classification, ensemble approaches and U-Net-based
models have significant potential for improving the state-of-the-art. The absence of a
large-scale medical training dataset is a primary reason for the poor performance of many
segmentation algorithms. As a starting point for future development, overall, kidney
and renal tumor segmentation challenges have been met with great success. It received
a large number of submissions and continues to be a significant and hard benchmark
for 3D segmentation. However, extending the use of these systems outside the sampled
population for the test set would be desirable since it was obtained from individuals who
shared the same geographic region and healthcare system and a multi-institutional cohort
with a prospectively generated test set. Additional imaging modalities, such as magnetic
resonance imaging (MRI) or contrast-enhanced ultrasound (CEUS), may be employed
to increase the diagnostic algorithm’s accuracy when CT alone is used. Future research
on DL designs, particularly in the realm of medical imaging, should avoid complicated
architectures. Future research should focus on reducing the training time for deep learning
models. To produce more successful models that can be utilized in various disciplines,
it is required to simplify the systems to which the models may be applied and minimize
their complexity.
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