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Abstract: Developing Field Programmable Gate Array (FPGA)-based applications is typically a slow
and multi-skilled task. Research in tools to support application development has gradually reached
a higher level. This paper describes an approach which aims to further raise the level at which
an application developer works in developing FPGA-based implementations of image and video
processing applications. The starting concept is a system of streamed soft coprocessors. We present
a set of soft coprocessors which implement some of the key abstractions of Image Algebra. Our
soft coprocessors are designed for easy chaining, and allow users to describe their application as
a dataflow graph. A prototype implementation of a development environment, called SCoPeS, is
presented. An application can be modified even during execution without requiring re-synthesis. The
paper concludes with performance and resource utilization results for different implementations of a
sample algorithm. We conclude that the soft coprocessor approach has the potential to deliver better
performance than the soft processor approach, and can improve programmability over dedicated
HDL cores for domain-specific applications while achieving competitive real time performance
and utilization.

Keywords: image processing; FPGA; soft coprocessor; soft processor; image algebra

1. Introduction

Image processing algorithms are used in many applications, including image classifica-
tion, medical image processing, video surveillance and target detection and tracking [1–3].
These applications have been embedded in more and more devices such as smartphones,
unmanned autonomous vehicles and surveillance cameras [4–6]. Safety critical image pro-
cessing applications require the processing system to be accurate, and often fast [7]. With
the rapid development of image sensors, the resolution of images and videos is becoming
higher than ever. For high-resolution images, traditional processors struggle to keep up
with increasing resolutions [8]. It may not be possible to process very large images in
real-time using conventional CPUs. Thus, it is necessary to consider ways of accelerating
the most time-consuming computing tasks of the application in these cases. Commonly,
there are four approaches to accelerating image processing algorithms, namely: multi-core
clusters of CPUs, GPUs, FPGAs and ASICs. CPUs and GPUs are instruction-based pro-
cessors, and so they operate on the normal fetch-execute cycle model. This means that
it can take several clock cycles to execute one instruction. They are also relatively high
power compared to ASICs and FPGAs when implementing the same application [9]. ASICs
usually have the best performance and lowest power, but they are not programmable and
are very expensive to produce. FPGAs are somewhere between GPUs and ASICs. They are
capable of producing low power, low cost but high-performance solutions. However, the
design time for custom cores can be much longer than for GPUs [10]. In the field of image
processing, because of the independence of pixels, FPGAs can produce good speedup,
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particularly when used as a coprocessor for low-level image processing operations [11].
However, the key challenge is to speed up the process of producing an FPGA-based solution
to image processing application problems.

The need to accelerate the application development process is generally acknowledged.
Although vendors and researchers have been putting effort into creating higher-level
design environments for building hardware accelerators using FPGAs, some problems
still remain [10,12–14]. Hardware designers tend to use ‘high-level’ in the sense that the
syntax is at a higher level than Very high-speed integrated circuit Hardware Description
Language (VHDL) or Verilog HDL [15]. However, for application developers and software
programmers, high-level means that hardware design issues can be practically ignored,
and the coding focuses on the application alone, as though the developer were coding
for a PC. To application developers, the above tools remain low level, even if they use C
syntax [15]. If application developers use the tools naively, without taking hardware design
issues into account, very inefficient hardware is likely to result. Furthermore, although
these High-level Synthesis (HLS) tools are described as high-level, there are some features
of the input language that cannot be synthesized. For example, Xilinx Vitis HLS does not
support the use of pointers and dynamic memory allocation in C [13,16].

Since the result of the HLS tools above is still HDL, users typically require the usual
long re-synthesis time when they make changes to the algorithm or application [14]. This
hinders the experimental nature of image processing application development, which is
one of the targets of this paper.

Xilinx recently aimed to shorten the synthesis time by their new product, Adaptive
Computing Accelerating Platform (ACAP) and released an early product of the ACAP
family, Versal [17]. The main advantage of the ACAP family is its ability to rapidly perform
re-synthesis (within milliseconds). Xilinx also provides its AI Engine to accelerate the
deployment of AI applications on selected Xilinx devices. Combined with Xilinx Vitis,
the development of AI and image processing applications on some Xilinx devices can be
significantly accelerated [18]. Unfortunately, only some of the latest Xilinx devices support
this feature.

Thus, the current challenges to using FPGAs to accelerate an image processing system
can be summarized as follows:

1. It is hard to achieve both programmability and performance on FPGAs across all devices.
2. Current vendors’ HLS tools still require users to be knowledgeable about hardware

and the limitations of the tools.
3. Lengthy synthesis time is a hindrance during experimental and iterative image pro-

cessing system development.

In this paper, a higher-level approach for image processing system development is
proposed to address to some extent the above-mentioned challenges. We will present
a number of concepts, which are integrated into a prototype Soft Coprocessor System
(SCoPeS), to support the development of FPGA-based image processing applications.
Detailed contributions of the paper are as follows:

1. We propose the concept of customizable Soft Coprocessors (SCPs) as the basic building
block for stream-based applications. We allow users to chain SCPs together so they
can communicate directly with each other and not merely with the host. We use
AXI4-Stream Interconnect to connect the SCPs in a system. In this way, we provide
users with a flexible system that can be programmed as a Data Flow Graph (DFG).
Users do not normally need to re-synthesize when they change the DFG.

2. We provide a set of customizable Software Coprocessors based on the key concepts of
Image Algebra (IA), including a range of point, neighborhood, and global operations.

3. We provide a set of efficient hardware skeletons for defining new IA-like operations,
where users need only supply their own C-based pixel-level function. This enables
the creation of very efficient function-specific SCPs.
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Our prototype SCoPeS environment includes several tools to support the SCP ap-
proach. A hardware configuration generator tool enables users to specify the number of
each type of SCP to be available for the current application project. Provided the application
uses only this pool of SCPs, no resynthesis is required. A code generator enables users to
define their applications in terms of a text-based DFG. (This is in place of special tools for
editing a graphical view of the DFG). Users can edit the textual DFG description, normally
without requiring re-synthesis.

The rest of this paper is organized as follows. In Section 2, we introduce the back-
ground and related work in terms of Image Algebra, high-level programming models
and different FPGA implementations of image processing algorithms and systems. In
Section 3, we provide a user’s view of our design approach. In Section 4, we describe the
architectures and underlying implementation, including our Generic and Function-specific
Image Algebra-based SCPs and how they connect and communicate with each other. In
Section 5, we demonstrate how we create a new image processing system using our SCoPeS
environment. In Section 6, a comparison between different design approaches for a simple
image processing operation is presented for evaluation purposes.

2. Background and Related Work
2.1. Current Tools for Designing FPGA Custom Cores in a High-Level Environment

Modern FPGAs are no longer thought of as arrays of gates, but as collections of larger-
scale functional blocks, integrated using programmable logic. They are still programmable
but are not restricted to programmable logic (PL), and sometimes come equipped with on-
chip ARM processors or embedded GPUs. When implementing an image processing system
on FPGAs, the design effort is a critical project requirement. Very large image processing
systems are difficult to design efficiently and require very detailed hardware knowledge.
To address this challenge, vendors have released their HLS tools to reduce the design time.
The syntax of design description languages has moved up from VHDL/Verilog HDL to
C/C++ level because of HLS tools such as Vivado HLS and Intel HLS compilers [19,20].
Applications are becoming more complex. System-on-chip solutions are achievable through
the hybrid architecture of ARM+PL and the HLS design approach.

There are also some HLS tools from academia, such as LegUp [21], CyberWork-
Bench [22], autoBridge [23] and LeFlow [24]. autoBridge is used specifically for floor
planning and pipelining high-frequency designs on multi-die FPGAs. LeFlow is designed
specifically for deep learning inference implementation. LegUp can generate a hybrid
system of custom cores and soft processors; the other tools only generate custom cores.
With currently available HLS tools, users need to rely on the vendor’s tools to integrate the
RTL design into a whole system, which is a non-trivial task. After the HLS stage, there is
generally no additional help for users to integrate their resulting system.

2.2. Soft Processors

As an alternative to the inflexible custom core approach, it has become popular to
provide cores for simple programmable processors. These allow users to program in high-
level languages. A soft processor is achieved by configuring FPGA hardware resources as a
processor. Soft processors can reduce the design time through using a high-level language.
They also reduce the hardware knowledge required to design a full system. However,
single core performance of a soft processor is usually poor, since soft processors go through
the standard fetch-execute cycle for each instruction, and they cannot run at as high a clock
rate as normal hard-core processors. For example, Xilinx Microblaze usually runs under
400 MHz, while Intel and ARM processors can run at well over 1 GHz [25–29].

When users program these soft processor systems, they do not normally have to think
in terms of the hardware but at a relatively high-level, and potentially get decent perfor-
mance. Unfortunately, there are no soft processors optimized directly for image processing
from vendors such as Intel (Altera) and Xilinx. Two soft processors developed specifically
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for image processing are, for example, IPPro [30] and a RISC-V soft processor [31]. These
processors require fewer resources than Nios II and Microblaze.

2.3. Image Algebra and Pixel Level Abstractions

Image Algebra (IA) [32] is a mathematical theory concerned with the transformation
and analysis of digital images at the whole image (rather than pixel) level. Its main goal
is the establishment of a comprehensive and unifying theory of image transformations,
image analysis and image understanding. Basic IA operations can be classified as: point
operations, neighborhood operations and global operations.

In point operations (P2P), the same operation is applied at every input pixel position
using only pixels at that position. Operations can be binary or unary; they include relational
(e.g., ‘>’, ‘=’), arithmetic (e.g., ‘+’, ‘×’), and logical (e.g., ‘and’, ‘or’) operations. Normally
one output pixel is generated for each corresponding input pixel position.

A neighborhood operation (N2P) is applied to each (potentially overlapping) region
of an image. It is most common to use a 3 × 3 or 5 × 5 window. A new pixel value will
be generated for each window position. The user specifies the matrix of weights for the
window which is used in calculating the result value.

A global operation is a reduction operation that is applied to the whole image and
produces a scalar (R2S) or a vector (R2V). For example, global maximum will produce
one scalar value, whereas histogram will produce a 256-element vector (for standard grey
level images).

2.4. FPGA-Based Image Processing

In embedded systems, FPGAs are powerful tools for accelerating image processing
algorithms, especially for real-time embedded applications, where latency and power
are important considerations. FPGAs can be embedded in a camera to directly provide
pre-processed image streams. In this way, the sensor will provide an output data stream
rather than merely a sequence of images [33]. FPGAs can achieve both data parallelism
and task parallelism within many image processing tasks. Unfortunately, simply putting a
PC-based algorithm onto an FPGA usually gives disappointing results [34]. In addition,
many image processing algorithms have been optimized for scalar processors. Thus it is
usually necessary to optimize the algorithm specifically for an FPGA before implementing.

There have typically been three approaches to implementing an image processing
algorithm/system on FPGAs:

1. Custom hardware designed using Verilog HDL or VHDL and combined with the
vendor’s IPs.

2. High-level synthesis tools used to convert a C-based representation of the algorithm
to hardware.

3. Algorithm mapped onto a network of soft processors.

When users need to implement an algorithm on FPGAs using custom cores, they need
to consider the memory mapping, architecture, and algorithmic optimizations. On the other
hand, when users try to use soft processors to implement their complex algorithm, they
will usually be limited by the poor single core performance on the one hand, and resource
utilization of a multi-core architecture on the other. Thus, balancing programmability,
resource utilization and performance is a key challenge for implementing algorithms
on FPGAs.

2.5. Summary

Currently, HLS tools are the key to rapidly implementing FPGA-based image process-
ing algorithms or systems. HLS tools can even accept different input languages, such as
C/C++, Java, Python and LabVIEW. Users need to use Xilinx Vivado or Intel Quartus Prime
to perform the integration. This stage usually requires detailed hardware knowledge.

In terms of the efficiency of implementing image processing algorithms and systems
on FPGAs, custom cores have better performance than soft processors, but require users to
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have detailed hardware knowledge to design efficient accelerators. Soft processors keep
the high-level programming model, but single core performance is poor. Users need to
use multiple soft processors in order to meet the performance requirements. Figure 1
indicates informally the programmability (ease of use) vs. performance (throughput) of the
different approaches. Our goal is to move a step closer to achieving both performance and
programmability at the same time. For suitable applications, our soft coprocessor approach
seeks to have performance approaching HLS products and HDL custom cores, even if it is
not as programmable or as general purpose as soft processors.
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To address these challenges and problems, in this paper we present our approach—
the soft coprocessor (SCP) approach. This aims to achieve performance closer to custom
cores while providing users with a higher-level programming model than the current
Vivado toolchain.

3. User’s View of the Soft Coprocessor Approach
3.1. The Concept of Soft Coprocessors

For FPGAs, performance and programmability are in conflict with each other. For
specific applications such as image and signal processing, it is sometimes possible to
present a higher level programming model which is less general purpose but can exploit
common data access patterns. One of the first uses of coprocessors was in the early days
of microprocessor design. For example, the Intel 8086 processor could use a separate
8087 coprocessor chip to increase the speed of floating-point calculations with which it was
closely integrated [35]. A coprocessor does not have the usual overhead of the fetch-execute
cycle which is a significant overhead for soft processors. We therefore propose the concept
of soft coprocessors to attempt to obtain many of the benefits of an application-specific
processor but with the efficiency of a coprocessor. All our soft coprocessors have the
following basic properties:

• A standard interface for data transfer between soft coprocessors, allowing developers
to add a soft coprocessor to a system without having to design custom I/O hardware.

• Each soft coprocessor can be parameterizable, allowing a degree of programmability
and functional flexibility, but without requiring re-synthesis.

• The soft coprocessors should be able to interact with each other, and be formed into a
DFG arrangement, to reduce communication and buffering overheads. This assumes a
stream-based approach.

• Each soft coprocessor should be able to interact with the background control and
communication system that manages the operation of the whole FPGA-based system.

FPGAs have a lot of computing resources but a more restrictive on-chip memory
model. The efficient use of memory resources is crucial to system performance. Skilled
developers can choose the optimal memory management approach from a range of pos-
sibilities. However, for application developers, it is difficult to fully exploit the limited
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on-chip memory resources using HLS tools. To provide optimized memory allocation for
point, neighborhood and global operations, we provide three fundamental types of soft
coprocessor based on the core Image Algebra (IA) operations.

3.2. Soft Coprocessors for Stream-Based Image Processing

Stream-based processing using on-chip memory is preferred where possible, since
simultaneous access to off-chip memory by multiple coprocessors would be a bottleneck.

For a specific application domain such as image processing, we would like a set of
SCPs which can be instantiated, and which cover the common domain operations. A good
method to identify such a set is to find an existing algebra for the domain and build on
the abstractions that have been identified and used at a mathematical level. In the case of
image processing, we have chosen some of the core concepts of Image Algebra (IA).

3.3. Single Image Algebra-Based SCPs

We provide a built-in library of core SCPs which carry out the core operations of Image
Algebra. There are four core classes of IA SCPs, plus a fifth type for compound operations:

(i) Point operations. We provide two types of SCP which apply a point function
to every pair of pixels in the two streamed input images (or to each pixel and a scalar
parameter), and generate an output pixel stream. The actual function applied is a parameter.
The range of point functions include all the standard (integer) arithmetic, logical and
relational functions. For example, a threshold operation would use the image-scalar SCP
with the two parameters (≥, threshold value). Image stream pixels are held as 8-bit integers
and intermediate values created during addition, subtraction and multiplication are held
in higher precision as necessary.

(ii) Neighborhood operations. We provide an SCP for each common size of neigh-
borhood (3 × 3, 5 × 5, etc.). The N × N matrix of weights is supplied as a parameter. A
standard neighborhood operation has two functions: the point function which is applied
pairwise to each pixel-weight pair in the window, then the reduction operation which
reduces the N × N intermediate results to a single pixel result. For example, for a standard
convolution, the two function parameters are (×, Σ). Using this type of SCP a range of com-
mon image processing functions are possible, such as dilation, erosion, convolution-based
edge detection and image filtering.

For example, a simple dilation SCP on a binary image would be an instance of the
3 × 3 SCP with the kernel weights [1, 1, 1, 1, 1, 1, 1, 1, 1] and the functions (×, ‘or’)
(effectively just a neighborhood OR). An erode SCP would have ‘and’ instead of ‘or’ as
a parameter.

For some operations (perhaps involving image reduction), the window can step by
more than one pixel: for example, in the convolution layer of a Convolutional Neural Net-
work (CNN) [36]. This is achieved by having a stride parameter as part of the neighborhood
operation SCP. The default stride is 1 × 1.

(iii) Global operations. We provide an SCP that performs a reduction operation on a
streamed image. The result is a single value. The available reduction functions include
Σ, |Σ|, max, min, count, and average. A second global SCP produces a vector as a result
(typically used for finding the image histogram).

(iv) Block operations. Sometimes we need to divide an image into multiple smaller
blocks and then apply the same algorithm to each block. For example, for the Histogram
of Oriented Gradients (HOG) algorithm, we find a histogram of edge gradients for each
block. Thus, we provide a block-based SCP that provides a neighborhood operation or
other function, for each block separately.

(v) Common complex operations. Although the above basic SCPs can be chained
together to perform a compound IA-based algorithm, in practice there are certain common
patterns of operations which can be more efficiently implemented as a single operation.
We therefore provide a number of pattern-specific SCPs. For example, edge-finding and
morphological operations sometimes apply a window in several rotated orientations and
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have a final reduction stage to produce a single result. We provide a Cycle Neighborhood
SCP that takes as its parameters the weight matrix, the number and angle of rotations, the
two functions for the neighborhood operation, and the final reduction operation.

For example, suppose we want a complete Sobel edge detection operation using a
single complex neighborhood SCP. We supply the kernel (the vertical one, say) and specify
two orientations, with a rotation angle of 90o. The two neighborhood function parameters
are “×” and “|Σ|” and the vector of kernel weights is [−1, 0, 1, −2, 0, 2, −1, 0, 1]. The final
operation to combine the two window outputs (the vertical and horizontal edge strengths)
is ‘+’. (Adding the absolute edge strengths is a common approximation to avoid squaring
and adding).

3.4. Chaining Multiple SCPs in a Data Flow Graph

Multiple instances of the above generic SCPs can be chained together to implement a
compound algebraic expression. The output stream of one SCP is fed directly as the input
to the next without buffering the complete intermediate image or without involving the
host processor. Synchronization is handled automatically by the SCP framework. This
chaining can be represented by a simple Data Flow Graph (DFG).

For example, the above Sobel edge detector could have been created using two basic
3 × 3 neighborhood SCPs feeding their results into a third point SCP.

3.5. Skeleton SCPs for Function-Specific Coprocessors

Using generic SCPs is useful during the algorithm experimentation stage because the
hardware does not need to be changed even if different functions are selected. However,
once the algorithm is finalized, more efficient function-specific coprocessors for compound
operations can be created. To make this convenient without requiring hardware knowledge,
we provide a set of SCP skeletons. These are effectively hollow codings of the above four
classes of SCP (point, neighborhood, global and block). The skeletons contain HLS code to
manage the dataflow patterns of each type of operation. In this way, users need only to
supply the core pixel-level function in the form of a simple C/C++ function. It is in this C
function that the user specifies the arbitrarily complex operation. Users can code detailed
optimizations, for example, by embedding constant kernel coefficients. An example that
we will see later is an SCP specifically for a more efficient implementation of the Sobel
edge detector.

A new SCP created using our skeletons will need to be synthesized the first time. Once
it is added to the SCP library, it is available thereafter.

Function-specific SCPs are commonly used to replace a chain of SCPs, or they can
replace a generic SCP with one that is optimized for the specific purpose. For example, a
more efficient dilation SCP could be created using the 3 × 3 neighborhood skeleton and
encoding a simple OR function which avoids the need to apply the redundant ×1 step.

Function-specific SCPs will be more area-efficient than their generic counterparts.
Each generic SCP must retain the hardware for all the available functions, in case the user
wishes to experiment with different functions during development, without resynthesis.
Of course, the function-specific SCPs are not as functionally flexible. There are also several
coding conventions which must be followed, for accessing the parameters. This is one of
the necessary trade-offs when working with FPGAs.

We now provide an example of using a neighborhood skeleton SCP to implement
a Sobel operation as a single and efficient function-specific SCP. The code of the Sobel
function, including thresholding, is shown in Figure 2.
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3.6. Generating SCP Configurations

We distinguish between the application program and the hardware configuration it
runs on. To avoid frequent re-synthesis, our model is that a (pre-synthesized) configuration
contains the set of SCPs which are available to the application developer. Provided the
application makes use of only these SCPs, then changes to the application can be made
without any re-synthesis. There are separate tools for defining both the configurations and
the application.

To speed up the process of getting a runnable FPGA configuration, our SCoPeS
environment maintains a library of FPGA configurations which contain different mixes
of SCPs from the SCP library. The need for this arises because the developer may not
know in advance exactly how many instances of each type of SCP will be needed. If the
Configuration library does not have the necessary mix for the current project, then we
provide a tool which enables the user to create a new SCP configuration. The user can
specify the number of each class of SCP, and the Hardware Configuration Generator (HGC)
tool will then generate the complete FPGA bitstream, and add it to the Configuration
library, as shown in Figure 3. Obviously, the required hardware resources of the defined
configuration must be able to fit on to the target FPGA.
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3.7. Text-Based DFG Code Generator (TCG)

Normally, users could use the default Xilinx SDK to program the Zynq-based hard-
ware platform in baremetel mode or use PetaLinux+Xilinx SDK to build a Linux-based
application. In this stage, there is no hardware level design; normally users can develop
their application in C/C++. Users need to use the HLS-exported driver to create their own
initialization function, set all the parameters individually, and invoke them for execution.
We use the AXI4-Stream Interconnect for connecting all our coprocessors (see later) to
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match the user-supplied DFG. This textual DFG specifies the coprocessor instances, their
parameters, and their interconnection channels. Our Textual Code Generator (TCG) tool
takes the text representation of the DFG and generates the executable C code for the Xilinx
SDK. This simplifies and speeds up the development of the final application.

As an example, Figure 4a shows the developer’s code (the textual DFG) for an au-
tomatic thresholding system using the Otsu method (assuming we have already written
the final Otsu SCP to select and apply the threshold using our skeletons) after an Open
operation. The ‘Streamer’ is a block which is directly connected to the camera, and which
generates a stream with all the parameters and the image data. We set the ‘Streamer’
output channel to channel 3. We then do the dilation and erosion through neighborhood
operations. After that, we do the edge detection, histogram finding and Otsu thresholding.
The result image stream is returned through channel 2. Figure 4b outlines the generated
Xilinx SDK useable code from the DFG in Figure 4a.

J. Imaging 2022, 8, x FOR PEER REVIEW 9 of 17 
 

 

Normally, users could use the default Xilinx SDK to program the Zynq-based hard-
ware platform in baremetel mode or use PetaLinux+Xilinx SDK to build a Linux-based 
application. In this stage, there is no hardware level design; normally users can develop 
their application in C/C++. Users need to use the HLS-exported driver to create their own 
initialization function, set all the parameters individually, and invoke them for execution. 
We use the AXI4-Stream Interconnect for connecting all our coprocessors (see later) to 
match the user-supplied DFG. This textual DFG specifies the coprocessor instances, their 
parameters, and their interconnection channels. Our Textual Code Generator (TCG) tool 
takes the text representation of the DFG and generates the executable C code for the Xilinx 
SDK. This simplifies and speeds up the development of the final application. 

As an example, Figure 4a shows the developer’s code (the textual DFG) for an auto-
matic thresholding system using the Otsu method (assuming we have already written the 
final Otsu SCP to select and apply the threshold using our skeletons) after an Open oper-
ation. The ‘Streamer’ is a block which is directly connected to the camera, and which gen-
erates a stream with all the parameters and the image data. We set the ‘Streamer’ output 
channel to channel 3. We then do the dilation and erosion through neighborhood opera-
tions. After that, we do the edge detection, histogram finding and Otsu thresholding. The 
result image stream is returned through channel 2. Figure 4b outlines the generated Xilinx 
SDK useable code from the DFG in Figure 4a. 

 
(a) 

 
(b) 
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ple of the code generated by the TCG tool from the DFG in Figure 4a.

In Figure 4b, the first block on the right is the output from the first pass of our TCG
tool through the text description, generating all the necessary header files based on the
names of the functions. The second block shows the generated initialization functions. The
main body of the program is then generated based on the text-based DFG.



J. Imaging 2022, 8, 42 10 of 16

3.8. Using the SCoPeS Development Environment

Our SCoPeS development environment includes the tools necessary to build an ap-
plication using the SCP library, as mentioned above. It is currently a prototype IDE. The
typical design flow for a new project/application is thus as follows:

1. Decompose the desired algorithms into IA expressions.
2. Select (or create) a suitable configuration from the Configuration library. (We can

select a different one later if we run out of instances of a certain type of SCP).
3. Define each algorithm as a Data Flow Graph (DFG) and use the TCG tool to set up the

system defined by the DCG.
4. Experiment with the system, until the functions and parameters are finalized.
5. If necessary, design function-specific coprocessors to replace some of the IA-based

SCPs selected in step 2.
6. If step 5 was utilized, import the function-specific coprocessors into the system and

resynthesize the system configuration.

4. Architectures and Implementations of Coprocessors

In this section, we discuss some key implementation aspects of the SCP approach,
including the architecture for single IA-based SCPs, hardware skeletons and hardware
configurations.

4.1. SCP Architectures for Image Algebra Operation Types

When implementing the SCPs on FPGAs, the use of the internal memory depends on
the type of operation. Point operations usually do not need image buffers; neighborhood
operations require line buffers to hold the relevant pixels within the window depending
on the size of the kernel. Some global operations do not require any buffering; however,
some function-specific global SCPs may need a whole frame buffer to hold the frame until
the frame has been processed, such as Otsu adaptive thresholding [30]. When creating an
instance of one type of SCP, the optimized data handling then comes for free. Figure 5
shows how we handle the data flow and buffering in different types of SCP. Since we are
using HLS to implement these SCPs, details of the architectures are hidden from us, and
we only have control over the data flow and buffering.
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The point operation SCP reads the next pixel from the input stream and performs the
calculation before pushing the result to the output stream. With pipelining, one pixel is
output every clock cycle.

In the neighborhood operation SCP (e.g., convolution), the example architecture of
a generic 3 × 3 neighborhood operation is shown in Figure 5. As the streamed pixels
arrive, we use a BRAM-based line buffer to hold two lines and two pixels. When the
third pixel of the third line arrives, we have the whole window ready for a neighborhood
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operation to produce one single output pixel. Then, we increment the window position,
read one more pixel, and perform the next neighborhood operation. The neighborhood
calculation in our generic operator is divided into two stages. In the first stage, for each
position in the window, each image pixel in the window is combined pairwise with the
corresponding value in the kernel (the matrix of window weights supplied by the user).
These intermediate results are then reduced in the second stage. (For convolution, this
would be an accumulation operation.)

As a global operation can reduce a streamed input image to either a scalar result or a
vector result, two versions of global SCP, R2S and R2V, are available. Sometimes the result
of a global operation is subsequently used to process the same image (e.g., to threshold
an image based on its average pixel value). In this case, it will be necessary to buffer the
whole input image in an image buffer. Thus, in the architecture for a global operation SCP
(Figure 5), when a streamed image comes from a camera, another SCP, or from a file, users
can decide if they need a built-in frame buffer before pushing the result pixel. During
the buffering or streaming of the input frame, the calculation for the global operation
can be performed at the same time, since the global SCPs are fully pipelined. Supported
operations include Min, Max, Σ, |Σ|, Count and Global Average. An image histogram
can be obtained by selecting the R2V SCP and specifying the address in BRAM where the
vector will be stored so that subsequent SCPs can access the result directly. However, when
internal memory allocation such as a frame buffer is needed, re-synthesis may be required.

The block operation can be regarded as a special neighborhood operation that operates
on a stream of blocks. This requires an outer level of processing to extract blocks in order,
and to stream each block to the neighborhood operation. For each block, we can perform
any neighborhood-based operation. When performing a neighborhood operation (e.g.,
3 × 3) on a block, we must allow for the edge effect at block boundaries. Therefore, the block
buffer is one column larger (for a 3 × 3 operation) than the original block (see Figure 5).
Moreover, the buffering hardware will handle any block stride length dynamically in SCPs,
as it is sometimes useful to experiment with different block strides at runtime.

Complex SCPs which perform a neighborhood operation with a kernel in multiple
orientations avoid the need to replicate the line buffer. Using the complex neighborhood
SCP, and supplying the appropriate kernel plus the rotation parameters, we can execute
these operations in a single pass of the stream. This solution uses only a single line buffer.

4.2. Communication between Coprocessors

To allow users to change the DFG interconnections between SCPs without re-synthesis,
we use AXI4-Stream Interconnect (a Xilinx provided IP core) to connect SCPs instead of
using naïve FIFOs. Each SCP has a TDEST input to indicate where its output stream goes
in the AXI4-Stream Interconnect system.

When there are many SCPs in the application, there will be many parameters to be sent
to the various SCPs, so it is crucial to find an efficient way of distributing these parameters.
We also would like parameter distribution to be dynamic (in the sense that they can be
changed while the program is running). Our solution is to send the parameters as part
of the header package for every new frame. It would be possible to send them using the
ARM processor through the AXI bus using the AXI-Lite interface [32] by enabling the data
stream [33], but the ARM would have to work sequentially in sending all the parameters
every frame, which is time-consuming when there are many SCPs involved. This is why
our approach is to group the command and data together by appending the parameters to
the front of each frame in the image data stream.

The parameter stream is illustrated in Figure 6. The parameter stream comprises,
for each SCP, the ID of the SCP, its various parameters, and the output channel (TDEST).
Because we fix the entry point of the system to be the streamer, in this particular case we
only need to define the output channel of each SCP. (More generally, of course, both the
input and output channels would be defined). Each SCP receives the complete parameter
stream for all SCPs; it extracts only those parameters relevant to it, passes on the parameter
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stream to the output channel (the next SCP), and then starts processing the image data
which follows the parameter section.
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4.3. Coding SCPs behind the Scenes

We created the Image Algebra-based soft coprocessors using Xilinx Vivado HLS. For
interoperability of SCPs, the way of interfacing any coprocessor to the rest of the system is
always the same.

When the developer introduces a new SCP instance in the textual DFG description,
behind the scenes, one of the free instances of the SCP will be acquired from those still
available in the user-selected configuration. The parameters in the DFG are used by
the TCG tool to generate and set the various properties of the SCP in an object-oriented
fashion. Code is also generated to form the connections via the channels in the AXI4-Stream
Interconnection scheme described above. This code is for the Xilinx SDK after the hardware
platform has already been defined and synthesized. For example, Figure 7 shows the TCG-
generated code for the Xilinx SDK to set up a complex SCP (of type NeighOP2) followed
by a thresholding SCP (of type PointOP) for the Sobel operation outlined previously, based
on a two-step rotating kernel.
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When implementing designs using Xilinx Vivado HLS, directive settings (or pragmas)
can have a significant effect on hardware utilization and performance. Optimization using
well-designed directives can be several times more effective than an unoptimized design.
Mastering these directive settings takes a lot of time and requires a deeper understanding
of how the hardware works. We therefore developed our own internal library of reusable
macros and reserved variables which we used to simplify and standardize the HLS coding
of all the IA SCPs. These macros are also available to the developer when creating skeleton-
based function-specific SCPs and when writing the low-level C function. This library is not
normally required to be visible to the developer, but we mention it as a valuable approach
to simplify the retargeting of our HLS coding of SCPs and skeletons to other types of FPGA.
This internal library includes:

• Interface settings;
• Pipelining directives;
• Buffer settings;
• Special data types and hardware-level signal handling.
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5. Evaluation and Comparisons

In this section, we present some details of the performance and hardware utilization
of the SCPs. We use the Xilinx Zedboard with an I2C OV7670 camera module as the
test platform. The OV7670 camera can produce a 640 × 480 8-bit greyscale video stream
and can be connected to the Zedboard. The Zedboard is equipped with an XC-7Z020
FPGA, which has programmable logic (PL) and an ARM processor. We use the Xilinx
Zedboard to implement our designs and evaluate two different versions of our IA-based
SCPs: the Minimum Area mode and Maximum Performance mode (these have to be
separately synthesized). We compare example operations using SCPs with equivalent
implementations using the image processing soft processor, IPPro. Finally, we also compare
a generic (complex) single SCP formulation of a Sobel operator with an equivalent function-
specific SCP created using a neighborhood skeleton SCP.

Performance and Hardware Utilization

Table 1 shows the SCPs’ hardware utilization and performance (in frames per second)
on a Virtex FGPA running at 150MHz in Minimum Area mode. This is compared with
the utilization and performance of the soft processor-based solution using a multi-core
IPPro. The comparison is for four basic SCP operations (point, neighborhood, complex and
global). Table 2 shows the equivalent figures using Maximum Performance mode for the
SCPs. In both cases, the image size is 512 × 512 and in the neighborhood operation SCP,
the kernel is a 3 × 3 matrix.

Table 1. Comparison between SCP (in Minimum Area mode) and IPPRO in utilization and performance.

SCPs FFs LUTs BRAMs DSPs FPS

Point 1659 2015 0 3 186
Neighborhood Basic 1104 1404 5 9 127

Neighborhood Complex 4963 7141 5 72 125
Global 622 998 0 0 189

IPPro [30] FFs LUTs BRAMs DSPs FPS

Point (8 core) 12,279 10,941 18.5 8 120
Neighborhood Basic (6 core) 13,202 11,826 32.5 6 76

Table 2. SCP utilization and performance (in Maximum Performance mode).

SCPs FFs LUTs BRAMs DSPs FPS

Point 3346 2965 0 3 556
Neighborhood Basic 2309 1963 5 9 380

Neighborhood Complex 9862 12,368 5 72 374
Global 1432 1353 0 0 568

The first observation is on the difference between Minimum Area mode and Maximum
Performance mode. Maximum Performance mode is roughly three times as fast, but takes
twice as much area, as Minimum Area mode. However, in practice there may be no
advantage in being able to process at nearly 400FPS, and so the Minimum Area mode is
often to be preferred.

To make comparison with various IPPro configurations easier, Table 3 shows the
normalized ratios of performance and resources (to one decimal place) based on the data in
Tables 1 and 2 (first for Minimum Area mode and then for Maximum Performance mode).
Note that a value greater than 1 in the IPPro rows indicates the degree to which IPPro is
worse than SCP. Thus in Maximum Performance mode, SCPs process 4.6 times faster than
IPPros in point operations and 7.3 times faster in neighborhood operations, while using
less hardware than IPPro. This is partly because the IPPro has to go through the standard
fetch-execute cycle. In Minimum Area mode, SCP performance is a little faster than IPPro,
yet uses only 20% of the resources (apart from DSPs) as Table 3 shows.
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Table 3. Ratios for SCP to IPPro for performance and utilization (>1 is worse).

Min Area Operation Performance Utilization (>1 Is Worse)
Freq FPS FFs LUTs BRAMs DSPs

Point
SCP 150 MHz 1 1 1 1 1

IPPro (8 core) 150 MHz 1.5 7.4 5.4 — 2.7

Neighborhood SCP 150 MHz 1 1 1 1 1
IPPro (6 core) 150 MHz 2.4 8.0 5.9 — 2.0

Max
Performance

Operation Performance Utilization
Freq FPS FFs LUTs BRAMs DSPs

Point
SCP 150 MHz 1 1 1 1 1

IPPro (8 core) 150 MHz 4.6 3.7 3.7 — 2.7

Neighborhood SCP 150 MHz 1 1 1 1 1
IPPro (6 core) 150 MHz 7.3 5.7 6.0 — 0.7

To illustrate the benefit of using a function-specific SCP, we choose Sobel for our final
comparison. We compare the generic complex SCP with a function-specific SCP in doing a
Sobel operation in Table 4.

Table 4. Comparison between a generic and a function-specific SCP.

SCP Type FFs LUTs BRAMs DSPs FPS

Generic 9862 12,368 5 72 125
Function-specific 932 1107 2 3 128

Interestingly, the generic SCP approach and the function-specific SCP have very
similar performance (around 125FPS for a 640 × 480 video stream). However, the skeleton
approach is clearly much more area efficient (by a factor of approximately 10), because it
removes all the unused function logic which is part of the generic SCP.

6. Conclusions

In this paper, we have presented several concepts and tools which are intended to
make it easier for application developers to design FPGA-based image and video processing
systems while designing at a high-level. By high-level, we do not mean merely using the
syntax of a high-level language; we mean designing systems with no, or as little as possible,
hardware knowledge. Where it becomes necessary to drop down into hardware design,
we have introduced approaches and customizable components intended to abstract away
many of the hardware-aware details.

Our main specific conclusions are as follows:

1. We propose the concept of soft coprocessors, which are single-instruction processors
that can be parameterized to support a range of different functions. SCPs can be
assembled into a DFG for efficient stream-based processing.

2. The SCPs allow users to conveniently design and experiment with an image processing
application by chaining SCPs together. We use AXI4-Stream Interconnect to connect
all the SCPs in the system in a way that reflects the algorithm’s Data Flow Graph
(DFG). In this way, we provide users with a flexible system that can be programmed
as a textual DFG. Users do not need to re-synthesize when they change the DFG.

3. We provide reusable SCP skeletons to allow developers to create efficient function-
specific coprocessors without needing to know (much) about hardware structures.

4. We have provided a set of generator tools which comprise the SCoPeS environment—a
prototype IDE to support the SCP concept.

5. Overall, we conclude that the soft coprocessor approach has the potential to deliver
better performance than the soft processor approach, and can improve programma-
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bility over dedicated HDL cores for domain-specific applications while achieving
competitive real-time performance and utilization.

However, our work also has the following main limitations:

1. Our current work is designed only for image and video processing development, and
is not a general-purpose tool. However, as a general rule, the coprocessor approach is
suited to any application area that has an associated under-pinning algebra.

2. Our implementation currently only supports relatively simple DFGs.
3. Our tools do not yet support image partitioning for greater parallelism, which can be a

useful additional technique for accelerating image processing applications. Updating
our tools to include this option of a multi-core approach is a promising future development.
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