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Abstract: Objective: The application of computer models in continuous patient activity monitoring
using video cameras is complicated by the capture of images of varying qualities due to poor lighting
conditions and lower image resolutions. Insufficient literature has assessed the effects of image
resolution, color depth, noise level, and low light on the inference of eye opening and closing and
body landmarks from digital images. Method: This study systematically assessed the effects of
varying image resolutions (from 100 × 100 pixels to 20 × 20 pixels at an interval of 10 pixels), lighting
conditions (from 42 to 2 lux with an interval of 2 lux), color-depths (from 16.7 M colors to 8 M, 1 M,
512 K, 216 K, 64 K, 8 K, 1 K, 729, 512, 343, 216, 125, 64, 27, and 8 colors), and noise levels on the
accuracy and model performance in eye dimension estimation and body keypoint localization using
the Dlib library and OpenPose with images from the Closed Eyes in the Wild and the COCO datasets,
as well as photographs of the face captured at different light intensities. Results: The model accuracy
and rate of model failure remained acceptable at an image resolution of 60 × 60 pixels, a color depth
of 343 colors, a light intensity of 14 lux, and a Gaussian noise level of 4% (i.e., 4% of pixels replaced
by Gaussian noise). Conclusions: The Dlib and OpenPose models failed to detect eye dimensions
and body keypoints only at low image resolutions, lighting conditions, and color depths. Clinical
Impact: Our established baseline threshold values will be useful for future work in the application of
computer vision in continuous patient monitoring.

Keywords: deep learning; image quality; pose estimation; facial feature extraction

1. Introduction

Recent advances in computer vision are being applied in a number of industries includ-
ing the healthcare sector. Outside of healthcare, numerous algorithms have been applied
in autonomous driving [1], facial recognition in airports [2,3], self-service Amazon conve-
nience stores [4], and cybersecurity [5]. In healthcare, those technologies are predominantly
used in radiology and other imaging processing. For example, the classification of mam-
mography using convolutional neural networks showed high sensitivity and specificity in
detecting breast neoplasms [6–8]. Furthermore, encoder–decoder convolutional networks
and cycle-consistent generative adversarial networks have also shown promise in a plethora
of image semantic segmentation and translation tasks, including semantic segmentation of
organs and tissues using ultrasound [9,10], MRI [11,12], and CT [13–16] images.

Another important area of application of computer vision in the healthcare setting is
in continuous hospitalized patients’ activity monitoring [17–19]. It has been demonstrated
that cameras can be installed in hospital rooms to capture continuous video feeds of
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patients; machine-learning algorithms can then be applied to detect body movements,
facial expressions, emotions, eyelid and pupil movement, and eye-opening/closing and
classify whether the patient is lying down, sitting-up, or ambulating [20]. Assessing patient
eyelid opening/closing is particularly important in the context of detecting a patient’s
level of consciousness (e.g., to calculate the Glasgow coma scale) and recording patient
sleep/wake cycles. A priori, this type of system may serve as a detection device for early
signs of patient deterioration or risks to patient safety such as falls or delirium without the
need for a dedicated observer. Moreover, this new layer of information can also augment
traditional patient data to aid clinical decision-making and accurate disease prognostication.

However, there may be several obstacles when applying current computer vision
algorithms in the hospital setting [18,21]. First, limitations in camera placement can result
in lower relative dimensions of facial and bodily features. Different camera models result in
varied or lower video or image resolution and quality, which may be desirable given limited
computational resources and the large numbers of patients monitored simultaneously.
Furthermore, hospital room lighting is never constant, and lower levels result in darker
images with lower color depth and higher noise [22–27]. The low lighting during the night
can in part be circumvented by using cameras with larger sensors or infrared imaging [28].

To our knowledge, insufficient literature has assessed the effects of image resolution,
color depth, noise level, and low light on the inference of eye opening and closing and
body landmarks from digital images.

The aim of the present study is to test the accuracy of commonly used deep-learning
models applied to different image resolutions, lighting conditions, color depths, and noise
levels to establish baseline threshold values when the quality of the model drops below the
accepted level of performance.

These parameters are important to establish for future work in applying computer
vision in actual patient monitoring. It can be hypothesized that a degraded image should
gradually decrease the model’s accuracy up to a certain threshold beyond which the model
will fail completely.

Previous literature on human pose estimation and facial landmark detection is first
summarized, followed by a description of the methods for decreasing image quality and
testing model accuracy. Results of the effects of image resolution, color depth, noise level,
and low light are then reported and discussed.

2. Related Works

Human pose estimation using deep learning has been the subject of intense research in
recent years and has been reviewed in [29]. In general, there are two types of multi-subject
pose estimation algorithms. The top-down approach first detects all human subjects in a
particular scene and subsequently localizes all keypoints for each given subject. Algorithms
that use such a technique include G-RMI [30], Mask-RCNN [31], MSRA [32], CPN [33], and
ZoomNet [34]. By combining high- and low-resolution representations through multi-scale
fusion while maintaining a high-resolution backbone, HRNet [35] and HigherHRNet [36]
achieved excellent keypoint detection results.

In contrast, the bottom-up technique identifies all keypoints first and then assigns
each keypoint to an individual subject. Algorithms that employ this method include
DeepCut [37], DeeperCut [38], and MultiPoseNet [39]. By introducing part affinity fields,
OpenPose became the most popular bottom-up algorithm [40]. The concept of part affinity
fields was expanded in PifPaf through the addition of a part intensity field [41].

Facial landmark detection is closely related to pose estimation and has benefited from
advancements made in human pose estimation. Algorithms used for facial landmark
detection have been previously reviewed in [42]. The earliest algorithms used deformable
facial mesh, which has been replaced by an ensemble of regression tree models [43] such as
those included in the Dlib open-source library [44]. Since they have very high computation
speeds and are easy to implement, these models have become widely used in research.
More recently, algorithms used in pose estimation such as HRNet [35] have been adapted
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for facial landmark detection [45]. In addition, other newer methods using shape model
(e.g., Dense face alignment [46]), heatmap (e.g., style-aggregated network [47], aggregation
via separation [48], FAN [49], and MobileFAN [50]), and direct regression (e.g., PFLD [51],
deep graph learning [52], and AnchorFace [53]) techniques have been proposed.

3. Materials and Methods
3.1. Data

Two hundred images (100 images of humans with eyes open and 100 images with
eyes closed) randomly chosen from the Closed Eyes in the Wild Dataset [54] were used to
assess model accuracy as image quality was gradually degraded.

To generate out-of-sample images, photographs of the primary author with eyes open
and closed were captured using a 13 MP smartphone camera (Moto E XT2052-1, 13 MP,
f/2.0, 1/3.1), with the height of the face occupying approximately half of the image height.
Images were obtained using three 300-lumen dimmable light sources placed 150 cm in
front of the face.

To test the effects of image quality on the accuracy of pose estimation, images from the
COCO 2017 [55] validation dataset (https://cocodataset.org/#overview, accessed on 23
June 2022) were used. Specifically, images that depict exactly one person (Figure S6) were
extracted along with body keypoint annotations (921 images).

3.2. Model Description

Facial landmark recognition was performed using the pretrained model in Dlib
v19.24.0 (http://dlib.net/, accessed on 20 June 2022). Sixty-eight key facial landmarks were
predicted by the model (see Supplementary Figure S5), where points 36 to 41 and 42 to
47 delineate the right and left palpebral fissures, respectively.

Images from the COCO body keypoint dataset were used for pose estimation with the
OpenPose (https://github.com/CMU-Perceptual-Computing-Lab/openpose, accessed on
12 July 2022) pretrained model v1.7.0 [40].

3.3. Modifications Made

Two hundred images from the Closed Eyes in the Wild Dataset were used to assess
model accuracy as image quality was gradually degraded. To generate images of different
resolutions (a total of 8000 images), the original images were resized from 100 × 100 pixels
to 20 × 20 pixels at an interval of 10 pixels while maintaining the aspect ratio. The image
color depth was successively decreased from 16.7 M colors to 8 M, 1 M, 512 K, 216 K, 64 K,
8 K, 1 K, 729, 512, 343, 216, 125, 64, 27, and 8 colors. Gaussian noise was added by replacing
randomly chosen pixels with random pixels; noise intensity was changed by varying the
probability of replacing a given pixel from 0% to 10% at an interval of 1% and from 10% to
50% at an interval of 10%.

For images captured using the smartphone camera, light intensity at the level of
the face was measured using a smartphone light meter application (https://play.google.
com/store/apps/details?id=com.tsang.alan.lightmeter&hl=en_CA&gl=US, accessed on
15 July 2022). Images under different lighting conditions were captured by varying light
across 21 intensity levels from 42 to 2 lux with an interval of 2 lux. Since the smartphone-
captured images had a higher resolution (1000 × 800 pixels) than images from the Closed
Eyes in the Wild Dataset (100 × 100 pixels), images of different resolutions (a total of
789 images) were generated first by resizing the original images from an image height of
1000 pixels to 100 pixels at an interval of 100 pixels and then from the 100-pixel image
height to 10 pixels at an interval of 10 pixels.

For the COCO 2017 keypoint dataset, images of different quality (a total of 44,208 images)
were generated. To generate images of different resolutions, the original image width
(500 pixels) was decreased to 50 at an interval of 50 pixels and from 50 to 5 pixels at an
interval of 5 pixels. Images with different color depths and noise levels were generated
with the same quality degradation scheme as outlined above for eye open–closed inference.

https://cocodataset.org/#overview
http://dlib.net/
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://play.google.com/store/apps/details?id=com.tsang.alan.lightmeter&hl=en_CA&gl=US
https://play.google.com/store/apps/details?id=com.tsang.alan.lightmeter&hl=en_CA&gl=US
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3.4. Study Procedures

Modifications to the original images and other computations were implemented in
Python 3.9. Source codes are available via: https://figshare.com/s/47540b8b79b16edec831
(accessed on 25 July 2022).

3.5. Measurements/Statistics

The opening and closing of the eyes were quantified using the eye aspect ratio as
described in [56], which is the ratio of the vertical and horizontal dimensions of the
palpebral fissure. Palpebral fissure dimensions were estimated on randomly chosen images
(100 images with eyes open and 100 images with eyes closed) from the Closed Eyes in the
Wild Dataset. For pose estimation, the mean absolute error (MAE) of the x and y pixel
coordinates of the predicted keypoint vs. the ground truth was computed. An average MAE
value was calculated for all keypoints. One-way ANOVA with multiple comparisons was
carried out using images of the best quality as the comparator. An adjusted p-value of less
than 0.05 is considered statistically significant. The rate of model failure was computed by
dividing the number of images for which the models were unable to detect faces/humans
by the total number of images. Statistical calculations were performed in GraphPad Prism 9
and Python 3.9.

4. Results
4.1. Eye Open-Close Inference

As shown in Figure 1, when image resolution was reduced under 60 pixels × 60 pixels,
model estimates of closed-eye dimensions (EAR of 0.19) deviated from the true dimensions
(EAR of 0.18, Figure 1) and the model failed to detect the face and eyes in larger numbers of
images (Figure S1D) at 30 × 30 pixels (24%) compared to the baseline (17%). Similar trends
can be observed in the open-eye dataset (Figure S2A,D): EAR was 0.30 at the full image
resolution (100 × 100 pixels) and deviated to 0.31 when the resolution was decreased to
50 × 50 pixels; missing values increased from 5% at baseline to 10% when the resolution
was reduced to 30 × 30 pixels.
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Figure 1. Palpebral fissure dimensions and model performance in the closed-eyes dataset as a
function of image quality using the Closed Eyes in the Wild Dataset. Data points are eye aspect ratio
(EAR) estimates as a function of image resolution. Inserts show images at different quality levels
with overlaying model prediction. Data points ± error represent mean value ± SEM. Statistical
significance levels were for one-way ANOVA with multiple comparisons using images of the best
quality as the comparator. EAR: Eye aspect ratio. *: p < 0.05, ***: p < 0.001; ****: p < 0.0001.
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When color depth was reduced from 16.7 M colors to 343 colors, closed-eye dimensions
deviated significantly (EAR of 0.18 vs. 0.17 at baseline, Figure S1B). The deviation was
highest when the color depth was reduced to 27 colors in the open (EAR of 0.33 vs. 0.30 at
baseline, Figure 2) and closed (EAR of 0.19 vs. 0.17 at baseline) eye datasets. Furthermore,
the percentage of missing values also increased as the color depth decreased to 343 colors
(from 17% to 27% in the closed-eye dataset, Figure S1E, and from 5% to 6% in the open-eye
dataset, Figure S2E).
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Figure 2. Palpebral fissure dimensions and model performance in the open-eyes dataset as a function
of image quality using the Closed Eyes in the Wild Dataset. Data points are eye aspect ratio (EAR)
estimates as a function of image color depth. Inserts show images at different color depths with
overlaying model prediction. Data points ± error represent mean value ± SEM. Statistical significance
levels were for one-way ANOVA with multiple comparisons using images of the best quality as the
comparator. EAR: Eye aspect ratio. **: p < 0.01; ****: p < 0.0001.

As shown in Figures S1C and S2C, eye dimension estimates deviated from the true
dimensions when 7 to 9% of the original image pixels were replaced by noise (closed-eye
EAR of 0.20 with 9% noise vs. 0.17 at baseline and open-eye EAR of 0.32 with 7% noise vs.
0.30 at baseline). However, the percentage of missing values (Figures S1F and S2F) began
to increase even when 4% of pixels were replaced by random noise (from 17% to 38% in the
closed-eye dataset and from 5% to 10% in the open-eye dataset).

For images with different light intensities, model prediction of palpebral fissure di-
mension started to deviate from the true dimension as image size was reduced to image
heights of 50–70 pixels (EAR of 0.20 at 1000 pixels vs. 0.22 at 70 pixels, Figure S3A, and EAR
of 0.34 at 1000 pixels vs. 0.33 at 50 pixels, Figure S3C). Similarly, the number of missing
values, i.e., images where the model failed to identify the face and/or both eyes, increased
sharply under this image resolution: The percent of missing values increased from 19% at
40 pixels to 95% at 30 pixels in the closed-eye dataset and from 19% at 40 pixels to 76% at
30 pixels in the open-eye dataset.

The model prediction of the palpebral fissure dimension deviated more gradually from
the true dimension as the light intensity level decreased under 12 lux (Figures 3 and S3D).
At a light intensity of 8 lux, the model was increasingly less capable of correctly identifying
the face and both eyes (16% at 42 lux vs. 21% at 8 lux).
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Figure 3. Palpebral fissure dimension and model performance as a function of image resolution and
light intensity. Data points are the eye aspect ratio (EAR) estimates as a function of image lighting
in faces with eyes closed. Inserts show images at different lighting levels with overlaying model
prediction. Data points ± error represent mean value ± SEM. Statistical significance levels were for
one-way ANOVA with multiple comparisons using images of the best quality as the comparator.
EAR: Eye aspect ratio. **: p < 0.01; ****: p < 0.0001.

4.2. Human Pose Estimation

The prediction accuracy of the model for human poses using the COCO dataset
decreased significantly when the image height was reduced to less than 200 of the original
500 pixels (MAE of 1.3 pixels vs. 0.98 pixels, respectively, Figure 4). Since human subjects
occupied, on average, 150 × 200 pixels of the original images, this indicates that the model
was accurate up to a resolution of 60 × 80 pixels that depict only the human subject.
Similarly, the fraction of images where the model was unable to identify the human subject
started to increase dramatically beyond this resolution threshold (the percent of missing
values increased from 17% at 200 pixels to 84% at 100 pixels, Figure S4D).

When color depth was reduced to values lower than 512 colors, pose estimation began
to deviate significantly from the ground truth (MAE of 0.98 pixels at 16.7 M colors vs. 1.12
pixels at 512 colors). The percentage of missing values also increased sharply as color depth
was inferior to 343 colors (10% at 16.7 M colors vs. 14% at 343 colors, Figure S4E).

As shown in Figure S4C, the error of pose estimation from ground truth began to rise
significantly compared to the baseline when 5% of the original image pixels were replaced
by noise (0.97 pixels at baseline vs. 1.17 pixels with 5% noise). Similarly, the percentage of
missing values (Figure S4F) started to increase when 4% of pixels were replaced by random
noise (10% at baseline vs. 13% with 4% noise).
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Figure 4. Model performance in the COCO body keypoint dataset as a function of image quality.
Data points are mean absolute error values of model prediction as a function of image resolution.
Inserts show images at different quality levels with overlaying model prediction. Data points ± error
represent mean value ± SEM. Statistical significance levels were for one-way ANOVA with multiple
comparisons using images of the best quality as the comparator. EAR: Eye aspect ratio; GT: Ground
truth; MAE: Mean absolute error. *: p < 0.05, ***: p < 0.001; ****: p < 0.0001.

5. Discussion

This study systematically tested the effects of image quality on facial feature extraction
and human pose estimation using common deep learning models.

For the determination of eye opening and closing with Dlib, the resolution of facial im-
ages can be reduced to 60 × 60 pixels without significantly affecting the model estimation of
eye dimension. When the color depth of images was lower than 343 colors, eye dimensions
estimated by the model began to deviate from the true eye dimensions, and it became
increasingly difficult for the model to identify the face. The accuracy of model estimation of
eye dimensions began to decrease when 7% of the original image pixels were replaced by
noise. Interestingly, even when images of the face were taken under low lighting conditions
(14 lux), eye dimensions could still be accurately determined to differentiate between open
vs. closed eyes. Under very low lighting (6 lux), the model could still identify the face in
most instances.

For human pose estimation using OpenPose, the resolution of regions representing
human subjects can be reduced to 60 × 80 pixels without significantly affecting model
accuracy or performance. Color depth reduction from 16.7 M to 512 colors resulted in a
significant increase in the mean absolute error of model prediction. The addition of more
than 4% Gaussian noise also increased model error.

Typically, contemporary convolutional neural networks are trained using images
with resolutions greater than a few hundred pixels in width and height. Large image
datasets (e.g., Microsoft COCO [55], ImageNet [57], the MPII Human Pose Dataset [58],
and the CMU Panoptic Dataset [59]) used for the recognition and pose estimation of human
subjects usually contain images with decent resolutions of 300 to 500 pixels in height and
width. Images of similar resolutions are also contained in frequently used datasets for facial
landmark annotation (e.g., the AFLW Dataset [60] and 300 W [61]) and emotion detection
(e.g., AffectNet [62], CK+ [63], and EMOTIC [64]). Furthermore, in medical imaging with
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MRI [65,66], PET [65,67], and CT [14,68], deep learning applications are typically trained
using images with resolutions ranging from 128 × 128 to 512 × 512 pixels.

Previous studies have investigated the application of pose estimation algorithms in
low-resolution images [69,70]. However, insufficient literature has assessed the effects of
image resolution, color depth, noise level, and low light on the inference of eye opening
and closing and body landmarks from digital images. Therefore, in the present study,
the accuracy of commonly used deep-learning models while varying image resolutions,
lighting conditions, color depths, and noise levels was tested. This allowed us to estab-
lish baseline threshold values for future work applying computer vision in continuous
patient monitoring.

Limitations of this work include the use of relatively small datasets of images; therefore,
our study may be underpowered to detect changes in model prediction with small decreases
in image quality. Furthermore, subjects in the COCO body keypoint dataset do not all
occupy the same number of pixels, which may have introduced heterogeneity in model
accuracy. Future work may therefore be performed by testing multiple different networks
for a given task using larger numbers of images. In addition, variability (e.g., head tilt)
exists in the photos captured by the smartphone camera, which may be an obstacle to the
reproducibility of the results. In addition, only the OpenPose and DLib models were tested
without model finetuning; other newer deep learning models (e.g., Retinaface [71] and
Mediapipe [72,73]) should be studied in future works. Future works should also assess the
effects of video instead of photo quality on model accuracy.

6. Conclusions

In this study, the effects of image quality on facial feature extraction and human pose
estimation using the Dlib and OpenPose models were systematically assessed. It is found
that, so far, these models only failed to detect eye dimensions and body keypoints at very
low image resolutions (the failure rate for eye dimension estimation increased from below
20% to over 70% by decreasing the facial image resolution from 40 × 40 to 30 × 30 pixels),
lighting conditions (the failure rate for eye dimension estimation of 16% at 42 lux light
intensity vs. 21% at 8 lux), and color depths (failure rate for pose estimation of 10% at 16.7 M
colors vs. 14% at 343 colors). Our established baseline threshold values will be essential for
future work in the application of computer vision in continuous patient monitoring.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jimaging8120330/s1, Supplementary material. Supplementary
Figure S1. Palpebral fissure dimension and model performance in the closed-eyes dataset as a function
of image quality using the Closed Eyes in the Wild Dataset. Supplementary Figure S2. Palpebral
fissure dimension and model performance in the open-eyes dataset as a function of image quality
using the Closed Eyes in the Wild Dataset. Supplementary Figure S3. Palpebral fissure dimension and
model performance as a function of image resolution and light intensity. Supplementary Figure S4.
Model performance in the COCO body keypoint dataset as a function of image quality. Supplementary
Figure S5. Facial landmarks prediction using Dlib showing an example of model output with the
localization of 64 landmarks.
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