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Abstract: Early and accurate detection of scalp hair loss is imperative to provide timely and effective
treatment plans to halt further progression and save medical costs. Many techniques have been
developed leveraging deep learning to automate the hair loss detection process. However, the
accuracy and robustness of assessing hair loss severity still remain a challenge and barrier for
transitioning such a technique into practice. The presented work proposes an efficient and accurate
algorithm to classify hair follicles and estimate hair loss severity, which was implemented and
validated using a multitask deep learning method via a Mask R-CNN framework. A microscopic
image of the scalp was resized, augmented, then processed through pre-trained ResNet models for
feature extraction. The key features considered in this study concerning hair loss severity include
the number of hair follicles, the thickness of the hair, and the number of hairs in each hair follicle.
Based on these key features, labeling of hair follicles (healthy, normal, and severe) were performed on
the images collected from 10 men in varying stages of hair loss. More specifically, Mask R-CNN was
applied for instance segmentation of the hair follicle region and to classify the hair follicle state into
three categories, following the labeling convention (healthy, normal and severe). Based on the state of
each hair follicle captured from a single image, an estimation of hair loss severity was determined
for that particular region of the scalp, namely local hair loss severity index (P), and by combining P
of multiple images taken and processed from different parts of the scalp, we constructed the hair
loss severity estimation (Pavg) and visualized in a heatmap to illustrate the overall hair loss type and
condition. The proposed hair follicle classification and hair loss severity estimation using Mask
R-CNN demonstrated a more efficient and accurate algorithm compared to other methods previously
used, enhancing the classification accuracy by 4 to 15%. This performance supports its potential
for use in clinical settings to enhance the accuracy and efficiency of current hair loss diagnosis and
prognosis techniques.

Keywords: Mask R-CNN; hair loss; hair follicle detection; image segmentation; and classification;
hair severity estimation

1. Introduction

Androgenetic alopecia, or hereditary hair loss, is the most common form of hair loss in
men and women [1], affecting up to 50 percent of the population worldwide [2,3]. Telogen
effluvium is considered the second most common form of hair loss [4], a change in the
number of hair follicles with growing hair, and is associated with a thinning of hair on
the scalp, more prevalent at the top of the scalp [5]. There are other types of hair loss
such as Alopecia areata [1], Anagen effluvium [6], or Traumatic alopecia [7]. Hair loss is most
commonly caused by genetics, hormonal changes, medical conditions such as diabetes
and lupus, medications and supplements, or a normal part of aging [8]. The common hair
loss diagnostic methods widely adopted and practiced in clinical settings are the hair pull
test, the pluck test, a scalp biopsy, daily hair counts, or a trichoscopy [9]. Trichoscopy is
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currently considered the most effective method for diagnosis and prognosis of hair loss
since it offers a means to diagnose and monitor the progression of hair loss by objectively
evaluating hair condition, hair follicles, and the scalp, including the total number of hairs
on the scalp and the diameter of each strand of hair [10–13]. However, this method heavily
relies on visual inspection of the digital images from Trichoscopy, is subject to human error,
and leads to different results between clinicians. Additionally, there is a high cost and
time associated with educating and training an individual to perform trichoscopy, which
generally takes more than half a year and costs about 14,000 USD [14].

Due to these limitations, more advanced tools and techniques have been developed
and tested that leverage computer-based processing and analysis, particularly deep learn-
ing. The multilayer feed-forward neural network, a type of Artificial Neural Network,
trained using a back propagation algorithm, was proposed, which predicts hair loss based
on the eight attributes: gender, age, genetic factors, surgery, pregnancy, Zinc deficiency,
iron deficiency, anemia, and the use of cosmetics. This method showed high accuracy with
a two-layer neural network used with the Levenberg-Marquardt algorithm [14]. Difference-
of-Gaussian (DoG) filters were also considered for follicle detection using the Support
Vector Machine (SVM) classifier [15]; however, this method depends on the handpicked
features from the microscopic scalp hair image, which are prone to errors. An unsupervised
hair segmentation and counting scheme was also proposed, showing 95.3% precision and
88.6% recall in classifying wavy and curly hair [16], but, similarly, its main drawback was
manual parameter selection. Other classification methods have been introduced, e.g., scalp
blotch detection and hair condition assessment using microscopic images [17], a deep
learning method to classify patterned baldness and hair loss levels from facial images [18]
or classifying four common scalp hair symptoms (dandruff, folliculitis, hair loss, and oily
hair) [14]. These approaches have shown promising outcomes; however, a more accurate,
efficient, and robust method is needed, that more comprehensively infers local and scalp-
level hair loss severity, such as hair counting or measuring the diameter of each strand
of hair.

More recently, hair loss features were extracted by combining a scalp image taken
from the microscope using grid line selection and eigenvalue to determine the progression
of hair loss [19]. Further, a support vector machine (SVM) and a k-nearest neighbor
(KNN) were utilized to train a machine learning model to classify healthy and hair loss
conditions [20]. The feasibility of automating the process of hair density assessment
was tested by measuring the number of hairs from hair follicles and their type using
deep learning-based object detection as well as other methods [21], such as VGG-16 [22],
EfficientDet [23], YOLOv4 [24], and DetectoRS [25]. The common shortcomings of these
approaches are prevalent false detections on the number of hairs, inaccuracy in detecting
hair follicles, and lacking entire scalp-level hair loss severity estimation.

To address the aforementioned limitations of existing hair loss detection algorithms,
we propose an intelligent system that utilizes multitask learning using Mask R-CNN to
detect and localize hair follicles and measure hair loss severity. The key features considered
in this study pertaining to hair loss include the number of hair follicles, the thickness of the
hair, and the number of hairs in each hair follicle. First, we collect and label microscopic
images with the following three classes: healthy, normal, and severe. Subsequently, by
training Mask R-CNN, annotated hair follicles are learned with Region of Interest (ROI)
pooling, and simultaneously, a regressor is trained using segmented information whose
output ranges from zero to one, corresponding to hair loss severity. Finally, using location-
translated images, the hair loss severity map is drawn, and the hair loss severity index is
calculated. The key remarks and contributions of this work are:

• Mask R-CNN-based hair pore segmentation and classification;
• local hair loss severity estimation using PLS, which is bounded on 0 to 1;
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• overall hair loss severity estimation and visual representation of hair loss using a
heatmap.

The remainder of this article is organized as follows: the proposed method is in-
troduced in Section 2, the training and evaluation methods are explained in Section 3,
experimental results and discussions are provided in Section 4, and finally, we conclude
this work in Section 5.

2. Methods

In this section, we describe the central framework and process designed and imple-
mented in this work, starting from the input image to the system output, i.e., hair follicle
segmentation, and status classification. First, object detection and image segmentation
methods incorporated in this framework are explained, then the procedure within the net-
work architecture of Mask R-CNN is detailed, and lastly, the labeling scheme and method
are described.

2.1. Key Concepts

Convolutional neural network (CNN) is generally used in computer vision for clas-
sification as it is a translation equivariance network [26]. Thus, changes in the location
of the input value do not affect the extracted features in classifying each object. In con-
trast, object detection not only classifies the object but also finds out where the object is
located through training the model with pre-defined bounding boxes per each image of
the whole dataset, and it does not require translation invariances [27,28]. On the other
hand, image segmentation: representative examples of image segmentation can be broadly
categorized as semantic (or object) segmentation or instance segmentation [29,30]. Semantic
segmentation divides the same objects into the same area or color. On the contrary, instance
segmentation detects, delineates, and localizes each distinct object of interest appearing in
an image. Thus, instance segmentation is more suitable for the detection of hair follicles
and the classification of different states of hair follicles.

2.2. System Architecture

The process flow of the system architecture is shown in Figure 1. First, after collecting
and resizing the input images, the pre-trained ResNet [31] models were used as a feature
extractor, and the extracted features were used for bounding box regression. After obtaining
a feature map, Region of Interest (ROI) aligns to locate the relevant areas on the feature
map. Then, the trained model localized and classified hair follicles according to each
class and implemented the process of extracting feature factors. This was done by taking
the average value after obtaining the results by classifying each class according to the
condition of the follicles, i.e., the number of hairs per unit area. Next, after performing
the aforementioned process, the distribution of the extracted characteristic factors was
analyzed to determine three classes: healthy, normal, and severe. The score for each hair
follicle is calculated and normalized to a range between 0 and 1. Based on the state of
each hair follicle captured from a single image, an estimation of hair loss severity was
implemented at twelve local points on the top of the head and then determined for that
particular region of the scalp, namely the local hair loss severity index (P). By combining P
of multiple images taken and processed from different parts of the scalp, we constructed
the hair loss severity estimation (Pavg) and graphically visualized in a heatmap to illustrate
the overall hair loss type and condition.
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Figure 1. Model architecture of this paper.

2.3. Mask R-CNN

Mask R-CNN is one of the object detection and localization algorithms that uses deep
learning and image segmentation, which has gained popularity across various fields, such
as medical (e.g., [32]) and industrial (e.g., [33]) applications. The Mask R-CNN employed
in this study is an extension of Faster R-CNN [34], which consists of two stages. The
first stage checks the image, then generates the proposal, and the second stage classifies
the proposal and produces the masks and bounding boxes. In addition, it performs the
region proposal of an object through box regression and classification and classifies which
class the image corresponds to. Mask R-CNN’s backbone network adopts ResNet-50 and
ResNet-101. ResNet-50 operates on 25.6 million parameters with 50 network layers, and
has the advantages of faster training speed and algorithm execution than ResNet-101. On
the other hand, ResNet-101 operates on 44.5 million parameters with 101 network layers,
thus, the training and algorithm execution speeds are comparably slower than ResNet-50
in exchange for enhanced accuracy.

2.4. Dataset

For the diagnosis of hair loss in the respective areas of the scalp, RGB images were
collected by Dino-Lite Microscope which has the advantages of adjustable magnification,
high-definition microscopic images, and a convenient device-PC interface via USB. A
200× magnification was used to take the scalp images. The real-time image acquisition
from the microscope was achieved using OpenCV and Python, which allowed the storage
of an image on a PC for data construction. Since hair loss in women is generally less severe
than in men, we collected images only from men (all Asian) across ages from different
locations of the scalp. Furthermore, at the time of data acquisition, hair loss on the side of
the head and sideburns were not prevalent, thus the data were obtained primarily from the
upper part of the scalp. After obtaining the official consent of the participants, a total of
600 images were collected from 10 men (between the ages of 25 and 55), and data labeling
on each image was performed by clinicians, resulting in 10 to 45 region annotations per
image.

The criteria for performing labeling were determined by three factors: hair follicle
size, the number of hairs, and hair thickness. The label severe denotes the cases when
the follicle radius is ten pixels or less, the number of hairs in the follicle is one, and the
thickness of the hair is three pixels or less. The label normal denotes the cases when the
follicle radius is greater than ten and less than twenty pixels, the number of hairs in the
follicle is one, and the thickness of the hair is greater than three and less than six pixels.
The label healthy denotes the cases when the follicle radius is greater than twenty pixels,
the number of hairs in the follicle is two or more, and the thickness of the hair is greater
than six pixels. In addition, since this training model is focused on hair loss severity,
the learning was conducted without taking other factors into consideration such as red
spots, oiliness, and dead skin cells. Based on the criteria, the total number of labeling was
24,012, among which 3836 were labeled as severe, 11,262 were labeled as normal, and 8914
were labeled as healthy in Table 1. To address the data imbalance between classes during
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training, a resampling technique was applied to under-sample Normal and over-sample
Severe classes.

Table 1. Description of the dataset.

Dataset Total Train Test

Images 600 450 (75%) 150 (25%)

Labels Total 24,012 17,261 6751
Severe 3836 2794 1042

Normal 11,262 8059 3203
Healthy 8914 6408 2506

The training-to-test ratio of the dataset was set at 0.75 to 0.25. The VGG Image
Annotation (VIA) tool was used for mask annotation—a circular boundary around each
hair follicle detected—and accurate labeling performed on each hair follicle was validated
by multiple clinicians in Figure 2.
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Figure 2. The label scheme of three classes using the VGG Image Annotation (VIA) tool; 0 and a
yellow circle denotes “severe”, 1 and a blue circle denotes “normal”, and 2 and green circle denotes
“healthy”.

3. Training and Evaluation

The training was conducted using a TensorFlow v2 framework running on Nvidia
Titan x3 and a AMD Ryzen 9 3950X 16-Core processor with 32GB RAM in Ubuntu 18.04
5 LTS environment. In addition, the batch size between the process was 25, learning rate
of 1 × 10−4, using Adaptive Moment Estimation (ADAM) as an optimizer. The training
of the model was performed by fine-tuning the ResNet models pre-trained on the coco
dataset. After training 50 epochs for the head and 50 epochs for the rest of the full body, the
bbox loss converged and the training was terminated at that point. While 450 images were
used for the training (75% of the data), 150 images were used for the test (25% of the data).
Additionally, the proposed method performed instance segmentation which allows the
detection and classification of the health condition of the hair follicle. It is worth noting that
the training was performed with randomly selected images from the entire dataset without
considering the regional context, i.e., which part of the scalp the image was taken from.
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3.1. Training Schemes

Data augmentation was performed to improve the accuracy and quality of the test
images used in training and testing the model. First, brightness and contrast were adjusted
for consistency in the test images to compensate for the difference in the ambient light
during image capture. Second, if the test image was flipped or slanted due to the camera
angle, appropriate corrections were made to enhance the normality of the data. Lastly,
Gaussian blur was used to improve the image recognition performance of the model. These
steps improved the usability and accuracy of the images which, in turn, helped improve
the performance and efficiency of the model training and testing. The bounding box of
hair follicles was created based on the width and height of hair follicles Equations (1) and
(2). Additionally, the number of hairs through follicle counting was used as one of the
indicators to measure the hair loss severity, in addition to partial least squares (PLS) in
Equation (3).

Lwidth = x2 − x1, Lheight = y2 − y1 (1)

Areaij = Lwidth × Lheight (2)

PLS = ∑
1≤i≤m

∑
1≤j≤n

ŷij × Areaij

Areaij
(3)

where m, n denotes the number of follicles and the number of images in the training dataset,
respectively. Areaij is calculated as the area of bounding box per each follicle, and ŷij is the
predicted label for each follicle. Thus, PLS is calculated as a weighted sum of each image
considering the area of a bounding box.

The multitask loss function of Mask R-CNN combines the loss of classification, local-
ization, and segmentation mask: L = Lcls + Lbox + Lmask, where Lcls and Lbox are the same
as in Faster R-CNN [34]. The mask branch generates a mask of dimension m × m for each
RoI and each class; k classes in total. Thus, the total output is of size km2. Due to the fact
that the model learns a mask for each class, there is no competition between classes for
generating masks. Lmask is defined as the average binary cross-entropy loss, only including
kth mask if the region is associated with the ground truth class k. Detailed loss used in
calculating each mask is shown in Equation (4) where yij is the label of a cell (i, j) in the
true mask for the region of size m × m, and ŷk

ij is the predicted value of the same cell in the
mask learned for the ground-true class k.

Lmask = − 1
m2 ∑

1≤i, j≤m

[
yijlog

(
ŷk

ij +
(
1 − yij

)
log
(

1 − ŷk
ij

) )]
(4)

3.2. Evaluation Schemes

The bounding box adaptively changes its size according to the follicle size, as shown
in Figure 3. Since each image is slightly different in size, all images were processed after
resizing them to have consistent 640 × 480 pixels, and the same scaling was applied to the
annotation mask for training. Mask R-CNN was applied in the following process. First,
after labeling the health condition of hair into three classes (healthy, normal, and severe),
training was conducted based on the label information. Next, the hair loss severity was
evaluated by the number of follicles and hair conditions through follicle segmentation.
Since hair distribution and hair loss vary across different areas of the scalp, the data were
acquired from twelve different locations on the scalp. At the model inference stage, each
image took minutes to process and outputs the results, including the detection, localization,
and classification of hair follicles, which is reasonably fast and efficient.
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red circles indicate severe label, blue circles indicate normal label, and green circles indicate healthy
label. Purple circles are due to different classifications of two very adjacent hair follicles, severe and
normal. From healthy to severe hair loss classes are shown respectively from (a–f).

4. Results and Discussion
4.1. Hair Follicle Classification

An intelligent system that utilizes multitask learning using Mask R-CNN to detect and
localize hair follicles and measure hair loss severity is proposed. For this, we collect and
label microscopic images with the following three classes: healthy, normal, and severe. By
training Mask R-CNN, annotated hair follicles are learned with ROI pooling, and a regressor
is simultaneously trained using segmented information. The test results of the trained
Mask R-CNN with ResNet model are described in Figure 3. In each image, bounding boxes
with corresponding predicted labels are plotted with confidence probability. In addition,
healthy to severe hair loss classes are shown respectively from Figure 3a–f.

Two models were utilized, ResNet-50 and ResNet-101, for hair follicle classification
using Mask R-CNN. The performance of these two models was assessed for training and
test datasets with four metrics commonly used in performance evaluation of deep learning



J. Imaging 2022, 8, 283 8 of 14

models: precision, recall, f1-score, and accuracy. Overall, for all metrics evaluated for both
training and test datasets, ResNet-101 outperformed ResNet-50 most likely due to having
2 times as many layers and 1.7 times as many parameters in ResNet-101 as compared to
ResNet-50 (Appendix A).

Further, the performance of each model was assessed for each label individually for
training and test datasets in Figure 4. The result confirmed the superior performance of
ResNet-101 over ResNet-50 across all three labels for both training and test datasets. In
the training dataset, ResNet-50 reached 66% to 74% whereas ResNet-101 reached 82% to
87%. In the test dataset, ResNet-50 reached 55% to 72% whereas ResNet-101 reached 76%
to 86%. Comparably low performance was observed in both models for the severe label,
66% to 70% in ResNet-101 and 55% to 67% in ResNet-50, as compared to the other two
labels, normal and healthy. This might have been due to smaller samples of severe (3836)
than normal (11,262) and healthy (8914).
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Figure 4. Hair follicle classification results of Train dataset in (a) and Test dataset in (b) compared
between ResNet-101 and ResNet-50.

Furthermore, a confusion matrix was generated to compare the misclassification rate
between the two models for both training and test datasets and normalized as shown
in Figure 5. The misclassification percentages of the severe label for ResNet-50 training
datasets showed 22.66% and 11.02% as normal and healthy labels, respectively, which are
greater than that of the ResNet-101 training dataset, at 15.35% and 2.97%, respectively. Both
models misclassified severe as normal more than twice than it did with healthy. Similarly, The
misclassification percentages of the normal label for ResNet-50 training datasets showed
7.45% and 18.50% as severe and healthy, respectively, which are greater than that of the
ResNet-101 training dataset, 4.31% and12.22%, respectively. Both models misclassified
normal as healthy more than 1.5 times as they did with severe. Finally, The misclassification
percentages of the healthy label for ResNet-50 training datasets showed 3.09% and 23.27%
as severe and normal, respectively, which are greater than that of the ResNet-101 training
dataset, at 0.00% and 15.79%, respectively. Both models misclassified healthy as normal, but
not as much as they did with severe. Overall, the majority of misclassifications occurred be-
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tween severe and normal, and between normal and healthy, as expected. The misclassification
rate of ResNet-50 and RestNet-101 in training datsets were 0.274 and 0.165, respectively,
supporting RestNet-101 performs better than ResNet-50. Similar trends were observed in
the test datasets between ResNet-50 and RestNet-101, whose misclassification rates were
0.316 and 0.207, respectively. Notably, the misclassification rate of severe as healthy and vice
versa was more than five times greater for ResNet-50 (0.071 in training and 0.114 in the
test dataset) than ResNet-101 (0.010 in training and 0.025 in the test dataset). These results
support the rationale of selecting ResNet-101 over ResNet-50 as a system architecture of
Mask R-CNN.
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To further validate the performance of the ResNet-101 model over other alternatives,
we conducted a benchmark comparison with other models (EfficientDet and YOLOv4)
reported in [21] which were similarly applied to hair follicle detection classification in
Table 2. ResNet-50 showed better performance as compared to EfficientDet; however, it
underperformed as compared to YOLOv4. On the other hand, ResNet-101 showed superior
performance compared to all other models compared. Our method used a circular shape to
mask the region of interest (ROI) to train the model, which is different from the rectangular
ROI employed in [21]. This could have been the reason for the higher mAP values of
ResNet-101 compared to other models because it more closely resembles the shape of actual
hair follicles which might improve the Intersection over Union (IoU). More performance
results between ResNet-50 and ResNet-101 are described in Table A1 of Appendix A.
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Table 2. Performance comparison between deep-learning models applied to hair follicle classification.

Models mAP mAP(50) mAP(75) Precision Recall Accuracy

EfficientDet [23] 31.97% 53.45% 35.38% 71.24% 64.09% 64.71%
YOLOv4 [23] 58.67% 73.11% 60.85% 80.75% 80.22% 75.73%

ResNet-50 54.21% 69.05% 56.23% 65.95% 68.02% 68.39%
ResNet-101 62.43% 77.36% 64.47% 80.62% 78.85% 79.29%

4.2. Local Hair Loss Severity Index (P)

The outcomes of Mask R-CNN using ResNet-101 classifies all hair follicles detected
as healthy, normal, or severe. Using this information, the hair loss severity index (P) was
defined to represent the hair loss severity of the local-level image, normalized to range
between 0 and 1 Equation (5).

kP = normalize

(
3

∑
i=1

kn i(αi + β)

)
(5)

where k is the index assigned to a local-level image data; n is the number of hair follicles,
and i is the label (healthy, normal, and severe); α is the weighing coefficient multiplied to n,
[healthy, normal, severe] = [32, 22, 12], such that it signifies the contribution of healthy and
normal hair follicles over severe hair follicles in the local hair loss severity index. The number
of hair follicles (n) alone is an important factor contributing to hair density in a local area,
thus accounted for in the equation using β.

4.3. Hair Loss Severity Estimation and Mapping

The local hair loss severity index expressing the hair loss severity of a section of the
head offers a means to estimate the scalp-level hair loss state if multiple images are taken
from different regions of the scalp and integrated. Thus, the top region of the scalp was
divided into 12 sub-regions as shown in Figure 6, specifically the left, center, and right
side of the scalp, each proportionately divided into four regions from the anterior to the
posterior side. These 12 locations of the scalp were determined to capture the overall
hair loss severity and type. The hair loss severity estimation, Pavg, was calculated as an
average of the P values from 12 locations of the scalp Equation (6). Pavg is a 0 to 1 scale that
represents qualitatively an individual’s hair loss severity state. Here, m is the number of
images which, in our case, 12.

Pavg =
1
m

(
m

∑
k=1

kP

)
(6)

The mapping of the local hair loss severity index into a graphical representation of
the scalp was carried out using a heatmap that visualizes the overall hair loss severity of
the entire scalp. Figure 6 shows the three representative subjects’ data—overall healthy,
moderate hair loss, and severe hair loss—to demonstrate the process from the local hair loss
severity index calculation to hair loss severity estimation and mapping. First, representative
images from the key regions of the scalp and their respective local hair loss severity index
P are presented. Then, Pavg was calculated for each case after processing kP values of all
12 locations, which are in agreement with their hair loss severity: 0.879 for healthy, 0.565
for moderate hair loss, and 0.160 for severe hair loss. The hair loss severity mapping using
a heatmap well depicts the regions of severe loss to healthy states as shown in Figure 6d–f.
This offers an intuitive way to visualize the hair loss areas and conditions as well as different
types of hair loss, such as type M, type U, or type O [35]. Further, such visual mapping of
hair loss severity can be used as a diagnosis and/or prognosis tool, or to assess treatment
outcomes if the mapping was done periodically.
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Figure 6. Representative top-view head photos and their respective hair loss severity heatmaps of
the subject with the overall healthy state (a,d); moderate hair loss (b,e); and severe hair loss (c,f). On
the top of the head photos, the local hair loss severity index P is presented with the images taken
from different locations of the scalp. The hair loss severity estimation Pavg for the healthy, moderate
hair loss and severe hair loss is 0.879, 0565, and 0.160, respectively, reflecting a gradual decrease in
the value as hair loss progresses.

4.4. Limitations and Future Work

The deep learning model architecture used in this proposed method is not a state-of-
the-art method, hence the detection performance could be further improved with more
advanced methods. Still, the comparison study conducted with some models frequently
used in similar domains revealed that the ResNet-101 offers overall comparable or bet-
ter performance.

Accurate detection of all hair follicles and constructing correct labeled boundaries
from 2D images remain major challenges, especially when the hair follicles are covered by
layers of hair (e.g., Figure 3c). This leads to an underestimation of the total hair follicles
per unit area, which in turn can affect the accuracy of the local hair loss severity index.
However, this situation is not so problematic in normal or severe hair loss as there is a lesser
chance of obstruction of hair follicles by hair strands due to overall low hair density per
unit area. Using multiple images taken from the same local area after combing hairs in
different directions, processing them individually, and comparing their P values, could
effectively alleviate this issue.

In terms of the overall hair loss severity estimation, Pavg, developed in this study, the
accuracy of this estimation depends on the resolution of the scalp scanning. For example, if
we increase the resolution from 12 regions to 24 or higher, this will yield slightly different
results. It is a tradeoff between the time and cost associated with scalp scanning versus a
possible improvement in the accuracy of hair loss severity estimation. To address this, a
few case studies with varying hair loss states will be performed while adding intermediate
imaging locations between those 12 points on the scalp.
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The current equation to compute local hair loss severity index P accounts for the
number of hair follicles for each of the three different follicle classifications (healthy, normal,
and severe). Other factors that could be incorporated into the equation are the sum of
the area of the hair follicles (bounding boxes) corresponding to each class. As shown in
Figure 3, the size of hair follicles is different even within the same class. The summation of
the area of all hair follicles would provide an indication of hair follicle density per unit area
which can be an additional term to be included (5).

Since the dataset is collected from only Asian men with black hair, the generalizability
of the dataset is limited to this specific population. Thus, some external factors which were
not included in the dataset, such as different hair types (e.g, curly), colors (e.g., blond or
gray), or skin tones, which should be further tested using the proposed algorithm to address
its general applicability. Fine-tuning and optimization of the parameters in the network
and the image processing routine should make it feasible to incorporate specificities of
these external factors into the model. Once validated, broader applicability of the proposed
method and obtaining correct inferences on hair loss severity could be achieved.

5. Conclusions

This paper presents an efficient and accurate way to detect and classify hair follicles
and a method to estimate local scalp level and hair loss severity using a deep learning
framework. Two ResNet model-based Mask R-CNNs were applied and the highest per-
formance was recorded in 62.43%, 80.62%, 78.85%, and 79.29% in mAP, precision, recall,
and accuracy, respectively. The key remarks and contribution of this work are (1) Mask R-
CNN-based hair pore segmentation and classification, (2) local hair loss severity estimation
using PLS, which is bounded on 0 to 1, (3) overall hair loss severity estimation and visual
representation of hair loss using a heatmap.

The proposed algorithm and hair loss estimation schemes have clinical Implications as
they can inform an individual’s hair loss state accurately and efficiently once scalp imaging
is done. Thus, the system framework has the potential to be implemented in clinical
settings, expanding and improving the practicality of automated and learning-based image
processing and classification algorithms. As an extension to this paper, our future work
will focus on validating the efficacy of this method on different hair curl types, hair/skin
color, and other factors that have not been considered in this work.
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Appendix A

Table A1. Performance results of ResNet-50 and ResNet-101.

Train Test

Precision
(%)

Recall
(%)

F1-Score
(%)

Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Accuracy
(%)

ResNet-50 72.0 71.4 71.7 72.7 65.9 68.0 66.9 68.4

ResNet-101 84.2 83.1 83.7 83.5 80.6 78.9 79.7 79.3
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