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Abstract: The real-life scene images exhibit a range of variations in text appearances, including
complex shapes, variations in sizes, and fancy font properties. Consequently, text recognition from
scene images remains a challenging problem in computer vision research. We present a scene text
recognition methodology by designing a novel feature-enhanced convolutional recurrent neural
network architecture. Our work addresses scene text recognition as well as sequence-to-sequence
modeling, where a novel deep encoder–decoder network is proposed. The encoder in the proposed
network is designed around a hierarchy of convolutional blocks enabled with spatial attention blocks,
followed by bidirectional long short-term memory layers. In contrast to existing methods for scene
text recognition, which incorporate temporal attention on the decoder side of the entire architecture,
our convolutional architecture incorporates novel spatial attention design to guide feature extraction
onto textual details in scene text images. The experiments and analysis demonstrate that our approach
learns robust text-specific feature sequences for input images, as the convolution architecture designed
for feature extraction is tuned to capture a broader spatial text context. With extensive experiments
on ICDAR2013, ICDAR2015, IIIT5K and SVT datasets, the paper demonstrates an improvement over
many important state-of-the-art methods.

Keywords: scene text recognition; convolutional neural network; LSTM; recurrent neural network

1. Introduction

Text appearances in natural scenes exhibit much larger variations in fonts, scripts,
and scale, including curved and complex shapes, unlike conventional scanned document
images. In addition, text appearances in scenes are incidental in nature. The recognition
of text contents in scene images requires a robust feature extraction approach to capture
the text appearances in all forms and the encoding of extracted features in a sequential
form for subsequent analysis to assign character labels. The unique nature of the problem
requires an alternate strategy, unlike optical character recognition techniques. With the
advancements in deep learning research, many recent works on scene text recognition have
applied deep-neural-network-based methods to solve this problem [1–3]. However, despite
significant progress, scene text recognition remains a challenging task in computer vision
research due to the increasing variations in text appearances observed in their curved
shapes, arbitrary orientations, size variations, and fancy font styles, etc.

Our work presents a novel deep neural network for recognizing text segments in
natural scene images, which applies spatial attention-enabled convolutional architecture to
feature extraction. The features are subsequently processed using LSTM recurrent neural
network (RNN) layers to generate text transcriptions. Our approach addresses the image
to text label generation as conventional sequence-to-sequence mapping. The connectionist
temporal classification (CTC) [2] and neural translation [4] are well-known sequence-to-
sequence mapping methods, which build upon RNN-based encoder–decoder formulations
to learn the sequence alignment between input features and labels. The proposed network
is designed along the same lines: the encoder consists of a novel convolutional recurrent
neural architecture integrated with spatial attention blocks. This enables the encoder to
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generate robust feature sequences for the input image by analyzing text attributes at multi-
ple scales. The evaluation of the proposed architecture demonstrates that our novel spatial
attention block design can significantly enhance the feature extraction process in a simple
convolutional neural architecture. The major contributions of this paper are as follows:

• A novel deep neural network for scene text recognition based on an RNN-based
encoder–decoder. The encoder consists of: (i) a convolutional neural network enabled
with an attention mechanism to extract deep convolutional features, and (ii) bidirec-
tional LSTM layers to convert input features into sequence representation. The VGG16
architecture is used as the basis, and is redesigned for the convolutional neural struc-
ture in the proposed method. The decoder is made up of a hierarchy of LSTM layers,
and the entire proposed network is trained end-to-end, with CTC loss minimization
as the learning goal. Our method demonstrates that spatial-attention-based feature
extraction improves the efficacy of feature sequence encoding.

• The proposed design was thoroughly validated using ICDAR2013, ICDAR2015, IIIT5K,
and SVT text datasets with a variety of geometric properties and shapes. The results
from different experiments demonstrate that the proposed network is an efficient
solution for recognizing natural scene segments with fancy, oriented, and curved text
appearances. Further, the results also establish that the proposed method outperforms
many recent methods of scene text recognition.

The structure of the paper is as follows: Section 2 presents a survey of prominent
methods for natural scene text recognition. The proposed network architecture, with all
relevant details, is discussed in Section 3. The experimental evaluation of the presented
methods is discussed in Section 4. Section 5 concludes the paper and provides directions
for future work.

2. Literature Survey

The recognition of text segments in scene images involves the transcription of detected
segments to text labels. The earlier works in this direction focused on capturing the
structural properties of character segments and processing them further for sequence
recognition. The seminal work by Neumann and Matas [5] used a combination of Adaboost
and a decision tree for recognition of detected extremal regions. Mishra et al. [6] proposed
random field-based modeling of image features for text recognition. Strokelets discussed
in [7] applied random forests for the recognition of detected strokelets. In [8], a combination
of structural feature descriptors was applied for character recognition in an SVM-based
model. In [9], the authors proposed discriminative feature learning for character images,
exploiting the informative regions in input images.

The early deep learning methods for scene text recognition explored different ways
of using convolution neural networks in the recognition task [10–13]. The PhotoOCR
application in [12] demonstrated the use of deep neural networks without convolutional
operations for character recognition with raw and edge-based feature representations. The
recent work by Cai et al. [14] explored the image classification methodology used for scene
text recognition using convolutional neural architecture. The authors in [15], demonstrated
an early application of recurrent neural networks for modeling scene text using orientation
features. The recent deep-learning-based methods of text segments’ recognition in scenes
adopted the sequence-to-sequence modeling approach, applying recurrent neural net-
works [16–19]. The primary motivation comes from the fact that recurrent neural networks
are naturally structured to capture the temporal context of sequential data streams. Self-
attention mechanisms in neural architecture present an alternate approach to extract global
dependencies between input and output streams [20]. Many existing scene text recognition
methods exploit the decoder side application of temporal attention to learn the alignment
between decoder hidden states and character labels [1,16,17,21]. Nevertheless, the efficacy
of temporal attention depends upon the size of the available lexicon. Furthermore, the train-
ing of recurrent neural networks is a challenging task due to the vanishing and exploding
gradient problems. To address this issue, many recent methods have also demonstrated the
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use of convolutional neural architecture in encoder–decoder formulations for scene text
recognition [22,23]. In [24], Yin et al. proposed a character-level convolutional network
architecture trained with CTC loss for scene text recognition. Xie et al. [23] presented a
convolutional neural-network-based encoder–decoder formulation for scene text recog-
nition incorporated with spatial and temporal attention mechanisms. In [25], the authors
presented a convolutional network for incorporating temporal attention in the decoder for-
mulation. However, convolutional networks are natural choices for modeling tasks dealing
with fixed input and output dimensions, unlike the case of sequence-to-sequence modeling.
In this context, Yan et al. [26] demonstrated graph convolutional neural networks for text
primitive representation learning using feature aggregation at multiple scales. There are
also end-to-end methods that propose a single deep neural network architecture for the
detection and recognition of text segments from scene images [27–31]. Despite significant
progress, the existing scene text recognition methods are insufficient, due to performance
requirements and complex design steps. Further, the majority of existing methods heavily
depend on the effectiveness of the attention mechanism in the decoding stage. We studied
the scene text recognition problem, focusing on generating a robust feature sequence encod-
ing addressing the possible variations in the input. The proposed convolutional recurrent
neural-network-based encoder formulation consists of learnable spatial attention blocks.
The custom-made attention blocks enable the feature sequence learning to capture textual
details at multiple scales.

3. Convolutional Recurrent Neural Network (CRNN) for Encoder–Decoder

The recognition of text segments in the scenes requires the transcription of image
content to text labels. This requires the image modeling method to learn an efficient means
of mapping between image attributes and character sequences. Many recent methods,
as discussed in Section 2, focused on a convolutional neural-network-based analysis of
image segments to learn the corresponding text mapping using the CTC loss training objec-
tive. Our approach follows a similar methodology, with a novel convolutional recurrent
neural architecture for image content encoding using spatial attention blocks. We apply
a bilinear LSTM-based encoder–decoder architecture to learn the mapping between deep
convolutional feature sequences and the corresponding text labels. Figure 1 shows the
architecture of the proposed scene text recognition method.

Figure 1. Convolutional recurrent neural architecture for scene text analysis: the bidirectional LSTM,
and the convolutional block structure are given below. The dimension of intermediate feature maps
is given above the connections.
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The network receives an image input of 64× 200 pixels. First, the input is processed
through a convolutional neural structure to extract higher-order deep convolutional fea-
tures. Following that, the features are applied to a bilinear LSTM network to convert the
input to a deep feature sequence representation h. The text transcription for the correspond-
ing feature sequence h is generated by an LSTM-network-based decoder with the CTC
layer to output text labels.

3.1. The Encoder Design

The encoder in the proposed deep neural network transforms the input image to
a feature sequence representation. This requires: (i) the extraction of low-level features
from the input; (ii) the conversion of features to sequence. Based on the reputation of
convolutional neural architectures in feature extraction tasks, we designed the feature
extraction branch using the VGG16 architecture [32] as the base. Figure 1 shows the
details of the encoder network. We removed the last two fully connected layers from
the original VGG16 architecture and preserved the hierarchy of five convolutional blocks.
Each convolutional block Blockn consists of two convolutional layers followed by a max
pool layer. The convolutional blocks exploit the patterns and textures in the input image.
Our objective is to obtain a computationally efficient feature extraction structure able
to capture low-level details in input. Furthermore, to impose nonlinearity in features,
the convolutional layers apply the relu activation function. The output tensor abstracts the
low-level details at multiple levels along the depth of the tensor towards the higher order of
convolutional blocks in the network. We incorporated two attention blocks in the network,
denoted as Attention1 and Attention2, to direct the feature extraction on spatial details
(details discussed later). The attention block parameters are trained to emphasize text-
specific discriminative features in the network learning process. Furthermore, we combined
the deep features tapped from multiple levels in the network, which were subsequently
encoded in a sequence using bidirectional LSTM layers.

The encoder scans the input image from left to right, and for each time stamp, a rect-
angular patch of 64× 64 from the input is processed through the convolutional recurrent
neural structure. The stride parameter of 3 pixels is used between two patches. For the
given input, the bidirectional LSTM layer outputs the vector h = (h1, h2, · · · , hT) where
hi corresponds to the BLSTMe2 hidden state update after processing the ith path, and T
corresponds to the number of patches in the input. The bidirectional LSTM structure con-
sisting of a pair of LSTM layers is shown below in Figure 1. The bidirectional formulation
accurately captures temporal context derived from spatial features. Here, hi = [h

f
i ; hb

i ],

where h
f
i and hb

i represent the forward and backward LSTM hidden state updates. Un-
like existing methods, which update the encoder states by scanning the image feature
map, the proposed encoder accounts for broader local text context during state updates,
supported by patch-level input scanning.

3.2. Design of the Attention Block

The attention blocks incorporated in the text recognizer shown in Figure 1 emphasize
text attributes in the convolutional block output tensors. This requires the attention block
to capture the interdependencies between the feature channels and spatial locations. In ad-
dition, the attention block design should be computationally efficient. We designed the
attention block to aggregate and separate the discriminative features in the input tensor
using a hierarchy of convolutional layers with a 1× 1 filter and a residual connection.
Figure 2 shows the structure of the attention block design. The convolutional branch
performs the aggregation of depth-wise features with dimension reduction. The output of
the first two convolutional layers is passed through relu activation before being applied
to the subsequent layer. The output of the third convolutional layer is gated through the
depthwise sigmoid function to generate a filtered feature map F(x) for the input x. A resid-
ual connection is incorporated into the design for the efficient learning of the attention
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block parameters, which, when combined with convolutional branch output, results in the
attention block output of F(x) + x where F can be canonically represented as

F(x) = x⊗ (σ(Conv(Conv(Conv(x, 1× 1), 1× 1), 1× 1))) (1)

In the expression given above, ⊗ represents the spatial dot product between x and the
attention map generated from the convolutional branch. σ refers to the sigmoid operation
on the depth of a spatial feature location; the operation results in the attention map for input
x. The dot product generates the text specific filtered feature map, which is used to amplify
the text specific spatial locations in the input feature representation. The structure of our
attention block is similar to the residual convolutional block used in [33]. Nevertheless,
the convolutional layer output in the proposed attention block is used to learn a text specific
feature filter. Further, the proposed recognition network trains on the fusion of attention
block outputs extracted at different stages, as shown in Figure 1.

Figure 2. Convolutional structure for the proposed attention block. The dimension of layer outputs
is mentioned above the connections.

3.3. The Decoder Design

As illustrated in Figure 1, the decoder architecture for transcribing text labels from the
state vector h consists of two LSTM layers. The Connectionist temporal classification (CTC)
decoder proposed by Graves et al. [2] is followed to generate a text label for the given input.
The encoding vector hi is processed through the LSTM layers at each time stamp t, and the
LSTMd2 layer with softmax activation outputs a probability distribution over the symbol
set and the most probable character label. The symbol set L includes all symbols under
consideration, including the blank symbol.

The CTC approach models a many-to-one mapping function B between the probability
sequences π from the LSTMd2 output, i.e., a sequence of probabilities of observing a specific
label from L at a given time stamp t onto a predicted sequence, i.e., a sequence of labels of
a length less than or equal to the input sequence. The mapping B, therefore, removes the
repeated labels and the blank predictions. If pt

k represents the probability for k character
symbol at time t, then the conditional probability distribution for the input sequence h over
the symbol set is defined as

p(π | h) =
T

∏
t=1

pt
πt , ∀π ∈ LT (2)

The right side of Equation (2) gives the probability of single-label alignment (also referred
to as path) for the input sequence h. The set LT corresponds to all possible text labelings of
length T. The conditional probability of having a label sequence label ∈ L≤T for input h is
the sum of probabilities of the paths π for which B(π) = label:

p(label | h) = ∑
π∈B−label

p(π | h) (3)
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Using the conditional probability distribution, the text label for input h is computed as

label∗ = argmaxL≤T p(label | h) (4)

To compute the above expression, we adopt the best path encoding, as suggested in [2],
which computes label∗ as the concatenation of most probable output at each time stamp,
assuming the most probable path corresponds to the most probable mapping, i.e., label∗ ≈
B(argmaxπ p(π | h)). The network is trained with the objective to maximize the likelihood
of the ground truth label. For the given image with corresponding encoder representation
h, the training loss is calculated as

ctcloss = −logp(label | h) (5)

In lexicon-guided recognition, the search space in Equation (4) is restricted to the available
lexicon. In this case, the equation is modified as

label∗ = argmaxlabel∈D p(label | h) (6)

The size of the search space |D| can be minimized by limiting the search to the local
neighborhood of network prediction label bounded by the maximum edit distance. In the
present work, we used the BK tree [34] data structure to accelerate the search in the lexicon.

4. Experiments and Analysis

The methods proposed in this study are evaluated on the following datasets.

1. ICDAR2013 [35]: The dataset is a collection of natural images with horizontal and near-
horizontal text appearances. The collection consists of 229 training and 233 testing images
with character and word level bounding box annotations and corresponding annotations.

2. ICDAR2015 [36]: The dataset is released as the fourth challenge in the ICDAR 2015
robust reading competition (incidental scene text detection). The dataset consists of
1500 images, of which were used 1000 for training purposes and the remaining images
were used for testing. The images are real-life scenes captured from Google Glass in
an incidental manner, with the annotations available as quadrangle text bounding
boxes with corresponding Unicode transcription.

3. IIIT5K [6]: The dataset contains a set of 3000 test and 2000 train images collected
from the web. The images are associated with a short 50-word lexicon and a long
1000-word lexicon. The lexicons contain the exact ground truth word and some
randomly selected words.

4. Street-view text (SVT) [28]: The dataset consists of 100 training and 250 testing images
gathered from Google street view. In total, the training and testing sets consist of
211 and 514 word images. The images have an annotated axis aligned bounding-boxes
around word occurrences, with corresponding labels. In addition, the images are
annotated with the 50-word lexicon.

In the above-mentioned datasets, the ICDAR2015 consists of irregular images, whereas
the other datasets are regular datasets.

4.1. Network Training and Hyperparameters

The network architecture presented in Section 1 from scratch using the Adam opti-
mizer [37,38] with L2 regularization. Table 1 shows the hyper-parameters used for network
training on different datasets, which were set experimentally following the protocols sug-
gested in [38]. For the ICDAR2013 and SVT datasets, five fold cross-validation was applied
for parameter tuning due to the small training set. The LSTM layers on the encoder side
and the bidirectional LSTMs were designed with 256 hidden units. The parameter was
selected to achieve the text recognition objective without increasing the training complexity
and compromising on discriminability.
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Table 1. Hyper-parameters for network training on evaluation datasets: lr represents the learning rate.

Dataset Initial lr # of Epochs Batch Size # of Epochs for lr Decay

ICDAR2013 0.001 50 16 25

ICDAR2015 0.0005 50 16 25

IIIT5K 0.0005 50 16 25

SVT 0.001 60 24 30

Training: We trained the proposed architecture following two different procedures:

(i) In the first type of network learning, the proposed scene text recognition network
was pre-trained on a small set of examples from ICDAR2015, IIITK and SVT datasets,
and then the model was trained on different evaluation datasets. The pre-training set
consisted of 5% of the randomly selected training images from both datasets. The pre-
training was performed for 20 epochs with a slow learning rate of 0.0001 and the batch
size was fixed at 16. It was necessary to initialize the network weight parameters with
the domain data distribution. The pre-training step also helps the network train on
small datasets, as training from scratch on these datasets with randomly initialized
weights would not be effective. For subsequent evaluations on different datasets, we
tuned the network learning rate between (0.0001 and 0.005). The final learning rate and
the batch size for all experiments are given in Table 1. Further, the network learning
rate was reduced by half every 5 epochs after crossing half of the total number of
training epochs. The images with a height bigger than width were rotated clockwise
by 90◦.

(ii) In the second type, the proposed network was trained on the Synth90k synthetic
dataset [39] with an initial learning rate of 0.002 and batch size of 16. The Synth90k
dataset consisted of 9 million synthetic word images generated with a dictionary of
90k English words by applying random transformations and backgrounds to word
images. Each image was annotated with the corresponding word label. The network
was trained for 40 epochs, with learning rate decay fixed to half after 20 epochs at the
step of the 5 epochs. Again, these parameters were selected based on the discussions
in [38].

4.2. Results and Discussion

The data in Table 2 show the recognition accuracy achieved on test datasets by applying
the proposed method, following both the training procedures mentioned in Section 4.1, and
the best results reported by other prominent recent methods. The datasets ICDAR2013 and
ICDAR2015 do not include a lexicon. The result in bold refers to the best result. The table
also shows the subsequent best four results, as underlined. As observed, the proposed
method performs in the top five in many experiments with the ICDAR2015, IIIT5K, and SVT
datasets. Further, on the ICDAR2013 and IIIT5K datasets, the proposed method improves
on important state-of-the-arts, including RARE [19], CRNN [27], SqueezeText [17], STAR-
Net [33] and RNTR-Net [40]. Our method achieves less than the TextScanner [41] in the
overall comparison. Simultaneously, ESIR [30], ScRN [42] and SAR [43] perform better on
IIIT5Kdataset. On the ICDAR2015 dataset, which consists of irregular text appearances,
the proposed method outperformed ESIR [30], ScRN [42], AON [44], Bai et al. [16] and
SAR [43]. Considering the performance of our model, which was trained following the
first training procedure, it is noteworthy that we achieved a comparable performance to
many state-of-the-art models by initializing the network weights on a small collection of
example images, unlike other methods [16,17,25,44], which train on much larger synthetic
datasets (Synth90k and SynthText). For example, TextScanner [41] uses synthetic data for
pre-training, followed by tuning on evaluation datasets. Further, ESIR [30], ScRN [42] and
RARE [19] employ methods to address the rectification of input images in convolutional
neural architecture. Unlike the state-of-the-art, our method presents a simpler convolutional
recurrent neural network architecture for scene text recognition. We observe that, in general,



J. Imaging 2022, 8, 276 8 of 12

the proposed network trained on the Synth90K dataset performs slightly better than the
model trained directly on the evaluation datasets. Nevertheless, for the ICDAR2015 dataset,
the model trained on the training set achieves a recognition accuracy close to that of the
model trained on the Synth90K. The dataset consists of challenging irregular images with
arbitrary variations, where the state-of-the-art falls behind the other evaluation datasets.
The first model, adapted to the task images, is equally effective compared to the model
trained on the Synth90K dataset. The results in Table 2 establish that, despite its simple
design, the proposed method can achieve a comparable or better performance than many
recent methods. The proposed network focuses on more robust feature encoding for text
transcription, unlike other methods, which rely on attention mechanisms on the decoder
side for accurate recognition.

Runtime Performance: With both the attention blocks in place, the sub-optimal imple-
mentation of the proposed architecture took, on average, 0.160 seconds for text recognition
in the input image. A NVIDIA Quadro P5000 GPU workstation with 32GB RAM was used
for the implementation and evaluation of the proposed method.

Table 2. The evaluation of the proposed text recognition method and results reported by other
methods for comparison. Multiple columns corresponding to the dataset represent evaluation
with different lexicons; the lexicon size is mentioned in the next row. The SynthText dataset [45]
consists of 8K natural images with 8 million synthetic word instances, placed using different settings.
Each text instance is annotated with a corresponding word label, and ground-truth character and
word-bounding boxes.

Method Training Data
ICDAR2013 ICDAR2015 IIIT5K SVT

None None 50 1K None 50 None

SqueezeText * [17] - 92.9 - 97.0 94.1 87.0 95.2 -

RARE [19] Synth90k 88.6 - 96.2 93.8 81.9 95.5 81.9

CRNN [27] Synth90k 86.7 - 97.6 94.4 78.2 96.4 80.8

Yin et al. [24] Synth90k 85.2 - 98.9 96.7 81.6 95.1 76.5

STAR-Net [33] Synth90k 89.1 - 97.7 94.5 83.3 95.5 83.6

RNTR-Net [40] Synth90k 90.1 - 98.7 96.4 84.7 95.7 80.0

Fang et al. [21] Synth90k 93.5 71.2 98.5 96.8 86.7 97.8 86.7

SCAN [25] Synth90k 90.4 - 99.1 97.2 84.9 95.7 85.0

CA-FCN [22] SynthText 91.5 - 99.8 98.8 91.9 98.8 86.4

ESIR [30] Synth90k and SynthText 91.3 76.9 99.6 98.8 93.3 97.4 90.2

AON [44] Synth90k and SynthText - 68.2 99.6 98.1 87.0 96.0 82.8

Bai et al. [16] Synth90k and SynthText 94.4 73.9 99.5 97.9 88.3 96.6 87.5

FAN [18] Synth90k and SynthText 93.3 85.3 99.3 97.5 87.4 97.1 85.9

ScRN [42] Synth90k and SynthText 93.9 78.7 99.5 98.8 94.4 97.2 88.9

SAR [43] Synth90k, SynthText, real data 94.0 78.8 99.4 98.2 95.0 98.5 91.2

TextScanner [41] Synth90k, SynthText, real data 94.9 83.5 99.8 99.5 95.7 99.4 92.7

Ours real data 93.4 79.1 98.7 98.0 92.3 95.7 87.9

Ours Synth90k 93.7 79.3 98.9 97.8 92.4 96.1 88.1

* synthetic data with 1 million scene text images.

4.3. Analysis of Attention Block Performance

As part of this ablation study, we evaluate the individual contribution of attention
blocks in the proposed architecture. Therefore, we individually integrate Attention1 and
Attention2 blocks in the network shown in Figure 1. As a result, the dimension of the input
tensor to the bidirectional BLSTMe1 changes. Table 3 shows a summary of experiments,
along with the average processing time in seconds. We used the Synth90K dataset to train
the models used for this analysis. The experiment focused on the ICDAR2015, IIIT5K,
and SVT datasets. The results demonstrate the stepwise impact of incorporating attention
blocks in the architecture. It should be noted that, with a single spatial block in the proposed
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text recognition architecture, our method performs better than ESIR [30], AON [44] and
Bai et al. [16] on the ICDAR2015 dataset. The positioning of the attention blocks is almost
equally effective, as observed by the increase in recognition accuracy. However, the learning-
based fusion of attention blocks’ output significantly increases the overall recognition
accuracy, as observed in the final results given in Table 2. Table 4 illustrates sample images
and their corresponding recognition with different configurations of attention blocks in
the proposed method. The recognized labels are network output without the use of the
available lexicon. The observation of text labels again establishes the results presented in
Table 3. We observe that, for difficult cases of curved, multiline, and irregular text instances,
such as the example shown in the fifth row of Table 4, the proposed method lacks the ability
to differentiate the local features at different scales. To address such cases, the incorporation
of a rectification module into the proposed architecture is a possible further direction of
exploration. The incorporation of additional attention blocks in the proposed architecture
at the beginning of the feature extraction stage can also be experimented with. Both options,
however, would raise the overall computational cost of the recognition.

Table 3. Analysis of attention blocks in the proposed text recognition network in different configurations.

Method
ICDAR2015 IIIT5K SVT Average Processing Time

in SecondsNone 50 1K None 50 None

Without Attention1 and Attention2 76.3 97.5 96.2 90.8 92.6 85.5 0.131

With Attention1 78.4 98.1 97.4 91.6 93.7 87.2 0.146

With Attention2 78.7 98.4 97.2 91.9 94.0 87.1 0.147

Table 4. Example images and recognized text labels by the proposed network under different
attention block configuations.

Example Image Without Attention With Attention1 With Attention2 With Attention1 & Attention2

trcitmg ercitmg ercitmg erciting

restaurani restaurani restaurant restaurant

staples staples staples staples

auit ftuit ftuit fruit

ammbausic amoecamusic amoecamusic amoecamusic

redview RedView redview redview

southfirstbilliahds southfirst billards south first billiards south first billiards



J. Imaging 2022, 8, 276 10 of 12

5. Conclusions

We presented a novel text recognition method for text segments detected from scene
images. We demonstrated a novel CRNN that uses a spatio-temporal context to exploit
scene text images using a spatial-attention-blocks-enabled convolutional neural network
combined with LSTM-RNN layers. Unlike the recent methods, which build on residual
networks to learn the image feature map, our method utilizes a novel design of spatial
attention blocks integrated into a convolutional recurrent neural architecture. Further,
the proposed network applies CTC and attention mechanisms to generate text labels from
the given input image. With experiments on different challenging datasets, the results
and analysis establish the merits of the proposed method. The incorporation of a text
rectification method to address the complex cases of irregular text appearances is an
important direction of future work on the proposed method.
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