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Abstract: Performance evaluation of source camera attribution methods typically stop at the level
of analysis of hard to interpret similarity scores. Standard analytic tools include Detection Error
Trade-off or Receiver Operating Characteristic curves, or other scalar performance metrics, such
as Equal Error Rate or error rates at a specific decision threshold. However, the main drawback
of similarity scores is their lack of probabilistic interpretation and thereby their lack of usability
in forensic investigation, when assisting the trier of fact to make more sound and more informed
decisions. The main objective of this work is to demonstrate a transition from the similarity scores
to likelihood ratios in the scope of digital evidence evaluation, which not only have probabilistic
meaning, but can be immediately incorporated into the forensic casework and combined with the
rest of the case-related forensic. Likelihood ratios are calculated from the Photo Response Non-
Uniformity source attribution similarity scores. The experiments conducted aim to compare different
strategies applied to both digital images and videos, by considering their respective peculiarities. The
results are presented in a format compatible with the guideline for validation of forensic likelihood
ratio methods.

Keywords: forensic evidence evaluation; video source attribution; likelihood ratio; performance

1. Introduction

Evaluation of forensic evidence relies on the concept of likelihood ratios (LRs), derived
from the Bayes theorem. In fact, reporting LRs is the preferred way of presenting findings
from criminal investigations across the spectrum of forensic disciplines [1]. This is reflected
by a number of best-practice manuals [2,3] published by the European Network of Forensic
Science Institutes (ENFSI)—covering disciplines of handwriting, fingerprints, document
examination and others.

In the vast majority of cases, the result of a comparison between a questioned sample
and the reference database leads to a similarity score, which is often dimensionless, lacking
any kind of probabilistic interpretation and is therefore very difficult to incorporate into the
forensic work-flow, unlike the LRs. It is the case of source camera attribution based on the
Sensor Pattern Noise (SPN) or Photo Response Non-Uniformity (PRNU) [4,5], where most
of the time the Peak to Correlation Energies (PCEs) [6] are compared to camera-related
noise patterns.

Calculation of LRs from similarity scores is described in the literature [7–15], including
a LR framework for camera source attribution using SPN and PRNU of still images [16].
Vast majority of these approaches use the plug-in scoring methods, which rely on post-
processing of similarity scores using statistical modeling for computation of LRs. Direct
methods, which output LR values instead of similarity scores have likewise been described
in the literature [17]. These are much more complex to implement mainly due to the
necessity to integrate-out the uncertainties when the feature vectors are compared under
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either of the propositions. The direct methods, as the title suggests, produce probabilisti-
cally sound LRs. Due to the continuous similarity score output of PRNU based methods,
we use the plug-in score-based approach in order to facilitate a “fair” evaluation and
inter-model comparison.

The main contribution of this article is the assignment of probabilistic interpretation
to the set of similarity scores obtained from PRNU comparisons in the context of source
camera attribution. This aim is reached by converting similarity scores into LRs within
a Bayesian interpretation framework [18]. The performance of the resulting LR values,
and by extension their usefulness for forensic investigation, is measured following the
methodology developed in [19–23]. The objective is to reinforce the reliability of innovative
tools such as source camera attribution, allowing them to be used not only as simple new
investigation leads but also to contribute in a more determinant way to the investigation of
digital forensic evidence. As underlined in the recently adopted EU strategy [24] to tackle
Organized Crime 2021–2025, law enforcement and judiciary authorities need to fit for the
digital age. The consolidation of their tactics and techniques for digital investigation with
new approaches such as the one presented here, will reinforce the acceptability of those
digital evidence submitted to the court.

The article is structured in the following way: in the next section we introduce the fun-
damentals of PRNU analysis. Section 3 presents the score-based plug-in Bayesian evidence
evaluation methods for calculation of LRs and tools used for evaluation of performance of
these methods. In Section 4, we describe the experimental protocol, the similarity scores
and their mapping into LR values. Results obtained from a comparison of different method-
ologies are presented in Section 5. The contributions and future works are summarized in
the conclusions in Section 6.

2. Prnu-Based Source Camera Attribution

PRNU is a unique noise pattern that every camera sensor implants like a passive
watermark into every digital image [4,5] and video [25,26]. Due to its uniqueness, the ex-
traction of PRNU signal allows to link a media content to its source device like a digital
“fingerprint”. More in depth, PRNU is a 2D multiplicative noise pattern and can be mod-
elled as a zero-mean white Gaussian noise [27], as a first approximation. Formally, a generic
image can be described as

I = I(0) + I(0) · KI + Θ (1)

where I(0) is an ideal noiseless image, KI is the PRNU and Θ is a noise term which considers
other noisy contributions (i.e., dark current, quantization noise, etc.).

Several techniques were proposed to extract PRNU from an image but in this paper
we refer to the one described in [28]. At image level, sensor noise is extracted by means of
2D discrete wavelet decomposition; then, saturated pixels are attenuated, and the noise
pattern is normalized to erase liner patterns. Finally, ‘blockiness’ artifacts due to JPEG
compression are removed by means of Wiener filtering.

As best practice, the PRNU associated to a given sensor is estimated by replicating
the previous processing for a large enough set of flat-field images, in order to reduce the
impact of the images content. The PRNU is then estimated according to the Maximum
Likelihood criterion [28] as:

K̂(x, y) = ∑l Il(x, y) · Kl(x, y)
∑l I2

l (x, y)
(2)

where Il(x, y) and Kl(x, y) are, respectively, the images and their associated PRNU estimate.

2.1. Peak-to-Correlation Energy

A similarity measure is needed in order to compare two PRNUs and classify whether
they come from the same camera or not. Goljan et al. [6] proposed Peak-to-Correlation
Energy (PCE) instead of correlation. PCE consists of measuring the ratio between the
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correlation peak energy and the energy of correlations evaluated for shifts outside from a
neighborhood around the peak value. In order to calculate the PCE, the correlation matrix
$(u, v) between two noise pattern of size r× c needs to be computed in the following way:

PCE =
$(u0, v0)

2

1
rc−|N | ∑(u,v)/∈Ω $(u, v)2

(3)

where N is a neighborhood of |N | pixels surrounding the correlation peak in position
(u0, v0).

2.2. Extension to Videos

A straightforward solution for extracting a unique PRNU from a video is to consider
video frames as images, and then to apply (2). This approach implicitly assumes geometric
alignment of all noise patterns. Unfortunately, such an assumption does not hold for the
most recent imaging devices which feature Digital Motion Stabilization (DMS). The DMS
aims to generate high quality videos by minimizing any visual impact of vibrations and
shaky hands which are often present when using hand-held devices, as illustrated in
Figure 1. It performs a geometric alignment of each video frame according to the frame
content. This processing alters the geometrical frame-by-frame alignment of the PRNU, so
that the assumption of geometrical alignment between PRNUs of the frames is not true
any more, consequently leading to worse PRNU estimates if (2) is applied.

In order to address DMS challenge, several matching strategies have been proposed
in the literature [29–33]. Although authors propose different approaches, all are based on
PCE as similarity measures.

Figure 1. Digital motion video stabilization on subsequent frames. Undesired camera shakes are
compensated for in order to have stable contents.

2.3. Reference PRNU Creation

The objective of the analysis is to attribute or dissociate a questioned image or video
to a specific device. As a first step, the reference PRNU needs to be extracted for the
camera. In the case of the images, the process is quite straightforward: a set of flat-field
images is acquired, from which the PRNU is extracted according to (2). In the case of the
videos, the process is a bit more elaborated. There are at least two options proposed in
the literature:

1. Using flat-field video recording to extract key-frame sensor noise and compute PRNU
camera digital fingerprint according to (2). Still videos are used to limit the effect of
motion stabilization. For the sake of simplicity, we name it RT1.

2. Employing both flat-field images and flat-field videos [34] in order to lessen the
impact of motion stabilization as well as the impact of video compression, which
is typically stronger for video frames compared to images. We name this second
type RT2.

In order to use both, video recordings and images, we briefly recall how a camera
generates a video frame. The process involves three steps: acquisition of a full-frame image,
cropping of an internal region with a different aspect ratio (e.g., 16:9 for High Definition
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videos) and scaling to the final resolution. By assuming that the crop is symmetric with
respect to the optical centre and posing the reference system at the centre of the frame,
the relation between image and video PRNUs, namely KI and KV , can be modeled by the
scaling factor s ∈ R. Once the scaling factor is estimated [30,31,35], the PRNU extracted
from images KI is resized accordingly, as shown in Figure 2.

Figure 2. In-camera processing involved in video creation.

2.4. Similarity Scores

As we explained in Section 2.1, similarity scores between two PRNU patterns are
based on the computation of PCE. However, its computation does not follow a standard
procedure, it is adapted from time to time to the particular use-case. For instance, if a
certain robustness against image cropping is needed [6], the analyst can adopt an extended
version of PCE where the position of the correlation peak is calculated as:

(u0, v0) = arg max
u,v∈U

{$(u, v)} (4)

where U is an arbitrary neighbourhood in which the correlation peak is searched. The op-
eration of maximization clearly impacts on the distribution of the similarity scores. Similar
considerations can be made in the case of the video recordings, for those approaches that
try to minimize the impact of DMS by adopting (4).

In order to simplify our analysis, we assume that no operation aiming to maliciously
modify the PRNU is applied to the data. In this setting, the similarity scores for images are
computed according to (3). In the case of the video recordings, we compared three different
PRNU comparison strategies:

(a) Baseline: PRNU is obtained by cumulating the noise patterns extracted frame-by-
frame according to (2), and the PCE is computed.

(b) Highest Frame Score (HFS): PRNU is extracted and compared frame-by-frame against
the reference PRNU, and the maximum PCE is taken [30].

(c) Cumulated Sorted Frames Score (CSFS): PRNUs, extracted from each frame and
compared with the reference signal, are first sorted in a descending order according to
their individual PCE values; then, they are progressively cumulated, according to (2);
finally, the maximum of PCE values obtained at each cumulation step is taken [31].

All the above-mentioned methods compute the PCE as described in (4).
Finally, it is worth noting that, according to the Equation (3), PCE can assume values

in the range [0,+∞). Because in practice the PCE covers a very large range about 0 to ∼106,
we consider a log10 scale.

3. Performance Evaluation

Couple of key components are necessary in order to compute LRs from the similarity
scores: the ground truth regarding the source of origin of the image/video (same source or
different source), a set of forensic propositions (hypotheses set for the defence and for the
prosecution), and similarity scores, which are produced by different methods described
in the previous section. Unlike the traditional performance assessment, which is usually
limited to the analysis of the Detection Error Trade-off (DET) and Receiver Operating
Characteristic (ROC) curves, we add the probabilistic meaning and interpretation to the
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similarity scores by transforming them into LRs. In order to do this, we set the hypotheses
at the source level:

• HP (Prosecution): the Questioned Data (QD) comes from the camera C (mated trial).
• HD (Defense): the QD does not come from the camera C (non-mated trial).

It should be noted here that it is possible, and encouraged, to set the propositions
at other than the source level [36]. Once the hypotheses are set, we proceed with the
evaluation of forensic evidence under the Bayesian LR framework.

3.1. Bayesian Interpretation Framework

Different ways have been described in the forensic literature to calculate the LRs from
continuous similarity scores [19,22]. Once the hypotheses are set, the strength of forensic
evidence E is calculated in the following way:

LR =
P(E|HP, I)
P(E|HD, I)

(5)

where in the numerator of the LR we have the probability of observing E(QD) under the
prosecution hypothesis (and additional related case information) and in the denominator
of the LR we have the probability of observing the same evidence E(QD) under the
defence hypothesis (and additional case-related information). We use a leave-one out cross-
validation strategy [20], in which the role of evidence is taken by the left-out similarity
score and the LRs are calculated in the following way:

LR =
f (S|HP)

f (S|HD)
(6)

where the f (·) represents the probability density function of the remaining scores and the
S represents the left-out observation.

3.2. Performance Evaluation Tools

Performance assessment of the LR values under either of the propositions follows the
methodology proposed in [19,21,22]. In their work on validation of LR values for forensic
casework the authors propose measurement of two sets of performance characteristics—
primary and secondary.

Given the limited amount of data we focus on evaluation of performance using the
primary characteristics and leave the concept of validation of the LRs for forensic casework
for future research. Although the full scope of the proposed “validation” framework cannot
be applied, the basic concepts presented are valid and provide supplementary information,
complementing the typically reported ROC/DET representations and accuracy measures
at a fixed operating point.

The following performance characteristics and corresponding graphical representa-
tions are presented in the results section:

• accuracy, as sum of discriminating power and calibration, represented by the Empirical
Cross Entropy (ECE) plot and measured by the log LR cost (CLLR) [37];

• discriminating power represented by the DET and ECEmin plots and measured by the
Equal Error Rate (EER) and CLLRmin [38];

• calibration represented by the Tippet and the ECE plots and measured by CLLRcal [37].

4. Experimental Protocol

In this section, we first describe the data set we used in the experiments. Afterwards,
the experimental protocol follows a logical separation, based on the type of data, namely
images and video recordings. For videos, we separate the analysis in function of the type of
PRNU reference and the presence or the absence of DMS, in order to perform the four basic
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experiments mentioned in Section 5. All the experiments produce a set of similarity scores
calculated in the course of comparison between the questioned and reference samples.

4.1. Data Corpus

We used the Vision Dataset [39] (except for device D13, according to the names
convention) to create a benchmark dataset for pictures and videos. Among the devices,
16 produce motion stabilized videos, whereas the other 18 produce only non-stabilized
videos. For each device, we have at our disposal:

• A set of 30 randomly selected flat-field images, from which we extracted the image
PRNU KI .

• A set of flat-field static (labelled as still) and moving (labeled as panrot and move)
videos. These videos are used to create reference PRNU KV per device.

• A set of images with natural content that we used as query data. The set is composed
of at least 200 pictures per devices.

• A set of non-flat query videos including still, pan-rotating and moving videos.

In summary, we used 34 different devices, 34 × 30 = 1020 flat-field images, 218 flat-field
video recordings, 7393 natural images, 223 non-stabilized and 190 stabilized questioned videos.
The number of mated and non-mated scores is summarized in Table 1.

Table 1. Number of similarity scores per experiment.

# Mated Scores # Non-Mated Scores

Images 7393 243,969
Non-stabilized videos 223 3791

Stabilized videos 190 2850

4.2. Preliminary Analysis of the Similarity Scores

The two types of experiments (images and videos) present slightly different challenges.
For example, let us consider the scores distributions obtained from images analysis and
shown in Figure 3. The empirical distributions of P(E|HP, I) and P(E|HD, I) are over-
lapping to some extent. At the same time, if we look closer at the distribution for each
device, we observe that for some devices, see Figure 3b, the two distributions are perfectly
separated. On the other hand, for some other devices, the score distributions show a non-
negligible proportion of mated similarity scores attaining the non-mated similarity score
magnitudes, effectively heavily contributing to the False Rejection rates Figure 3c. In other
words, the PRNU obtained from these devices compromises the overall performance of the
methods under evaluation.

(a) (b) (c)

Figure 3. Histograms of empirical score distributions obtained from images. (a): empirical distribu-
tions by considering all the devices within the benchmark dataset. (b): scores obtained from query
images coming from an Apple iPhone 6. (c): scores distributions for images acquired through a
Huawei P8.

In some cases, for example non-stabilized video recordings against RT1 result in
“perfect separation” of the mated and non-mated score distributions (see Figure 4a). While
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the perfect separation is highly desirable, in the case when number of comparisons is
relatively small (as in our case), it usually points in the direction of one of the following
problems (or a combination of any of these): plain lack of data, over-fitting (sub-optimal
separation of the dataset into training and testing subsets), or a feature space being much
greater than the actual dataset.

For some cases however, such as PRNUs obtained from the images, a significant
proportion of the mated scores attains the magnitudes of the non-mated scores, thus
contributing heavily to the False Rejection error rates. Again, PRNU obtained from these
devices compromises the overall performance of the methods under evaluation.

(a) (b)

Figure 4. Histograms of empirical score distributions obtained from non-stabilized (a) and stabilized
video recordings (b). The scores are obtained by using the reference Photo Response Non-Uniformity
(PRNU) of type RT1 and by applying the Cumulated Sorted Frame Score (CSFS) method.

4.3. Score to LR Calibration Transformation
4.3.1. Images

Our analysis into the distribution of similarity scores produced by the image test and
reference samples showed that the mated samples (HP) were distributed following the
inverted chi squared probability distribution function (PDF) with 1 degree of freedom
and shape parameter equal to zero [28]. The non-mated similarity scores (HD) followed a
similar PDF with 1 degree of freedom and a non-zero shape parameter.

Although the inverted chi-squared PDF’s provided a reasonably good estimate, they
did not generalize well to the previously unseen data when subjected to cross-validation.
The generalization issue, or in our case inability to generalize well to the previously unseen
data, can be explained by large inter and intra variability among the sensors embedded
within different devices, even when coming from the same manufacturer.

Since we do not have at our disposal a fully exhaustive database of mobile de-
vices/cameras from different manufacturers, we opted for a simpler solution and trans-
formed the similarity scores into LRs using regularized logistic regression with a uniform
prior regularization [40]. The process of calibration using linear logistic regression can be
described in the following way:

• Iterative use of leave-one-out cross validation for both mated and non-mated scores,
where each of the left-out scores “plays” the role of the evidence;

• One-to-one mapping from probability to log-odds domain is performed using a logit
function [37];

• Calibrated LRs are calculated iteratively for each evidence score.

More detailed description of the use of LR calibration is beyond the scope of this
article, but the reader might refer to [23] for more details.

4.3.2. Video Recordings

In the case of the video recordings, we note that while the similarity scores under the
hypothesis HP for the non-stabilized videos follows a Gaussian-like distribution in the
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logarithmic scale (see Figure 4a), the analogous similarity scores for stabilized videos do
not (see Figure 4b). We therefore adopt a different calibration strategy for both cases.

Score distributions under hypothesis HD follow in both cases a Gaussian-like distri-
bution in the logarithmic domain. This result is in agreement with the outcome of [31],
where authors demonstrated that scores under hypothesis HD are distributed according to
a Generalized Extreme Value [41] distribution on the linear scale.

The fact that both mated and non-mated distributions are positive indicates the need of
calibration. In the subsequent step we perform a leave-one-out cross-validation calibration
and calculate the LR values at the same time.

Knowing the ground truth regarding the origin of the pair of videos and the reference
sample (RT1 or RT2), we proceed iteratively through the set of similarity scores, exclude
one similarity score (mated or non-mated) to “play” the role of observed evidence. We use
remaining similarity scores to model score distributions under either of the propositions.

The Gaussian calibration with optimal risk smoothing is used for the non-stabilized
videos as both, the mated (HP) and non-mated (HD) scores resemble a “well-behaved”
normal distribution (Figure 4a).

The calibration for the case of non-stabilized video sequences can be summarized in
the following steps:

• Iterative use of leave-one-out cross-validation for mated and non-mated scores, where
each of the left-out scores “plays” the role of the evidence;

• A normal distribution is fitted to the rest of the mated and non-mated scores;
• Calculation of the numerator and denominator of the LR for each left-out score;
• Calibrated LRs are calculated according to (6).

More detailed description of the calculation of LR values from normally distributed
similarity scores is beyond the scope of this article, but the interested reader is kindly
referred to [20] for more details.

Similarity scores, in particular the mated scores (HP) produced in the course of com-
parison between the stabilized videos and reference PRNU do not follow any obvious
distribution pattern (Figure 4b). In fact, it is very difficult to fit any particular distribution,
given the fact that the mated comparison counts drop to zero on multiple occasions. One
could argue that a kernel density function could serve the purpose with which we in princi-
ple agree, however given the relatively small number of comparisons we opted for a linear
logistic regression calibration in a process identical to that described above in Section 4.3.

5. Performance Evaluation Results

In this section, we provide the experimental results of the PRNU source attribution
presented in the likelihood ratios framework. Alike the experimental protocol Section 4,
results section follows the same comparative analysis between images, stabilized and
non-stabilized videos.

5.1. Images

By assuming that the images are exactly like the ones that the device produces,
the most significant parameter that affects the PRNU is the image resolution, which varies
from one camera model to another. For this reason, we repeated our analysis for three
different resolutions: 1024× 1024, 512× 512 and 256× 256, in order to see the effects of the
resolution on the performance of the PRNU.

The DET plots present the discriminating capabilities of the different methods. They
(Figure 5) show the probability of false acceptance versus the probability of false rejection
of the non-stabilized video on a Gaussian-warped scale. The main advantage of this
representation over ROC curves is that the DET curves get close to linear when the LR
values follow Gaussian distribution. At the intersection of each DET curve with the main
diagonal we find the EER which is a measure of discrimination [37]. The best discriminating
capabilities were observed for the highest tested resolution (1024× 1024) with the ERR
6%. Reducing the image resolution to one fourth (512× 512 pixels) significantly reduce the
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discriminating capabilities of the PRNU and nearly doubles the EER = 11.8%. Additional
reduction of the image size to 256× 256 pixels lower the discriminating capabilities and
rises the EER to 12.8%.
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Figure 5. Detection Error Trade-off (DET) plots for picture at different resolutions: 1024× 1024,
512× 512 and 256× 256.

Figure 6 shows the Empirical Cross-Entropy plots, which have information-theoretical
interpretation [42]. They provide summary of accuracy, discriminating capabilities and a
calibration of a given method, conveniently all in one plot. The black dotted line represents
a neutral system (effectively equivalent to making decisions based on a coin-toss using a
fair coin). The red line shows the measure of accuracy (CLLR) at the prior-log10-odds = 0,
blue dashed line shows the measure of discriminating capabilities of a method (CLLRMIN)
at the prior-log10-odds = 0. The difference between the CLLR and CLLRMIN is a measure of
calibration (CLLRCAL). When the LRs support the correct hypotheses, the CLLR values tend
to be lower (e.g., the lower the CLLR the better the accuracy, the lower the CLLRMIN the
better the discriminating capabilities and the lower the CLLRCAL the better he calibration
of a given method).

-2 0 2
Prior Log10(odds)

0

0.2

0.4

0.6
LR values
After PAV
LR=1 always

-2 0 2
Prior Log10(odds)
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0

0.2

0.4

0.6

Figure 6. Empirical Cross Entropy (ECE) plots for pictures at different resolutions: 1024× 1024,
512× 512 and 256× 256.

As already introduced in the DET plots, the best discriminating capability of the PRNU
is observed for 1024× 1024 images, confirmed in the ECE plots, achieving CLLRMIN of 0.18.
It also shows the highest overall accuracy out of the three image resolutions considered
with CLLR = 0.28. Although showing the best discriminating capabilities and accuracy,
this method presents the second worst calibration with the calibration loss equal to one
third of the overall accuracy (CLLRCAL = 0.096). ECE curves, unlike the DET plots, reveal a
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weak spot. At prior-log-odds = 1.8 the CLLR (red curve of the 1024× 1024 images) crosses
the line of the reference system (black dotted line), effectively making decisions at the
prior-log-odds > 1.8 worse than a coin toss using a fair coin.

Tippett plots as additional measure of calibration presented in Figure 7 show cumu-
lative distribution functions of LRs [38]. Individual curves represent the proportion of
comparisons supporting either of the two propositions. The rates of misleading evidence
are observed at the intersection of the Tippett plots with the log10(LR) = 0. The symmetry
between the two curves (supporting either of the propositions) is likewise used as an
indicator of calibration.
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Figure 7. Tippet plots for pictures at different resolutions: 1024× 1024, 512× 512 and 256× 256.
Cumulated distributions of mated (blue) and non-mated (red) scores are presented.

The the lowest probabilities of misleading evidence are observed for 1024× 1024 reso-
lution images (PMEHP = 7.074% and PMEHD = 0.02%), and complement the calibration
results indicated by the ECE plots above. The probabilities of misleading evidence for the
512× 512 and 256× 256 resolution images are show in Table 2.

Table 2. Performance metrics observed for different resolutions of the images. The best performance
is highlighted in bold.

Image Resolution

1024 × 1024 512 × 512 256 × 256

(%) EER 5.984 11.83 12.83
CLLR 0.2798 0.3802 0.4428

CLLRMIN 0.1836 0.3127 0.3377
CLLRCAL 0.09614 0.06744 0.1051
(%)PMEHP 7.074 14.12 14.27
(%)PMEHD 0.2049 1.347 5.24

5.2. Non-Stabilized Video Recordings

DET curves in the case of non-stabilized videos are shown in Figure 8. As an element of
comparison, it should be noted here that the discriminating capabilities of well-established
biometric systems produce EER typically below 5%, which is also true for some of the meth-
ods presented in the non-stabilized subsection. The relatively high EER values achieved
with the stabilized video recordings, in contrast with the non-stabilized videos point out
potential for additional improvement.

The baseline method shows the best discriminating capabilities in terms of EER in case
of comparison of non-stabilized videos against the reference for both types of reference
PRNU. The proposed method offers identical or comparable performance (in the worst
case, 1% of loss). Due to the near-perfect separation of the mated and non-mated scores,
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the baseline method and the CSFS method are not visible in the DET plot as their EERs are
close to zero.
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Figure 8. DET plots for non-stabilized videos.

Among the methods compared by means of ECE plots (Figure 9), the baseline method
shows the best performance in terms of discriminating capabilities and accuracy for the
comparisons of non-stabilized videos versus RT2. The best accuracy and discriminating
capabilities in the case of comparisons against reference RT1 is nearly identical for the CSFS
and the baseline method, while the baseline method shows slightly better calibration. It
is worth adding that the differences observed between these two methods are negligible.
Accuracy of LR values produced by the CSFS and the baseline method show sub-optimal
performance for the prior-log10-odds ≥ 1, where the red line crosses the black dotted line.
LRs of both of these methods in this region are unreliable [20] and the fact-finder trusting
these will be effectively making worse decisions than using a coin-toss. Further tests using
different calibration methods are necessary to eradicate the source of this behaviour.

By looking at the Tippett plots (Figure 10), the lowest probabilities of misleading
evidence in the case of non-stabilized videos in the scope of RT2 experiments is observed
for the CSFS method. On the other hand, lowest probability of misleading evidence in the
case of non-stabilized videos in the scope of RT1 experiments supporting the HP is observed
for the CSFS method and supporting the HD for the baseline method. It should likewise
be noted that on average, lower rates of misleading evidence have been observed in the
context of RT1 experiments, which means that LR in this case provide stronger support to
the correct propositions. The results for the non-stabilized videos are summarized below
in Table 3 (the best performance is highlighted in bold).
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Figure 9. ECE plots: non-stabilized videos vs. RT1 (first row) and RT2 (second row).

Table 3. Summary of the results for accuracy, discriminating power and calibration for the non-
stabilized videos. The best performance is highlighted in bold.

RT1 RT2

CSFS Baseline HFS CSFS Baseline HFS

(%) EER 0.08 0.08 1.98 17.43 16.48 23.85
CLLR 0.004 0.003 0.092 0.58 0.55 0.69

CLLRMIN 0.003 0.003 0.062 0.41 0.4 0.59
CLLRCAL 0.001 0 0.03 0.17 0.15 0.1
(%) PMEHP 0 0 1.34 21.07 21.5 36.77
(%) PMEHD 0.13 0 2.24 1.5 1.66 3.66

LRs produced in the course of non-stabilized videos show “perfect” accuracy and
calibration when compared in the scope of RT1 experiments for proposed and baseline
methods. Given the relatively small dataset, these results should be further analysed and
followed up by a series of experiments to show the robustness of methods to the previously
unseen data and potential overfitting. Slightly better accuracy and calibration was observed
for the baseline method when comparing RT2 video recordings however, lower rates of
misleading evidence were observed for the proposed method. In general, the performance
of baseline and proposed methods can be considered equivalent. Decisions based on the LR
values observed for prior log10odds greater than 1.0 for the questioned videos in the scope
of RT2 experiments should not be trusted due to the fact that the ECE curve crosses the
reference line and these decisions are effectively worse than decisions based on a coin toss.
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Figure 10. Tippett plots: non-stabilized videos vs. RT1 (upper) and RT2 (lower).

5.3. Stabilized Videos

Before discussing the results, we provide an analysis of the resulting LR values for
the stabilized videos by means of normalized-count histograms, which perfectly suit the
purpose. As shown in Figure 11, a significant proportion of the LRs supporting the HP
proposition (blue histogram) is overlapping with the LRs supporting the HD proposition
(red histogram). As a result, all of these LRs provide support to the wrong hypothesis
(HD). From the two groups of the stabilized videos (compared against the reference RT1 or
RT2) we conclude that the method showing the best discriminating capabilities is in both
cases the CSFS method (see Figure 12). The CSFS method shows the best performance in
terms of EER for comparisons of stabilized images against the reference set of both types of
reference PRNU.

Figure 13 shows the ECE plots in the case of stabilized videos. Amongst the meth-
ods compared, the CSFS method shows the best performance in terms of discriminating
capabilities and accuracy, while the HFS method shows the best calibration (all be it the
difference in calibration between the method proposed and the HFS method is negligible
and both of these methods can be described as rather well calibrated).

High rates of misleading evidence of the LR’s supporting the HP on average are the
result of small similarity scores (which resulted in low LR values) observed for mated
comparisons as discussed above (see Figure 14).

The results for the stabilized video recordings compared against reference RT1 and
RT2 are summarized in Table 4 (the best performance is indicated in bold). LRs produced
during stabilized videos experiments show better performance in terms of accuracy and
discriminating power for the CSFS method over the remaining two methods. In the case
of videos compared against RT1 reference the best calibration was observed for the HFS
method. It should be noted that the calibration losses observed in the course of this set of
experiments were minimal and decisions regarding which method to favour should not be
based on the calibration measure alone.
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Figure 11. Likelihood ratio distribution after the linear logistic regression calibration. Magenta ellipse
indicates the issue with the mated scores, black line shows log10(LR) = 0.
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Figure 12. DET plots for stabilized videos.
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Figure 13. ECE plots: stabilized videos vs. RT1 (first row) and RT2 (second row).
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Figure 14. Tippett plots: stabilized videos vs. RT1 (upper) and RT2 (lower).
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Table 4. Summary of the results for accuracy, discriminating power and calibration for the stabilized
videos. The best performance is highlighted in bold.

RT1 RT2

CSFS Baseline HFS CSFS Baseline HFS

(%) EER 26.46 30.85 28.64 22.7 33.5 25.86
CLLR 0.66 0.73 0.69 0.55 0.77 0.58

CLLRMIN 0.62 0.69 0.66 0.52 0.74 0.56
CLLRCAL 0.04 0.04 0.03 0.03 0.03 0.04
(%)PMEHP 33.52 37.91 37.36 31.58 47.89 33.68
(%)PMEHD 12.37 15.07 10.9 1.47 12.35 2.49

6. Conclusions

In this article we addressed to our best knowledge for the first time the challenge of
source camera attribution for video recordings from a perspective of a forensic evidence
evaluation using likelihood ratios, and complemented previous research [16] on source
camera attribution for still images. We have taken multiple continuous sets of similarity
scores (mated and non-mated), converted them into LRs using the probability density
function and measured their performance. In essence, we gave the difficult-to-interpret set
of similarity scores a probabilistic meaning and interpretation.

Reflecting on the analysis of the results of different methods and settings, particularly
ECE plots prove useful as they point out regions where produced LRs provide unreliable
support to forensic evidence for both still images as well as video recordings. Considering
the fact that there is a lot more information present in the video recordings (sequence of
images) than in a single still image, it is not surprising that the best performance in terms
of accuracy, calibration and discriminating capabilities was observed for the non-stabilized
video recordings. However, performance dramatically drops if digital motion stabilization
is adopted. A particular attention should be paid to the analysis of images, for which
apart from the image resolution the device model should be considered as a deciding
parameter. The latter might affect in a positive or negative manner the overall performance
of the system.

Additional validation experiments accompanied by further analysis of the similar-
ity scores will be performed in the near future. Particular attention will be given to the
“perfectly separated” similarity scores and regions of high correlation, with the aim to
demonstrate robustness to the lack of data, generalization and coherence [23]—which
present the secondary performance characteristics necessary for the validation of the meth-
ods presented for forensic casework. Likewise, different probability distribution functions
will be used to convert the hard-to-interpret similarity scores into reliable likelihood ratios.
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Abbreviations
The following abbreviations are used in this manuscript:

PRNU Photo Response Non-Uniformity
DMS Digital Motion Stabilization
LR Likelihood Ratio
ENFSI European Network of Forensic Science Institutes
SPN Sensor Pattern Noise
PCE Peak-to-Correlation Energy
RT1 Reference Type 1
RT2 Reference Type 2
HFS Highest Frame Score
CSFS Cumulated Sorted Frame Score
QD Questioned Data
ROC Receiver Operating Characteristic
DET Detection Error Trade-off
ECE Empirical Cross Entropy
CLLR Curves and Log LR (cost)
EER Equal Error Rate
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