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Abstract: The growing need for emergency imaging has greatly increased the number of conventional
X-rays, particularly for traumatic injury. Deep learning (DL) algorithms could improve fracture
screening by radiologists and emergency room (ER) physicians. We used an algorithm developed
for the detection of appendicular skeleton fractures and evaluated its performance for detecting
traumatic fractures on conventional X-rays in the ER, without the need for training on local data.
This algorithm was tested on all patients (N = 125) consulting at the Louis Mourier ER in May 2019
for limb trauma. Patients were selected by two emergency physicians from the clinical database
used in the ER. Their X-rays were exported and analyzed by a radiologist. The prediction made
by the algorithm and the annotation made by the radiologist were compared. For the 125 patients
included, 25 patients with a fracture were identified by the clinicians, 24 of whom were identified
by the algorithm (sensitivity of 96%). The algorithm incorrectly predicted a fracture in 14 of the
100 patients without fractures (specificity of 86%). The negative predictive value was 98.85%. This
study shows that DL algorithms are potentially valuable diagnostic tools for detecting fractures in
the ER and could be used in the training of junior radiologists.

Keywords: deep learning; fracture detection; medical images; convolutional neural networks;
conventional X-rays; medical application of deep learning

1. Introduction

One of the principal reasons for attending the emergency room (ER) is peripheral
traumatism. The first radiological examination in any case of suspected fracture remains
the conventional X-ray. Fractures can be difficult for junior physicians to diagnose in
situations of high patient flux [1,2]. The misdiagnosis of fractures directly affects patient
management, and serious complications, such as malunion or arthritis, may occur if
fractures are diagnosed late or remain undiagnosed. Fracture misdiagnosis is also one of
the commonest causes of litigation in the domain of medicine.

Deep learning (DL) is a subfield of machine learning relating to algorithms inspired
by the structure and function of the brain, known as artificial neural networks. DL is a
subfield in the domain of machine learning in artificial intelligence, in which networks are
capable of learning from data in an unsupervised manner. Since 2012, DL has established
itself as the cutting-edge method of enhancing performance in medical image analysis,
with the use of convolutional neural networks decreasing the classification error rate from
about 25% in 2011 to 3.6% in 2015 [3,4]. This success has led to numerous applications
in medicine, for identifying and classifying images for diabetic retinopathy [5], and for
detecting skin cancer [6] or lesions on mammograms [7].
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Fracture detection on conventional X-rays in the ER remains challenging, particularly
given the continually high patient flow through the ER, 24 h per day, and the reliance on
junior radiologists for front-line diagnosis.

A new generation of software based on DL technology is emerging as a way of facilitat-
ing fracture diagnosis and preventing misinterpretation [8]. This technology could be used
in the design of triage tools [9] for use in the ER. Several algorithms and methods [10] have
been developed and are being evaluated. High levels of performance, with sensitivities
and specificities greater than 90%, have been reported [11,12], paving the way for future
applications in diagnostic assistance. A recent study [13] on retrospectively selected wrist
X-rays showed that the performance of clinicians, and possibly also junior radiologists, was
improved by reading standard X-rays in conjunction with a fracture detection algorithm.

Artificial intelligence algorithms are opening up many new perspectives for radiolo-
gists. They save time, provide diagnostic assistance, and, for inexperienced doctors, can
provide a learning tool for the reading of standard X-rays [13].

The objectives of this study were to evaluate the performance of a DL algorithm for the
diagnosis of extremity fractures in a consecutive series of adult patients consulting at the
emergency department of Louis Mourier and to define its potential uses in clinical practice.

2. Materials and Methods
2.1. Algorithm

The algorithm is an ensemble algorithm composed of multiple object detection models.

Each object detection model is based on artificial convolutional neural network
(ACNN) technology and, more specifically, is derived from the architecture of RetinaNet [14],
an open-source DL algorithm. It has three components. The first is a custom backbone
(based on the VGG neural network [15] but with fewer filters and batch normalization
performed before each convolution) that acts as a feature extractor. This backbone consists
of convolutional layers, max-pooling layers, and trainable batch normalization layers. The
second component is a feature pyramid network (FPN) designed to extract the features
at different resolutions, given the large variability of fracture size. The final component
is two subnetworks; a classification subnet for predicting the presence or absence of a
fracture, and a regression subnet for localizing the site of the fracture more precisely. The
classification subnet predicts the probability of an object being present, for any class (two
classes in our case), at each spatial position, for each anchor. The classification subnet
is applied to each pyramid level, but the parameters of this subnet are shared across all
pyramid levels. The classification subnet is a fully convolutional network. The regression
subnet predicts the offset from each anchor box to a nearby ground-truth object (if such an
object exists). We also applied this regression subnet to each pyramid level (with shared
weights). This subnet is also a fully convolutional network. It is similar to the classification
subnet except that, rather than predicting two (i.e., the number of classes) values, it has
four values per anchor (Figure 1).

RetinaNet optimizes two losses during training:

1. Focal loss: Focal loss is a cross-entropy with a modulating factor with a gamma
parameter. This parameter affects the loss such that easy-to-classify samples are
down-weighted in the classification loss.

2. Asmooth L1 loss (such as regression loss), used to bound regression boxes. A smooth
L1 loss is less sensitive to outliers than the L2 loss. The batch size is 4. The network was
regularized during training, based on weight decay (L2). As the outline of a fracture
is subjective, this loss has been smoothed for the purposes of fracture detection.

The total loss focuses more on the classification loss than the regression loss, as the
goal is to help the radiologist to identify fractures on X-rays.

The algorithm was trained from scratch with Adam optimizer [16] with a learning rate
of 1.0 x 10~* over 50 epochs, with a halving of the learning rate if no progress was made
in terms of validation loss for three epochs. The model was evaluated on the AUC value.
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During training, data augmentation was used to transform the images randomly. The trans-
formations used were horizontal and vertical flipping, rotation, zooming, and shifting.
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Figure 1. Diagram of the algorithm (adapted from the documentation of the algorithm company). Each object detection
model outputs a list of bounding boxes (this list can be empty if no fracture is detected by the object detection model)
with their corresponding confidence scores. A majority vote between the predicted bounding boxes of the models is used
to select the final list of bounding boxes. The difference between the object detection models in the ensemble is their

weight initializations.

Neural networks recognize fractures through supervised learning. Images are anno-
tated for a pattern to be identified, in this case, the presence and location of a fracture on
an X-ray. Dedicated software (Medeye, Azmed) is used to delineate the boundaries of the
fracture. The dataset generated in this manner is used to train the algorithm. The trained
algorithm can then detect the presence of a fracture, which it identifies by drawing a box
around it.

This algorithm is commercially available (Azmed, Paris, France) and has obtained the
CE mark level IIA for medical devices. It was trained on 21,138 fractures on X-rays at five
medical imaging centers and more than 10,000 X-rays without fractures. The performance
of this algorithm has never been tested and reported in a peer-reviewed publication.

2.2. Dataset

From the 2958 patients consulting the Louis Mourier ER from 1 to 31 May 2019, two
emergency physicians (AA and EM) retrospectively selected all the patients included in
the computerized clinical database (UrQual, McKesson, Irving, TX, USA) with respect to
the following inclusion criteria: patient at least 16 years old, presenting at the emergency
room of Louis Mourier Hospital (AP-HP) from 1 to 31 May 2019, for non-life-threatening
traumatism, for whom X-rays were performed and the physician issued a diagnosis on
patient discharge. The exclusion criteria were: visit to the ER for any non-traumatic cause,
and visits for spinal traumatism. In total, the clinicians identified 125 patients.
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The X-rays were read by the radiologist (GR), with the Picture Archiving and Com-
munication System widely used at AP-HP (PACS, Carestream, Health France, 93160,
Noisy-le-Grand), blind to both clinical findings and final diagnosis. The gold standard was
the final diagnosis delivered by the radiologist on the basis of clinical information.

All the X-rays were rendered anonymous and exported from PACS (GR) in DICOM
format. Each X-ray was then annotated by the radiologist, who drew a box around the
fracture. The algorithm was then evaluated by comparing the radiologist’s annotation with
the prediction delivered by the algorithm.

2.3. Statistical Analysis

The match between the algorithm’s prediction and the radiologist’s annotations was
evaluated by calculating the Jaccard coefficient. This method has the advantage of pre-
venting outliers from being considered true positives. We applied a similarity threshold
of 0.02 for the Jaccard index. Predictions satisfying this criterion were considered true
positives, with other predictions being considered false positives.

The primary outcome was the sensitivity per patient. If the algorithm identified the
fracture on a single incidence, the classification was considered correct. The secondary
outcomes were negative predictive value, specificity, and area under the curve (AUC). We
also assessed the performance for each image.

The two main evaluations metrics that are being used to assess the performance of the
algorithm are described below:

e  Sensitivity measures the proportion of positives that are correctly identified. In the
following formula, TP stands for true positive and FN stands for false negative. Pa-
tients with a fracture that is correctly identified are considered true positives, whereas
patients with a fracture not identified by the algorithm are considered false negatives.

TP

FN+TP )

Sensitivity =
e Negative predictive value measures the proportion of individuals with negative test
results who are correctly diagnosed. In the following formula, TN stands for true
negative and FN stands for false negative. Patients without a fracture that are correctly
classified are true negatives, whereas patients with a fracture who are identified by

the algorithm as having no fracture are considered false negatives.

TN

Predictive negative value = INTTN

2
Sensitivity, specificity, negative predictive value (NPV), and area under the curve
(AUC) were calculated with Python (Python Software Foundation) and scikit-learn
(https:/ /scikit-learn.org, June 2007, a free Python library).

3. Results

In total, the emergency physicians included 125 patients in this study. The traumatism
considered concerned the hip in sixteen patients, the hand in twenty-eight, the shoulder in
twenty-eight, the foot in twenty one, the knee in seven, the wrist in twenty one, and the
elbow in four.

Fractures were identified in 25 patients. Diagnoses did not differ between emergency
physicians and the radiologist, all of whom identified the same patients as having fractures.
There were seven foot fractures, seven hand fractures, five wrist fractures, two ankle
fractures, one femur fracture, one clavicle fracture, and two shoulder fractures.
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Patient selection

The algorithm detected 24 of the 25 patients (Figure 2 and confusion matrix, Table 1)
with fractures (a sample is shown in Figure 3). The fracture missed by the algorithm
was a transverse fracture of the second phalanx of the left little toe. The algorithm also
identified 14 patients as having fractures when they did not actually have a fracture. The
sensitivity per patient was 96% (CI 95% 0.88-1) and the specificity per patient was 86% (CI
95% 0.79-0.93). The negative predictive value per patient was 98.85% (CI 95% 0.97-1). The
area under the curve per patient was estimated at 0.96 (Figure 4).
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Figure 2. Constitution of the dataset.

Table 1. Confusion matrix describing the distribution of patients.

Results/Fracture Status Fracture No Fracture
Detection 24 14
No detection 1 86

Total 25 100
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Examples of annotations on the test set

True positive False negative True negative False positive

Figure 3. Example of predictions made by the algorithm (red square) versus annotations by the radiologist (green square).

Blue arrows show the fracture.
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The sensitivity and specificity per image were 84% and 92%, respectively. The area
under the curve per image was estimated at 0.94 (Figure 5). All the performances of the
algorithm are summarized in Table 2.
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Figure 5. ROC curve, by image.

Table 2. Summary table describing the performance of the algorithm.

Algorithm Performance for Algorithm Performance for
Detecting Patients with a Fracture = Detecting Fractures Per Image

Sensitivity 96% (95% CI 0.88-1) 84%
Specificity 86% (95% CI 0.79-0.93) 92%
AUC 0.96 0.94

Negative predictive value 98.85% (95‘.)/0 CI0.97-1)

4. Discussion

The objective of this study was to evaluate the potential added value of a DL algorithm
for diagnosing fractures in the context of peripheral joint traumatism in an adult population
attending the hospital ER. This study also provides the first evaluation of the feasibility
and performance of the DL algorithm in this clinical situation.

For this first assessment, the algorithm diagnosed fractures with a sensitivity of 96%,
a specificity of 0.86%, and a negative predictive value of 98.85%. Its performance in terms
of sensitivity, our primary outcome, was similar to the values ranging from 83% [12] to
99% [17] reported in published studies. However, most of these studies focused on a single
joint, or even on a specific type of fracture, whereas we evaluated the performance for a
diverse set of peripheral skeletal fractures. However, the various studies performed to date
are subject to certain limitations.

Kim and MacKinnon [18] reported a sensitivity of 0.9 and a specificity of 0.88 for
detecting wrist fractures, and Gan [19] also reported a sensitivity of 0.9 for detecting
wrist fractures. Kitamura [20] reported a sensitivity of 0.86 for detecting pelvic fractures.
Cheng [21] recently reported a sensitivity of 92% for detecting pelvic fractures. Jones [22]
reported a sensitivity of 95.2% for detecting fractures throughout the peripheral skeleton, a
performance close to that of the algorithm we tested.

We chose to evaluate the algorithm in the clinical context of patients attending the
emergency department for traumatism, and to test its performance on various peripheral
joints. A new generation of software based on DL technology is emerging to facilitate
fracture diagnosis and prevent misinterpretation [8]. Fracture detection performance has in-
creased over the last five years and is now very good. This progress can be partly explained
by the continual development of faster, more efficient CNNSs, making it possible to train
the algorithm more rapidly and efficiently, using more data in less time. New approaches
for identifying patterns on images as fractures are continually being developed, including
object recognition, object detection (as in the tested algorithm), and segmentation. Most of
the algorithms tested detect only one type of fracture, usually wrist fractures. Moreover,
most of these algorithms have never been used in a clinical context, are not routinely used,
and make use only of data imported from PACS without clinical information.
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Most fractures of the peripheral skeleton were detected in our cohort of patients, and
we found that this algorithm had a good negative predictive value (98%). This algorithm
can therefore be used to identify patients without fractures with a high degree of confidence.
This is one of the expectations of junior radiologists and the emergency physicians.

The fracture missed by the algorithm was a transverse fracture of the second phalanx
of the left little toe. It remains unclear why the algorithm fails to detect certain fractures.
The processing of the algorithm is opaque and cannot be understood directly, hence the
notion of a “black box” commonly applied to such technology [23]. Several hypotheses
can be put forward concerning the reasons for which the fracture of the second phalanx
of the left little toe was missed. The first concerns the training set: an isolated fracture
of the second phalanx is rarer than other foot fractures involving the distal phalanges or
metatarsal bones. The algorithm was, therefore, probably less well-trained to deal with
this type of fracture. The fracture was also difficult to see without modifying the contrast,
probably due to underexposure of the image.

The false positives reflect the choice of the software developers to favor sensitivity
and negative predictive values over the risk of a few false positives. A balance must be
struck between detecting all fractures and the risk of overfitting: too many false positives
for a small gain in detection.

Our results are encouraging and suggest that this algorithm could provide clinicians
with diagnostic assistance for fracture detection, and could be used as a learning tool for
junior radiologists.

Moreover, this algorithm was easy to implement because it did not have to be trained
on a training set from Louis Mourier Hospital for analysis of the data from this hospital. In
most previous studies, local training was considered necessary to achieve a high level of
performance [24,25]. The use of a large training set containing more than 20,000 X-rays of
fractures, and X-rays from different centers probably overcomes the obstacles generally
encountered in this field, such as differences in pixel distribution between X-ray machines.
Our findings thus demonstrate the feasibility of domain adaptation, a subfield of DL.
One of the classical limitations of DL is the amount of labeled data required to train the
algorithm to perform a specific task in a specific data set. In our case, CNNs made it
possible to apply a trained algorithm to a new data set on which it was not trained, such
as the data from a new radiological center. Progress in the field of CNNs, with domain
adaptation, may lead to many benefits for fracture detection, such as the absence of a need
to adapt the algorithm for a new center, or much smaller data requirements for the training
with less data to train the algorithm for a new center.

This study has several weaknesses: it was a retrospective study, and only a relatively
small number of patients were included. The results are promising but require confirmation
in prospective clinical studies. Other studies could also focus on the similarity or lack of
similarity between the recognition of fractures by an expert human and the algorithm.

5. Conclusions

This first study on a population attending the ER for peripheral traumatism shows
that a DL algorithm can be used, with a high level of accuracy, including a high negative
predictive value in particular. A DL algorithm with no training could be used at a new
center without the need for data from this site, for the diagnosis of fractures in a population
of patients consulting for traumatisms of any peripheral joint.

Artificial intelligence algorithms are opening up many new perspectives for radiolo-
gists. They save time, provide diagnostic assistance, and, for inexperienced doctors, can
provide a learning tool for the reading of standard X-rays. For clinicians, such algorithms
can help to prevent errors, particularly during the night, and should improve the fracture
detection performance of clinicians [13].
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