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Abstract: Restoration of digital visual media acquired from repositories of historical photographic
and cinematographic material is of key importance for the preservation, study and transmission of
the legacy of past cultures to the coming generations. In this paper, a fully automatic approach to
the digital restoration of historical stereo photographs is proposed, referred to as Stacked Median
Restoration plus (SMR+). The approach exploits the content redundancy in stereo pairs for detecting
and fixing scratches, dust, dirt spots and many other defects in the original images, as well as
improving contrast and illumination. This is done by estimating the optical flow between the images,
and using it to register one view onto the other both geometrically and photometrically. Restoration
is then accomplished in three steps: (1) image fusion according to the stacked median operator, (2)
low-resolution detail enhancement by guided supersampling, and (3) iterative visual consistency
checking and refinement. Each step implements an original algorithm specifically designed for this
work. The restored image is fully consistent with the original content, thus improving over the
methods based on image hallucination. Comparative results on three different datasets of historical
stereograms show the effectiveness of the proposed approach, and its superiority over single-image
denoising and super-resolution methods. Results also show that the performance of the state-of-the-
art single-image deep restoration network Bringing Old Photo Back to Life (BOPBtL) can be strongly
improved when the input image is pre-processed by SMR+.

Keywords: image denoising; image restoration; image enhancement; stereo matching; optical flow;
gradient filtering; stacked median; guided supersampling; historical photos

1. Introduction

Photographic material of the XIX and XX centuries is an invaluable source of informa-
tion for historians of art, architecture and sociology, as it allows them to track the changes
occurred over the decades to a community and its living environment. Unfortunately, due
to the effect of time and bad preservation conditions, most of the survived photographic
heritage is partially damaged, and needs restoration, both at the physical (cardboard sup-
port, glass negatives, films, etc.) and digital (the image content acquired through scanners)
levels. Dirt, scratches, discoloration and other signs of aging strongly reduce the visual
quality of photos [1]. A similar situation also holds for the cinematographic material [2].

Digital restoration of both still images and videos has attracted considerable interest
from the research community in the early 2000s. This has led to the development of several
tools that improve the visual quality. Some approaches rely on the instantiation of noise
models, which can either be fixed a priori or derived from the input images [3–5]. Other
approaches detect damaged areas of the image and correct them according to inpainting
techniques [6]. Self-correlation inside the image, or across different frames in videos, is often
exploited in this context, under the assumption that zero-mean additive noise cancels out
as the available number of image data samples increases [7–9]. A similar idea is exploited
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by super-resolution techniques that enhance image quality by pixel interpolation [10,11].
In recent years, the algorithmic methods above have been sided by methods based on
deep learning that can infer the image formation model or the scene content [12] from
a training set in order to inject this information into the final output, a process called
image hallucination [13–15]. Although the final image may often alter the original image
data content, and hence cannot be fully trusted (e.g., in the medical diagnosis domain),
the hallucination methods can give visually pleasing results (see Figure 1).

(a) I1 (b) I2 (c) (I1, I2)

(d) BM3D (e) BOPBtL (f) SMR+

(g) I1 detail (h) BM3D detail (i) BOPBtL detail (j) SMR+ detail

(k) I1

pixel-level detail
(l) BM3D

pixel-level detail
(m) BOPBtL

pixel-level detail
(n) SMR+

pixel-level detail

Figure 1. First row: An example of historical stereo pair of images, I1 and I2, also superimposed as
anaglyph. Second row: Enhancement of I1 according to different methods, including the proposed SMR+
method. Although visually impressive, the deep super-resolution result of BOPBtL does not preserve the
true input image. Third row: A detail of I1 and the restored images according to the different methods.
A closer look at BOPBtL reveals alterations with respect to the original face expression, accentuating
the smile and introducing bush-like textures on the hair. Fourth row: pixel level detail of I1 and of
the restored images according to the different methods. The specific image region considered is the
background around the right shoulder. Notice the chessboard-like texture pattern typical of the deep
network approaches, not visible at coarser scales. Best viewed in color: the reader is invited to zoom in
on the electronic version of the manuscript in order to better appreciate the visual differences.
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Stereoscopy has accompanied photography since its very birth in the nineteenth cen-
tury, with ups and downs in popularity through time. Notwithstanding the lesser spread
of stereo photography with respect to standard (monocular) photography, many digital
archives with thousands of stereo images exist, some of which are freely available on the
web. Stereo photos have a richer content than standard ones, as they present two different
views of the same scene, thus explicitly introducing content redundancy and implicitly
embedding information about scene depth. This characteristic can be exploited also in
digital noise removal, enhancement and restoration, since a damaged area in one image can
be reconstructed from the other image, provided that the correspondences between the two
images are known. At a first glance, the above-mentioned approach looks similar to that of
video restoration from multiple video frames, in which the scene is acquired in subsequent
time instants from slightly changed viewpoints. However, stereo images have their own pe-
culiarities, and actually introduce in the restoration process more complications than video
frames, which in movies typically exhibit an almost static and undeformed background,
differently from stereo pairs. As a matter of fact, although several advances have been
recently made in stereo matching and dense optical flow estimation [16], the problem is
hard and far from being fully solved, especially in the case of very noisy and altered images
such as those generated by early photographic stereo material. To the best of the authors’
knowledge, stereo photo characteristics have been employed only for the super-resolution
enhancement or deblurring of modern, clean photos [17–19]. On the other hand, the image
analysis and computer vision approaches developed so far for historical stereo photos
mainly aimed at achieving (usually in a manual way) better visualizations or 3D scene
reconstructions [20–22], with no attempt at restoring the quality of the raw stereo pairs.

This paper proposes a new approach to clean up and restore the true scene content in
degraded historical stereo photographs, named Stacked Median Restoration Plus (SMR+),
extending our previous work [23], and working in a fully automatic way. With respect to
existing single image methods, damaged image areas with scratches or dust can be better
detected and fixed, thanks to the availability of more sampled data points for denoising.
In addition, the correct illumination can be restored or enhanced in a way akin to that
of High Dynamic Range Imaging, where the images of the same scene taken at different
exposure levels are used in order to enhance details and colors [24]. For this scope, the
optical flow, estimated with the recent state-of-the-art Recurrent All-Pairs Field Transforms
(RAFT) deep network [16], is used to synthesize corresponding scene viewpoints in the
stereo pair, while denoising and restoration are carried out using novel yet non-deep image
processing approaches. The entire process is superseded by scene content consistency
validation, used to check critical stereo matching mispredictions that were left unresolved
by the network. Our approach aims to obtain an output which is fully consistent with the
original scenario captured by the stereo pair, in contrast with the recent super-resolution
and denoising approaches based on image hallucination.

This paper extends our previous work [23], hereafter reported as Stacked Median
Restoration (SMR) under several aspects:

• With respect to SMR, the novel SMR+ is redesigned so as to better preserve finer details
while at the same time improving further the restoration quality. This is accomplished
by employing supersampling [25] at the image fusion step in conjunction with a
weighting scheme guided by the original restoration approach.

• The recent state-of-the-art deep network BOPBtL [26], specifically designed for old
photo restoration, is now included in the comparison, both as standalone and to serve
as post-processing of SMR+.

• The collection of historical stereo photos employed as a dataset is roughly doubled to
provide a more comprehensive evaluation.

• The use of renowned image quality assessment metrics is investigated and discussed
for these kinds of applications.
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The rest of the paper is organized as follows: Section 2 introduces the proposed
approach. An experimental evaluation and comparison with similar approaches is reported
in Section 3. Finally, conclusions and future work are discussed in Section 4.

Note: To ease the inspection and the comparison of the different images presented, an interactive PDF
document is provided in the additional material (https://drive.google.com/drive/folders/1Fmsm5
0bMMDSd0z4JXOhCZ3hPDIXdwMUL) to allow readers to view each image at its full dimensions
and quickly switch to the other images to be compared.

2. Proposed Method

Given a pair of stereo images I1 and I2, the aim of the process is to output a defect-free
version of one image of the pair (referred to as the reference) by exploiting the addi-
tional information coming from the other image (denoted as auxiliary). For convenience,
the reference is denoted as I1 (see Figure 2a) and the auxiliary image as I2 (see Figure 2b),
but their roles can be interchanged. Images are assumed to be single channel graylevel,
i.e., I1, I2 : R2 → [0, 255].

(a) I1 (b) I2 (c) (I1,I2)

mx

my
20

-20
0
0 20

-20

(d) (mx, my) (e) Ĩ2→1 (f) Ĩ2→1 error wrt I1

0

230

m'x

m'y
20

-20
0
0 20

-20

(g) (m′x, m′y) (h) Ĩ′2→1 (i) Ĩ′2→1 error wrt I1

Figure 2. Cont.
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(j) I2→1 (k) I2→1 error wrt I1

0

230

(l) I?2→1 (m) I?2→1 error wrt I1

0

230

Figure 2. Auxiliary image pointwise transfer and color correction steps (see Sections 2.1 and 2.2):
(a) Reference image I1, (b) auxiliary image I2, (c) superimposition of I1 and I2 as anaglyph, (d) visual
representation of the optical flow map (mx, my) extracted by RAFT, (e) image Ĩ2→1 as resynthesis of
I2 through (mx, my) and (f) its error with respect to I1, (g) visual representation of the optical flow
map (m′x, m′y) extracted by RAFT after switching the input images, (h) image Ĩ2→1 as resynthesis
from I2 through −(m′x, m′y) and (i) its error with respect to I1, (j) final resynthesized image I2→1

considering the locally best optical flow estimation between Ĩ2→1(x, y) and Ĩ′2→1(x, y) and (k) its error
with respect to I1, (l) image I?2→1 obtained after applying GPS/LCP color correction to I2→1 using I1

as reference, and (m) the corresponding error map with respect to I1. Best viewed in color. The reader
is invited to zoom into the electronic version of the manuscript in order to better appreciate the
visual differences.

2.1. Auxiliary Image Pointwise Transfer

As a first step, the recent state-of-the-art RAFT deep network [16] is used to compute the
optical flow map pair fRAFT(I1, I2) = (mx, my), where mx, my : R2 → R (see Figure 2d), so
that a synthesized image based on the content of I2 and registered onto I1 can be obtained as

Ĩ2→1(x, y) = I2(x + mx(x, y), y + my(x, y)) (1)

by transferring pixel intensity values from I2 into the view given by I1 (see Figure 2e). Note
that spots of missing data can be present on Ĩ2→1 when no pixel in I2 maps onto the specific
image area, due, for instance, to image occlusions. In the error free ideal case, it must hold
that I1 = Ĩ2→1 for every correspondence between I1 and I2. However, in real situations,
this may not happen, as shown in Figure 2f reporting the average absolute error between
I1 and Ĩ2→1 on 5× 5 local window patches.

Notice also that, in the case of perfectly rectified stereo images, it holds everywhere
that my(x, y) = 0. Under this particular setup, in which mx is denoted as disparity map
and is the only map that needs to be estimated, several classical methods have proven
to provide good results while being computationally efficient [27]. However, according
to our experience [21], these methods are not feasible in the case of degraded historical
stereo photos. First, image degradation due to aging and the intrinsic image noise due to
the technological limitations of the period decrease the ability of these methods to find
the right correspondences. Second, the output of these methods is quite sensitive to the
initial configuration of the parameters and, by considering the variability of the historical
acquisition setups, each stereo pair would require the human supervision to get even a
sub-optimal result. Third, the stereo alignment for the photos under consideration is far
from perfect due to the technological limitations of the period, hence both the maps mx
and my are to be considered. Hence, our choice fell under the state-of-the-art RAFT that
provides a sufficiently good initial estimation of the optical flow maps in most cases.

A further flow mapping pair fRAFT(I2, I1) = (m′x, m′y) (see Figure 2g) can be obtained
by switching the two input images, which can be employed to synthesize a second image
according to

Ĩ′2→1(x, y) = I2(x−m′x(x, y), y−m′y(x, y)) (2)

(see Figure 2h) so that, in the error free ideal case for every correspondence between I1 and
I2, it holds that (mx, my) = −(m′x, m′y), which implies that I1 = Ĩ2→1 = Ĩ′2→1. This usually
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does not happen, as shown by the relative error image of Figure 2i. Indeed, comparing the
first and second rows of Figure 2, RAFT optical flow estimation is not completely accurate
and does not preserve map inversion when exchanging the input image order. The final
synthesized image I2→1 (see Figure 2j) is then obtained by choosing the intensity value
at each pixel (x, y) as the one from Ĩ2→1(x, y) and Ĩ′2→1(x, y) that minimizes the sum of
absolute errors with respect to I1 on a small 5× 5 local window centered on the pixel (see
Figure 3). A smaller error between the final resynthesized image I2→1 and the reference
image I1 is obtained (see Figure 2k) with respect to the errors given by Ĩ2→1(x, y) and
Ĩ′2→1(x, y).

Figure 3. Illustration of the I2→1 image formation process from the two resynthesized images
Ĩ2→1(x, y) and Ĩ′2→1(x, y), respectively driven by the optical flow estimation maps (mx, my) and
−(m′x, m′y). A point (x, y) in I1 can be mapped back to I2 according to either Equation (1) or
Equation (2). The best back-mapping minimizing locally the error among the two possible opti-
cal flow estimates is then chosen to form I2→1. Best viewed in color.

2.2. Color Correction

Due to the technical limitations of the old photographic instrumentation, illumination
conditions between the two stereo images can differ noticeably. For instance, flash lamp
and, even more, flash powder did not provide each time uniform and identical illumination
conditions, and it was not infrequent that a single camera was moved in two different posi-
tions in order to simulate a stereo setup instead of having two synchronized cameras [21].
Moreover, discoloration of the support due to aging can be present. In order to improve
the final result, the state-of-the-art color correction method named Gradient Preserving
Spline with Linear Color Propagation (GPS/LCP) presented in [28] is employed to correct
the illumination of I2→1 according to I1. Specifically, the color map gGPS/LCP(I1, I2→1) = C,
with C : R→ R is used to obtain the color corrected image I?2→1 according to

I?2→1(x, y) = C(I2→1(x, y)) (3)

where, in the error free ideal case, it must hold that I1 = I?2→1 (see Figure 2l). The GPS/LCP
color correction method is able to preserve the image content and works also in the case
of not perfectly aligned images. Color correction decreases the resynthesis error. This
can be noted by comparing the error map of I?2→1 (Figure 2m) with the error map of I2→1
(Figure 2k), see for instance the error corresponding to the dark background above the left
table. Clearly, if I2→1 presents better illumination conditions than I1, it is also possible to
correct I1 according to I2→1.

2.3. Data Fusion

Given the reference image I1 and the synthesized one obtained from the auxiliary
view I?2→1 after the illumination post-processing, the two images are blended into a new
image I12 according to the stacked median operator (see Figure 4a)

I12 = �(I1 ∪ I?2→1) (4)
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The stacked median �({I}) for a set of images {I} outputs a new image defined so that
image intensity at pixel (x, y) is the median intensity value computed on the union of the
pixels in the 3× 3 local neighbourhood windows centered at (x, y) on each image of the set
(see Figure 5). Notice that the median stacking operation typically found as a blending tool in
image manipulation software corresponds to the proposed stacked median operator with
degenerate 1× 1 local windows. Unlike median stacking, the proposed definition does
not require more than two input images and considers pixel neighborhoods, i.e., it works
locally and not pointwise. Additionally, in case of missing data in I?2→1, the stacked median
acts as a standard 3× 3 median filter. With this operator, dirt, scratches and other signs of
photographic age or damages are effectively removed from I12, but high frequency details
can be lost in the process, due to the 3× 3 filtering (see Figure 4b). These are partially
re-introduced by considering a blended version of the gradient magnitude

dm12 = �(M(I1) ∪M(I?2→1)) (5)

(see Figure 4c) obtained as the stacked median of eight possible gradient magnitudes,
four for each of the I1 and I?2→1 images, to further enhance finer details. Each gradient
magnitude image in the set M(I) for a generic image I is computed as

dm =
(

d2
x + d2

y

) 1
2 (6)

pixelwise, where the image gradient direction pairs (dx, dy) are computed by the convolu-
tion of I with the following four pairs of kernel filters:

0 0 0

0 −1 1
0 0 0

,

0 1 0
0 −1 0
0 0 0

,

0 0 1
0 −1 0
0 0 0

,

1 0 0
0 −1 0
0 0 0

,

0 0 0
1 −1 0
0 0 0

,

0 0 0
0 −1 0
0 1 0

,

0 0 0
0 −1 0
1 0 0

,

0 0 0
0 −1 0
0 0 1

 (7)

Notice that dm12 6= �(M(I12)) in the general case (compare Figure 4c with Figure 4f).
Consider for now only a single derivative pair (dx, dy) of I12: Each pixel intensity I12(x, y)
is incremented by a value v(x, y) satisfying

(
dx +

v
2

)2
+
(

dy +
v
2

)2
=

d2
m − d2

m12

2
(8)

This equation has a twofold solution

v? = ±(2dxdy − d2
m12

)
1
2 − (dx + dy) (9)

In the case of two real v? solutions, v is chosen as v(x, y) = arg minv̄∈v? |v̄| in order to
alter I12 as little as possible. In the case of complex solutions, v(x, y) is set to 0. The final
gradient-enhanced image is then obtained as

I12↑ = I12 + v (10)

(see Figure 4d,e for details). Since four different v values are obtained for each of the four
derivative pairs of Equation (7), their average value is actually employed.
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(a) I12 (b) I12 detail (c) dm12

0

200

(d) I12↑ (e) I12↑ detail (f) �(M(I12))

0

200

Figure 4. Data fusion step (see Section 2.3): (a) stacked median I12 obtained from I1 ∪ I?2→1, (b) details
of I12, (c) the stacked median dm12 of the gradient magnitudes of I1 and I?2→1, (d) the gradient-
enhanced image I12↑ , (e) a detail of I12↑ , (f) the gradient magnitude �(M(I12)) of the stacked median
image I12. Best viewed in color. The reader is invited to zoom in on the electronic version of the
manuscript in order to better appreciate the visual differences.

128 96 15

49 49 200

98 56 187

8 23 57

88 94 233

0 77 110 65

15 176

20 40 159

100 248 50

137 255

33 48 210

99

65

196

15 33 48 49 49 50 56 96 98 100 128 137 187 196 200 210 248 255

0 8 20 2315 40 57 65 77 88 110 159 176 23394

Figure 5. Application of the stacked median operator � for computing I12 from I1 ∪ I?2→1. At pixel
(x, y), the stacked median operator takes the union of the corresponding 3× 3 local neighbourhoods
for each image of the input set (in the example, the union of the red and green neighbourhoods,
and the union of the orange and blue ones, missing data are represented in the figure as gray ticked
boxes) and assigns its median intensity value to the point (x, y) in the new image. Best viewed
in color.

2.4. Refinement

As already noted, the optical flow may be not perfect, causing the presence of wrong
data in the image synthesis and hence in the data fusion process described in the previous
step. To alleviate this issue, an iterative error-driven image correction step is introduced,
where each iteration can be split into two sub-steps:

1. Detection. A binary correction mask is computed by considering the error image E =

(I1 − I12↑)
2 the 11× 11 local window L(x, y) centered at each (x, y). Given L′(x, y) ⊆

L(x, y) as the subset of pixels with intensity values lower than the 66% percentile on
L(x, y), the pixel (x, y) is marked as requiring adjustment if the square root of the
average intensity value on L′(x, y) is higher than t = 16 (chosen experimentally). This
results in a binary correction mask B that is smoothed with a Gaussian kernel and
then binarized again by a threshold value of 0.5. As clear from Figure 6a, using the
percentile-based subset L′(x, y) is more robust than working with the whole window
L(x, y).
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2. Adjustment. Data fusion is repeated again after updating pixels on I?2→1 that need
to be adjusted with the corresponding ones of I12↑ . Since I12↑ is a sort of average
between I1 and I?2→1, the operation just described pushes marked pixels towards I1.
At the end of this step, the gradient enhanced image I12↑ is also updated accordingly
and, in case of no further iterations, it constitutes the final output.

Iterations stop when no more pixels to be adjusted are detected in the updated I12↑ or when
the maximum number of iterations is reached (see Figure 6). A maximum of four iterations
is carried out, since it was verified experimentally that data fusion typically converges to I1
within this number of steps.

fir
st

it
er

at
io

n
la

st
it

er
at

io
n

(a) B (b) I12↑ (c) I12↑ detail

Figure 6. Refinement step (see Section 2.4). First (top row) and last (bottom row) iterations of the
detection and adjustment sub-steps. (a) detection mask B at the beginning of the iteration, (b) updated
I12↑ at the end of the iteration and (c) details of (b). Pixels to be adjusted using L′ (L) are underlined
in the images by saturating the red (blue) channel. By inspecting the details, it can be seen that the
ghosting effect is removed. Best viewed in color. The reader is invited to zoom in on the electronic
version of the manuscript in order to better appreciate the visual differences.

2.5. Guided Supersampling

Previous steps describe the original SMR implementation [23]. In order to preserve
more fine details of the input images, a better image fusion is proposed hereafter, where
the original coarse blended image I12 (Equation (4)) is employed to guide a refinement on
the basis of supersampling (see Figure 7).

Let W1 denote the image obtained by averaging |I1− I12| on a 3× 3 window, and simi-
larly W2 the one obtained with |I2− I12|. The weight mask W is computed as W1/(W1 +W2)
pixelwise, followed by the convolution with a Gaussian with a standard deviation of
four pixels (see Figure 7d). A value of W close to 0 (1) for a given pixel implies that the
local neighborhood of that pixel in I1 (I2) is very likely less noisy and more artefact-free
than I2 (I1). The mask W is used to define a weighted stacked median

H12 = �W(I×2
1 , I?×2

2→1) (11)

where the superscript ×2 indicates the bicubic rescaling by a factor two for supersampling
(see Figure 7e). Explicitly, the weighted stacked median at (x, y) is obtained as the median
of the intensities of V1(x, y) ∪ V2(x, y), where V1(x, y) ⊆ I1 is the subset of the pixels in
the 3× 3 local neighbourhood of (x, y) containing the bw×min(1−W(x, y), w′)c intensity
values closest to I×2

12 (x, y), with w = 32 × 2 and w′ = (32 + 1)/(2× 32 + 1), and likewise
for V2(x, y) ⊆ I2 containing the pixels with the bw ×min(W(x, y), w′)c closest values.
In other words, the number of considered samples for the median taken from each image
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is proportional to the weight W(x, y). The cardinalities of the subsets V1 and V2 for the
different weight ranges are explicitly shown in Table 1.

The high resolution blended image H12 replaces I12 in the next steps of the method
(see Sections 2.3 and 2.4), I1 and I2 being also replaced accordingly by I×2

1 and I×2
2 . The final

output is scaled down to the original input size. With respect to the original SMR imple-
mentation, the use of guided supersampling in SMR+ preserves better fine details, also
improving further the restoration process (compare Figure 7c,g). Notice that, after each
refinement sub-step (see Section 2.4), the coarse I12 image needed to guide the process is
generated by the stacked median between I1 and I×2

12↑
scaled down to the original size.

(a) I12 (b) SMR (c) SMR detail (d) W

0

1

(e) H12 (f) SMR+ (g) SMR+ detail (h) |SMR−SMR+|
detail

0

50

Figure 7. Guided supersampling step (see Section 2.5): (a) SMR stacked median I12, (b) final restored
image and (c) details of it, (d) weight mask W for the guided supersampling, (e) SMR+ weighted
stacked median H12, (f) final restored image, (g) a detail of it, and (h) its differences with respect to
the SMR output. Best viewed in color. The reader is invited to zoom in on the electronic version of
the manuscript in order to better appreciate the visual differences.

Table 1. The cardinality of the sets V1(x, y) and V2(x, y) according to the weight W(x, y) range (see
Section 2.5).

inf W(x, y) 0.00 0.05 0.11 0.16 0.21 0.26 0.32 0.37 0.42 0.47 0.53 0.58 0.63 0.68 0.74 0.79 0.84 0.89 0.95
sup W(x, y) 0.05 0.11 0.16 0.21 0.26 0.32 0.37 0.42 0.47 0.53 0.58 0.63 0.68 0.74 0.79 0.84 0.89 0.95 1.00

|V1(x, y)| 9 9 9 9 9 9 9 9 9 9 8 7 6 5 4 3 2 1 0
|V2(x, y)| 0 1 2 3 4 5 6 7 8 9 9 9 9 9 9 9 9 9 9

3. Evaluation
3.1. Dataset

In order to evaluate the proposed approach, we built a new dataset including historical
stereo pairs from different sources. The left frames of the selected stereo pairs are shown as
reference in Figure 8.

A first set of seven stereo pairs belongs to the collection of stereograms by Anton
Hautmann, one of the most active photographers in Florence between 1858 and 1862.
Part of Hautmann’s collection is described in [21]. The seven stereo pairs used in this
work depict different viewpoints of Piazza Santissima Annunziata in Florence as it was
in the middle of the 19th century. Inspecting these photos (see Figure 8, red frames), it
can be noticed that the image quality is very poor. In particular, the pairs are quite noisy,
with low definition and contrast, include saturated or blurred areas and also show scratches
and stains.
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Figure 8. Left frames for some historical stereo pairs. Image frames for Hautmann’s, Stereoscopic
Photos and USGS datasets are framed, respectively, in red, blue and green. Best viewed in color and
zoomed in with the electronic version of the manuscript.

A second set includes 35 stereo pairs and increases the original set of ten images
employed in [23]. These stereo pairs have been gathered from the Stereoscopic History
Instagram account (https://www.instagram.com/stereoscopichistory/, accessed on 1
April 2021, see Figure 8, blue frames for some examples) and contain landscape pictures
of urban and natural scenes as well as individual or group portraits. This set is the most
challenging one, since its images are heavily corrupted by noise and other artefacts.

A third set of five images was collected from the U.S. Geological Survey (USGS) Historical
Stereoscopic Photos account on Flickr (https://www.flickr.com/photos/usgeologicalsurvey/,
accessed on 1 April 2021), and represents natural landscapes (see Figure 8, green frames),
except for the last one which also includes two horsemen with their mounts. The quality of
these images is similar to that of the first set, but strong vignetting effects are also present.

3.2. Compared Methods

The proposed SMR and SMR+ are compared against Block Matching 3D (BM3D) [7],
Deep Image Prior (DIP) [13] and the recent BOPBtL [26]. BM3D and DIP are, respectively,
a handcrafted and deep generic denoising methods, while BOPBtL is a deep network
specifically designed for old photo restoration. These methods currently represent the
state-of-the-art in this research area.

For BM3D, the legacy version was employed, since, according to our preliminary
experiments, the new version including correlated noise suppression did not work well
for our kind of images. The BM3D σ parameter, the only one present, was set to 7 and 14,
values that, according to our experiments, gave the best visual results. In particular, σ = 14
seems to work better than σ = 7 in the case of higher resolution images. Besides apply-
ing the standard BM3D on the reference image, a modified version of this method was
implemented in order for BM3D to benefit from the stereo auxiliary data. Since BM3D

https://www.instagram.com/stereoscopichistory/
https://www.flickr.com/photos/usgeologicalsurvey/
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exploits image self-correlation to suppress noise, the modified BM3D generates auxiliary
sub-images by placing side by side two corresponding 96× 96 patches from I1 and I?2→1,
then runs the original BM3D on each sub-image and finally generates the output by collect-
ing the blocks from each sub-image corresponding to the 32× 32 central I1 patches. No
difference in the results with respect to the standard BM3D was observed, which plausibly
implies that corresponding patches for I1 and I?2→1 are not judged as similar to each other
by BM3D.

In the case of DIP, the borders of the input images were cropped due to network
architectural constraints: These missing parts were replaced with content from the original
input images.

Concerning BOPBtL, the scratch removal option was disabled since it caused the
network to crash. This is a known issue related to the high memory requirement ex-
ceeding the standard 12 GB GPU amount to run the network on standard image input
(https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life/issues/, accessed on 1
April 2021), and does not occur only when the input image size is small. To circumvent
this problem, two solutions were attempted, yet without satisfying results. Specifically,
in the first solution, the input image was rescaled to a fixed size (from 50% to 33% of the
its original size), but the final result lost too many details (see Figure 9a). In the second
solution, the input was processed in separated blocks, causing a lack of global consistency
in the output (see Figure 9b). Moreover, in both solutions, the chessboard artefact effect,
typical of many deep networks that resynthesize images, looked more evident than in the
original BOPBtL implementation. BOPBtL was employed to post-process the output of
SMR+, which was denoted as SMR+BOPBtL in the results (see Figure 9c).

(a) BOPBtL with scratch
removal (rescaled)

(b) BOPBtL with scratch
removal (multiple blocks)

(c) SMR+BOPBtL

(d) BOPBtL with
scratch removal
(rescaled) detail

(e) BOPBtL with
scratch removal
(multiple blocks)

detail

(f) SMR + BOPBtL
detail

Figure 9. Cont.

https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life/issues/
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(g) BOPBtL with
scratch removal

(rescaled) pixel-level
detail

(h) BOPBtL with
scratch removal
(multiple blocks)
pixel-level detail

(i) SMR+BOPBtL
pixel-level detail

Figure 9. Results of BOPBtL with scratch removal or in combination with SMR+ on the same stereo
pair of Figure 1. Notice that the visual pleasant results of (a) are due to the frequency cutoff caused
by rescaling and disappear at a larger viewing scale such in (d). Best viewed in color. The reader
is invited to zoom in on the electronic version of the manuscript in order to better appreciate the
visual differences.

3.3. Results

Figures 10 and 11 show some examples of the results obtained with the compared
methods. For a thorough visual qualitative evaluation, the reader is invited to inspect
the full-resolution results obtained on the whole dataset, which are included in the addi-
tional material (https://drive.google.com/drive/folders/1Fmsm50bMMDSd0z4JXOhCZ3
hPDIXdwMUL). From a direct visual inspection of the results, BM3D and DIP often seem
to oversmooth relevant details in the image, with BM3D producing somewhat better results
than DIP, which sometimes simply fails to obtain a reasonable output (see Figure 11d,
row DIP). BOPBtL is able to bring out fine details, providing altogether a locally adaptive
smoothing and contrast enhancement of the image, with satisfactory results. Nevertheless,
none of the previous methods is able to detect and compensate for dust, scratches and
other kinds of artefacts that conversely may even be amplified in the restoration process,
as one can check by locating dust spots and sketches in Figure 10e, rows BM3D, DIP and
BOPBtL. This problem is mostly evident for BOPBtL, where image artefacts are heavily
boosted together with finer details.

Conversely, SMR-based methods are able to solve these issues by exploiting the
additional information present in the auxiliary image, with the exception of very severe
conditions such as the stains appearing in the right skyline of Figure 11c, for which,
anyways, SMR-based methods still get the best restoration of all. SMR-based methods also
successfully enhance the image contrast, as it happens for the window in the dark spot
under the right arcade in Figure 10b, rows SMR and SMR+. When image degradations
are even more severe than that, good results can nevertheless be obtained by forcing
the illumination of the auxiliary image into the reference (see Section 2.2), as done for
Figure 10d, rows SMR, SMR+ and SMR+BOPBtL. Concerning the guided supersampling
introduced for SMR+, this is able not only to preserve high frequency details (see again
Figure 7), but also to better clean-up the image, as one can notice by inspecting the removed
scratch from Figure 10c, row SMR+. Guided supersampling also alleviates spurious
artefacts arising from inaccurate optical flow estimation as in the case of the light pole of
Figure 10a (compare rows SMR and SMR+). Only in few cases of very inaccurate optical
flow estimation is SMR+ unable to fix inconsistencies and generates some spurious artefacts
as in the bottom-left white scratch in Figure 11e, rows SMR+ and SMR + BOPBtL. Finally, it
can be noted that SMR + BOPBtL is able to take the best from both the methods, i.e., the
artefact removal from SMR+ and the image enhancement from BOPBtL, and provides very
visually striking results.

https://drive.google.com/drive/folders/1Fmsm50bMMDSd0z4JXOhCZ3hPDIXdwMUL
https://drive.google.com/drive/folders/1Fmsm50bMMDSd0z4JXOhCZ3hPDIXdwMUL
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Figure 10. Qualitative visual comparison of the methods under test. Best viewed in color. The reader
is invited to zoom in on the electronic version of the manuscript in order to better appreciate
the differences.
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Figure 11. Qualitative visual comparison of the methods under test. Best viewed in color. The reader
is invited to zoom in on the electronic version of the manuscript in order to better appreciate
the differences.

Table 2 reports the score obtained by the compared methods on the images discussed
so far according to popular no-reference quality assessment metrics. Specifically, scores
are reported for the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [29],
the Naturalness Image Quality Evaluator (NIQE) [30] and Perception based Image Quality
Evaluator (PIQE) [31]. Due to the lack of ground-truth clean data and of a well-defined
image model for the generation of synthetic images with the same characteristics of the
input image under evaluation, image quality measurements requiring a reference image
such as the Structural Similarity Index (SSIM) [32] cannot be applied. By inspection of the
scores obtained, it clearly emerges that these quality metrics do not reflect the human visual
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judgment, hence they are unsuitable for a reliable quantitative evaluation in this specific
application scenario. In particular, there is no agreement among the various metrics and,
in about half of the cases, the input image even gets a better score than the restored one,
in contrast with the human visual assessment. Furthermore, SMR+ and SMR + BOPBtL
obtain worse scores than the original images or BOPBtL in the cases where SMR-methods
successfully cleaned the image by removing strong image artefacts, again in contrast with
human judgment (see Figure 11b,d). A possible explanation of this behavior is that these
metrics only rely on low-level, local image properties and not on high-level, semantic
image characteristics. Hence, they are unable to distinguish between fine image details
and artefacts. Nevertheless, according to Table 2, SMR+, with or without BOPBtL, shows
good results under these blind quality assessment metrics, implying that it is able not only
to remove structural artefacts from the original image, but also to maintain high quality
visual details besides the semantic interpretation of the scene.

Table 2. No-reference assessment metric results (lower values are better). Values in bold indicate the
best score among the compared methods. Scores that are better in the original images than in the
restored ones are underlined.

I1 BM3D DIP SMR SMR+ BOPBtL SMR+
BOPBtL

Figures 1 and 9
BRISQUE 41.89 54.34 51.47 53.11 43.46 24.15 24.20

NIQE 4.23 5.31 5.31 5.09 3.98 4.09 4.24
PIQE 45.97 78.93 85.33 50.60 46.35 22.55 25.90

Figure 10a
BRISQUE 10.74 46.03 31.11 42.18 33.06 25.41 31.37

NIQE 2.79 3.83 3.94 3.28 3.76 4.05 4.08
PIQE 25.02 79.24 81.50 43.32 28.09 38.50 35.35

Figure 10b
BRISQUE 9.84 48.68 35.95 41.57 29.69 14.17 34.69

NIQE 3.16 4.07 3.92 2.92 3.34 3.65 4.01
PIQE 29.73 78.53 78.16 37.26 23.61 29.98 34.31

Figure 10c
BRISQUE 9.26 44.97 31.28 38.29 33.94 12.13 19.06

NIQE 2.79 4.22 4.11 3.47 4.04 5.43 5.31
PIQE 15.80 60.33 53.28 42.81 23.02 20.30 20.00

Figure 10d
BRISQUE 14.57 31.93 22.82 36.91 25.66 15.89 10.96

NIQE 2.61 3.11 3.72 3.49 3.65 3.97 3.62
PIQE 9.31 43.23 52.66 38.28 24.24 10.48 11.76

Figure 10e
BRISQUE 12.85 30.58 28.31 31.95 22.40 29.13 28.87

NIQE 2.17 2.26 3.30 3.13 2.92 4.05 3.97
PIQE 27.52 42.54 45.40 40.00 24.43 14.67 16.92

Figure 11a
BRISQUE 42.58 48.03 40.26 51.88 41.23 38.48 39.21

NIQE 3.80 4.77 4.97 4.66 3.93 4.57 4.75
PIQE 26.39 74.37 79.44 45.89 36.91 13.28 14.60

Figure 11b
BRISQE 39.15 49.22 53.80 45.41 40.85 14.75 17.74

NIQE 4.33 5.43 5.78 4.93 4.15 4.32 4.56
PIQE 28.96 82.41 84.95 46.49 38.68 15.54 17.70

Figure 11c
BRISQE 30.43 52.90 55.07 52.86 39.59 25.54 20.06

NIQE 3.13 5.22 5.53 4.25 3.20 4.59 4.36
PIQE 17.20 85.95 88.53 43.98 30.33 25.39 27.83

Figure 11d
BRISQUE 28.40 45.63 47.19 41.24 31.51 22.09 23.47

NIQE 2.11 4.17 6.28 3.89 2.85 3.49 3.85
PIQE 31.65 72.88 94.84 48.02 36.64 20.68 22.81

Figure 11e
BRISQUE 40.12 38.54 37.95 20.01 22.15 38.12 22.07

NIQE 6.27 3.49 4.08 2.84 3.06 4.60 4.42
PIQE 58.45 51.79 48.00 19.77 13.28 13.35 11.45
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Concerning running times, BM3D, BOPBtL and DIP require respectively 10 s, 30 s
and 20 min on average for processing the dataset images, while SMR and SMR+ take
respectively 6 min and 9 min. The running environment is a Ubuntu 20.04 system running
on an Intel Core i7-3770K with 8 GB of RAM equipped with a 12 GB NVIDIA Titan XP.
BM3D is a Matlab optimized .mex file, BOPBtL and DIP implementations run on Pytorch
exploiting GPU acceleration, while, with the exception of RAFT optical flow estimation,
SMR and SMR+ are based on non-optimized Matlab code running on CPU. For both SMR
and SMR+ the times include the image resynthesis and color correction steps that take
4.5 min altogether on average. Under these considerations, both SMR and SMR+ running
times are reasonable for offline applications. None of the compared methods can be used
for real-time applications, as in the best case corresponding to BM3D, 10 s are required for
processing the input image.

4. Conclusions and Future Work

This paper proposed a novel method for the fully automatic restoration of historical
stereo photographs. By exploiting optical flow, the auxiliary view of the stereo frame is
geometrically and photometrically registered onto the reference view. Restoration is then
carried out by fusing the data from both images according to our stacked median approach
followed by gradient adjustments aimed at preserving details. Guided supersampling is
also introduced and successfully applied for enhancing finer details and simultaneously
providing a more effective artefact removal. Finally, an iterative refinement step driven by
a visual consistency check is performed in order to remove the artefacts due to optical flow
estimation errors in the initial phase.

Results on several historical stereo pairs show the effectiveness of the proposed
approach that is able to remove most of the image defects including dust and scratches,
without excessive smoothing of the image content. The approach works better than its
single-image denoising competitors, thanks to the ability of exploiting stereo information.
As a matter of fact, single-image methods have severe limitations in handling damaged
areas, and usually produce more blurry results. Nevertheless, experimental results show
that single image BOPBtL, when cascaded with our approach into SMR + BOPBtL, can
achieve remarkably good performances.

Future work will investigate novel solutions to refine the optical flow in order to
reduce pixel mismatches. A further research direction will be towards consolidating the
stacked median approach as an image blending technique. Finally, the proposed method
will be extended and adapted to the digital restoration of historical films.
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