
Journal of

Imaging

Review

Breast Cancer Risk Assessment: A Review on
Mammography-Based Approaches

João Mendes and Nuno Matela *

����������
�������

Citation: Mendes, J.; Matela, N.

Breast Cancer Risk Assessment: A

Review on Mammography-Based

Approaches. J. Imaging 2021, 7, 98.

https://doi.org/10.3390/

jimaging7060098

Academic Editors: Antoine Vacavant,

Leonardo Rundo, Carmelo Militello,

Vincenzo Conti, Fulvio Zaccagna and

Changhee Han

Received: 14 April 2021

Accepted: 9 June 2021

Published: 12 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculdade de Ciências, Instituto de Biofísica e Engenharia Biomédica, Universidade de Lisboa,
1749-016 Lisboa, Portugal; jpmendes@fc.ul.pt
* Correspondence: nmatela@fc.ul.pt

Abstract: Breast cancer affects thousands of women across the world, every year. Methods to predict
risk of breast cancer, or to stratify women in different risk levels, could help to achieve an early
diagnosis, and consequently a reduction of mortality. This paper aims to review articles that extracted
texture features from mammograms and used those features along with machine learning algorithms
to assess breast cancer risk. Besides that, deep learning methodologies that aimed for the same
goal were also reviewed. In this work, first, a brief introduction to breast cancer statistics and
screening programs is presented; after that, research done in the field of breast cancer risk assessment
are analyzed, in terms of both methodologies used and results obtained. Finally, considerations
about the analyzed papers are conducted. The results of this review allow to conclude that both
machine and deep learning methodologies provide promising results in the field of risk analysis,
either in a stratification in risk groups, or in a prediction of a risk score. Although promising, future
endeavors in this field should consider the possibility of the implementation of the methodology in
clinical practice.
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1. Introduction

One in eight women will be diagnosed with breast cancer (BC) in their lifetime, with
one in thirty-nine women dying from this disease just in the USA. In the same country, in
2020, approximately 42,170 women were expected to die from BC and it was anticipated
that approximately 30% of the cancers detected in women will be BC [1]. Around 95% of
cancers are due to genetic mutations that result from environmental or lifestyle factors,
where the remaining percentage is related to inherited genes—with BRCA1/BRCA2 genes
being responsible for most of cases of BC [2,3].

BC diagnosis occurs either during a common screening program, before symptoms
appear, or after women noticing some breast changes. Screening programs are important
for an early detection of BC—that is, in a more treatable stage—resulting in a decrease
in mortality [1,4].

The criterion that defines if a woman is eligible for screening is, normally, only her
age. Different countries have different recommendations on which age is the best to start
screening; the USA states that women from age 45 to 54 should have a mammography once
a year, while 55+ plus women should have a mammography once every two years. On the
other hand, the UK NHS says that only women between 50 to 71 should be screened, and
only once every three years [5,6].

Although there are multiple screening programs, they might not serve all women.
Some younger women may be at higher risk of developing breast cancer than women
in their fifties and, despite that, these women are not eligible for screening. With that in
mind, the perfect screening program should not consider age as the only risk factor that
determines when to screen women.
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The question resides in what risk factors are not being considered when choosing the
best screening option. Age is one of the best documented risk factors, with the incidence
of BC being extremely low before the age of 30 and having a linearly increase until the
age of 80 [7]. Body Mass Index has also been shown to be a potential risk factor for the
development of BC but only in post-menopausal ages [7,8]. Prior history of neoplastic or
hyperplastic breast disease also presents itself as a risk factor for the development of BC.
When it comes to family history, a woman who had a first-degree relative with BC when
was 50 years or older, is almost twice at risk of developing breast cancer than a woman
with no family history of BC [7]. Early menarche, late first full-term pregnancy and late
menopause are three major risk factors for breast cancer [9]. Normally, the earlier the age
of the first menarche, the higher the cancer risk. The fact that both women with early
menarche and later menopause are at higher risk of BC, can lead to the conclusion that
prolonged exposure to estrogen is also a risk factor for this disease [9]. Longer duration of
the breastfeeding period is associated with a diminished risk of breast cancer, in comparison
with women that had shorter breastfeeding periods. Use of oral contraceptives also puts
women at higher risk of developing BC [10]. As it was previously discussed, the existence
of the BRCA1/BRCA2 mutated gene in women karyotype puts them at higher risk of BC,
compared to women who do not possess that gene [11]. Besides these risk factors, in 1976
Wolfe, started studying the association between breast parenchyma patterns and breast
cancer. Wolfe showed that a prominent duct pattern helps to classify a woman as having
higher risk than average for developing breast cancer. Wolfe also stated that it is possible
to predict which women will develop breast cancer and which are less likely to develop it
based only on the parenchymal pattern [12–15].

Many descriptors of these texture patterns have been documented. Mammographic
density is one of those descriptors, normally represented numerically by percent mam-
mographic density (% PD), that is also highly associated with an increased risk of breast
cancer [16–18]. In fact, women with 60–70% PD are at four to five times higher risk than
women with fatty breasts. Dense breasts are not only at higher risk of developing breast
cancer as are also more prone to more aggressive tumors.

Screening programs all around the world use mammography, that can be acquired in
a cranio-caudal (CC) and/or in a mediolateral-oblique (MLO) view, as a standard method
for diagnosis, but although widely used, mammography has both benefits and harms.
The aim for an early detection of this disease started in the beginning of the 20th century
with awareness campaigns, but a decrease in BC mortality was only observed when the
first mammographic screening started. On the bright side of mammography screening,
life-threatening cancers will be detected early, improving prognosis, and consequently,
decreasing risk of mortality. Studies point out that BC mortality rates, decreased at least
20% [19] thanks to an increase in mammographic screening—some studies even point out
a reduction ranging from 30–50% [20]. Besides that, since cancer can be detected in an early
stage, the available treatment can be less invasive and, consequently, have lower costs. The
treatment will also be less intense, resulting in fewer time off of work, and, consequently,
smaller money losses.

One of the problems associated with mammography is the rate of false positives. In
Europe, the risk of having a false-positive result, for women in the range of 50–69 years
having biennial screening, is about 20%. More alarming are the results in the United
States, where all screened women will experience one false-positive in their life. These
false-positive results have an impact in women lives, especially in day-to-day well-being
and in costs concerning healthcare. But the presence of false positive is not the only
downside of mammography. A summary of the benefits and harms of mammography in
1000 women with a screening every two years showed that 200 of them will experience
a false positive, 30 will have a biopsy due to the false positive result, 15 will be over-
diagnosed and three will develop interval cancers – the name given to a cancer that appears
between two consecutive mammograms. These interval cancers may have been developed
between the two mammograms, however, around 35% of them were already present in
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the previous mammogram but were overlooked. This means that the patient received
a false negative result that can occur because, in mammography, there is an overlap of
tissue that can obscure the presence of cancers [21]. Since the population being screened is
mainly composed of asymptomatic women, it is expected that with increased screening, it
will also be seen an increase in cancer incidence. Life-threatening cancers will be detected
early, improving prognosis, which is clearly a point in favor of mammography screening,
however, cancers that would never be detected and that, in theory, were not harmful for the
woman who presents it, will also be diagnosed. This is called overdiagnosis. Overdiagnosis
leads to an ethical dilemma since there is a probability for the patient to live longer with
cancer than with the treatment, and this decision-making process could lead to an increased
anxiety state of the patient [21]. Another important aspect to consider, related to this type
of screening, is the relation between mammography and dense breasts. The sensitivity
of mammography decreases in women who have dense breasts (30–64% vs. 76–98% in
women with fatty breasts) [19], which occurs because cancers have attenuation coefficients
closer to dense tissue. Actually, a study from 1999 [22] showed that there was a significant
trend between breast density and the appearance of false positives. Since it is known
that breast density is an important risk factor for the development of BC, the fact that
mammography does not perform so well in dense breasts should be of great concern.
As seen, there are multiple downsides to mammography and, yet it continues to be the
standardized screening method. However, in 2014, the Swiss Medical Board stated that the
harms produced by these screening programs outweighed the benefits and, therefore, they
recommended Switzerland to stop all the mammography screening programs [23].

New technologies that allow a risk stratification, in line with the current medicine
paradigm of preventive and personalized care, could help overcoming some discussed
problems associated with the screening programs.

A review of Artificial Intelligence (AI) in the field of Breast imaging was already
performed by Le and his colleagues [24]. In this work, a brief introduction to Artificial Intel-
ligence is performed, concerning commonly used terminology and widely used algorithms.
Applications of computer aided detection (CAD) systems in mammography screening are
explored, like the automatic detection of breast cancer, or the distinction between malignant
and benign lesions. Software based on AI for breast density classification assessment is also
addressed. The authors, beside describing deep learning approaches in mammography,
proceed to address relationships and applications of AI to digital breast tomosynthesis,
ultrasound and MRI. Finally, the implementation of AI-CAD systems in clinical practice,
the limitations of these systems, obstacles to its implementation and future applications
are discussed.

In the current work, Section 2 explains the methods by which this review was per-
formed in terms of inclusion criteria. Section 3 presents the results of this review, with
each included paper being analyzed in terms of proposed goals, methodology used, and
results obtained. Finally, in Section 4 a conclusion and a discussion about future endeavors
is made.

2. Methods

The review done here aims to present a global picture in what is already done in
the field of breast cancer risk assessment through computerized methods, using mammo-
grams. A search in Google Scholar using different Boolean operators and the keywords—
breast cancer risk, mammography, machine learning (ML), features, parenchyma/texture
patterns—was performed. This search produced eight-hundred and forty-two matches
that were screened through title and/or abstract. In order to be considered for this review,
papers should meet the following inclusion criteria:

(1) Aim for a risk assessment, either by differentiating risk groups, predicting a risk value,
or proposing new methods for the said assessment, using Machine/Deep Learning
(DL) tools.
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(2) The methodology used should consider textural features with/without epidemiologi-
cal factors.

(3) Mammography images should be used for feature extraction, when that procedure
is done.

(4) All papers’ publication date should be within the 2000–2020 range.

Papers cited by the accepted manuscripts were also screened through the previously
referred criteria. Only the articles that better served the scope of this work were consid-
ered, which resulted in 11 included manuscripts. Figure 1 represents a flowchart of the
methodology used.
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3. Results
3.1. Risk Assessment Using a Single Region of Interest

In the start of the millennium, Huo et al. [18], investigated feature selection in breast
parenchymal patterns, for BC risk assessment. The specific aim of the study was to classify
women, based on their mammograms, into high or low-risk groups. To label the training
data, the authors used Gail’s model, which asks as input some epidemiologic information:
age; age at the first menarche; age at full first-time birth; number of first-degree relatives
with BC; and number of previous breast biopsies; then, with that information, calculates a
probability for developing BC [25]. This method, although very used, has its limitations, for
example, it cannot be used in younger women, and it is unable to predict risk for women
with the BRCA1/BRCA2 gene.

To be included in the low-risk group, besides having a risk lower than 10%, women
could not have any family history of BC. Mammograms from women with the BRCA1/2
mutation were considered high-risk. An important step in dividing the dataset needs
to be referred, as it happens in other similar researches. The age of mutation carriers
and the “low-risk” group tends to be different, and, in order to avoid bias due to that
difference, an aged-match dataset was constructed, and risk analysis was also conducted
in this “sub-dataset”.

Once the datasets were divided, mammograms proceeded to be pre-processed fea-
ture extraction being conducted in a pre-defined region of interest (ROI). Intensity-based
features, statistical measures based in absolute pixel value; co-occurrence (GLCM) fea-
tures [26], metrics that describe pixel pairs co-occurrences throughout the image; and two
Fourier analysis features were extracted—a description of these features can be found in
the referred manuscript. Once the extraction step was done, each feature was analyzed,
through receiver operating characteristic (ROC) analysis, in order to access their discrimi-
native capacity between high-risk and low-risk groups. The area under the curve (AUC)
for each individual feature ranged from 0.53 ± 0.09 (minimum gray-level) to 0.87 ± 0.05
(skewness). After this evaluation, a feature selection method was applied so as to reduce
the dimensionality of the problem and increase computational efficiency. This was achieved
using stepwise selection followed by linear discriminant analysis. Discriminant Analysis
chose intensity-based and co-occurrence features for the best set of features in the task of
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differentiating the two considered risk groups. Curiously, the chosen features were the
ones that presented better discriminative capacity in the individual ROC analysis for the
age-matched group. The linear discriminant analysis approach presented an AUC higher
than any of the features alone—0.91.

Besides proving the usefulness of the texture features to characterize the difference
between low and high-risk women, some interesting conclusions can made from this study
considering features’ average values for each group: the textural patterns from high-risk
women tend to be coarser and lower in contrast; skewness measure should have negative
values for high-risk women; and all the remaining intensity-based features should have
higher values for high-risk women.

To ensure that a good parenchyma characterization could be done through one pro-
jection, the authors made a correlation study between CC-L and MLO-L, and between
CC-L and CC-R views for each feature, which provided positive results. A limitation of
this study might also be the fact that some of the low-risk women may have the mutation
without knowing, which clearly affects features’ discriminative capacity.

Li et al. [27] studied, in 2004, the effect of ROI size and location for feature extraction
in BC risk analysis. The performance of the size and location of each region was evaluated
in the task of differentiating high-risk (mutation carriers) and low-risk women. An aged-
matched group between mutation carriers and low-risk women was created and used for
risk analysis in this study. Researchers designated five different ROI locations, as depicted
in Figure 2, identified by the letters A, B, C, D and E.

J. Imaging 2021, 7, x FOR PEER REVIEW 5 of 20 
 

 

Analysis chose intensity-based and co-occurrence features for the best set of features in 

the task of differentiating the two considered risk groups. Curiously, the chosen features 

were the ones that presented better discriminative capacity in the individual ROC analysis 

for the age-matched group. The linear discriminant analysis approach presented an AUC 

higher than any of the features alone—0.91. 

Besides proving the usefulness of the texture features to characterize the difference 

between low and high-risk women, some interesting conclusions can made from this 

study considering features’ average values for each group: the textural patterns from 

high-risk women tend to be coarser and lower in contrast; skewness measure should have 

negative values for high-risk women; and all the remaining intensity-based features 

should have higher values for high-risk women. 

To ensure that a good parenchyma characterization could be done through one pro-

jection, the authors made a correlation study between CC-L and MLO-L, and between CC-

L and CC-R views for each feature, which provided positive results. A limitation of this 

study might also be the fact that some of the low-risk women may have the mutation 

without knowing, which clearly affects features’ discriminative capacity. 

Li et al. [27] studied, in 2004, the effect of ROI size and location for feature extraction 

in BC risk analysis. The performance of the size and location of each region was evaluated 

in the task of differentiating high-risk (mutation carriers) and low-risk women. An aged-

matched group between mutation carriers and low-risk women was created and used for 

risk analysis in this study. Researchers designated five different ROI locations, as depicted 

in Figure 2, identified by the letters A, B, C, D and E. 

 

Figure 2. Different locations (A–E) where features were extracted for ROI evaluation.  

For size analysis, 2 ROI’s, one with a medium and other with a small size, were di-

rectly defined in the center of the larger, pre-defined, ROI, at locations A, B and C. The 

extracted features were the same that Huo extracted with the addition of a fractal dimen-

sion measure [28]. Stepwise feature selection with LDA was employed as a feature selec-

tion method, after feature extraction from the different ROI’s was performed. Each feature 

was individually evaluated for its discriminative capacity between the considered groups, 

through ROC analysis, and the same was done to the linear discriminant analysis ap-

proach. Descriptors from Fourier analysis, co-occurrence, intensity-based and fractal di-

mension were chosen by the feature selection methodology, a process that is fully de-

scribed in the paper and complemented in [29]. 

In what concerns to ROI size, for location A, the AUC for each individual feature 

ranged from 0.68 to 0.83 with the lower results being associated to smaller regions of in-

terest. The performance of the LDA approach was of 0.92 in the original ROI, with AUC’s 

of 0.87 and 0.89 in the medium and smaller ROI’s, respectively. In the size analysis, sig-

nificance was only achieved for one feature and for the LDA approach between the large 

and medium ROI and for the fractal dimension between the large and small ROI. The 

values of the AUC in the LDA approach for region B were substantially lower than the 

ones observed for region A and, besides that, no statistical significance was observed for 

this region neither in individual features assessment nor in the LDA approach. Finally, for 

Figure 2. Different locations (A–E) where features were extracted for ROI evaluation.

For size analysis, 2 ROI’s, one with a medium and other with a small size, were
directly defined in the center of the larger, pre-defined, ROI, at locations A, B and C. The
extracted features were the same that Huo extracted with the addition of a fractal dimension
measure [28]. Stepwise feature selection with LDA was employed as a feature selection
method, after feature extraction from the different ROI’s was performed. Each feature
was individually evaluated for its discriminative capacity between the considered groups,
through ROC analysis, and the same was done to the linear discriminant analysis approach.
Descriptors from Fourier analysis, co-occurrence, intensity-based and fractal dimension
were chosen by the feature selection methodology, a process that is fully described in the
paper and complemented in [29].

In what concerns to ROI size, for location A, the AUC for each individual feature
ranged from 0.68 to 0.83 with the lower results being associated to smaller regions of
interest. The performance of the LDA approach was of 0.92 in the original ROI, with
AUC’s of 0.87 and 0.89 in the medium and smaller ROI’s, respectively. In the size analysis,
significance was only achieved for one feature and for the LDA approach between the
large and medium ROI and for the fractal dimension between the large and small ROI. The
values of the AUC in the LDA approach for region B were substantially lower than the
ones observed for region A and, besides that, no statistical significance was observed for
this region neither in individual features assessment nor in the LDA approach. Finally, for
region C, the only statistical significance was achieved for feature contrast, between large
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and medium, nonetheless, no statistical significance was obtained in the discriminative
capacity between different sized ROI’s.

Analyzing ROI location effects, for comparison purposes, only the features selected
by the LDA approach for region A were considered. Most of the individual features were
statistically significant different between different locations, and the same can be said about
the LDA approach that presented AUC’s of 0.92, 0.78, 0.69, 0.84, and 0.79 respectively for
each region. A statistically significant decrease was observed in the LDA performance if the
ROI was moved away from region A, that is located immediately behind the nipple, which
probably explains why most of the approaches in this area of research use this location
for feature extraction. The authors point out that the fact that the region immediately
behind nipples has the best discriminative capacity may be due to the existence of a dense
component in that breast location. The group still states that, in the future, research should
extract features from the entire breast and compare the results with the ones obtained with
a single-ROI approach that are, besides its limitations, positive.

In 2005, Li et al. [30] aimed to prove the usefulness of breast parenchymal patterns
present on mammograms in the field of breast cancer risk assessment. As it had happened
in the previous analyzed researches, the authors aimed to extract texture feature from
mammograms to differentiate high-risk women, mutation carriers, from those who have
a low-risk of developing the disease. In order to be considered for the low-risk group,
besides the two conditions presented in the research done by Huo in 2000, women could
not had been diagnosed with breast cancer in the past and, if they had done a biopsy,
they were not considered. Once again, since age is an important risk factor, an age-
matched group between low-risk women and mutation carriers was created. At each
mammogram, features were extracted from the pre-defined ROI and, although ranging
the common groups, they slightly differ from previous researches. Besides intensity-based,
co-occurrence, Fourier and fractal dimension features, mean gradient, an edge frequency
feature that measures the coarseness of a surface, was part of the studied features and is
described in the paper. ROC analysis was used to evaluate the individual performance of
each feature in the task of differentiating high-risk and low-risk women. The results ranged
from 0.66 ± 0.05 (Entropy) to 0.86 ± 0.03 (co-occurrence contrast) in the entire dataset,
and from 0.67 ± 0.05 to 0.86 ± 0.05 in the age-matched group, with statistical significance
(p-value < 0.001) being achieved for all features. The authors proceed to present a figure
where a distribution of skewness measure in the population can be observed. From that,
it is drawn the conclusion that high-risk women present negative values of skewness,
as advanced by Huo in 2000, since these women normally have denser breasts, when
compared to lower-risk women, and, in general, high-risk women present lower skewness
values than women at the low-risk group. Contrast helps to describe the local tissue
variation, and higher values of these features were observed in low-risk women, which
leads to the assumption that mutation carriers tend to present texture patterns low in
contrast. Besides that, results analysis in terms of feature values lead the authors to state
that mutation carriers tend to have coarser textures than low-risk women. Although these
conclusions from contrast and coarseness can be made in general, not all women follow
this trend. Nonetheless, this study presents itself as another proof that mammographic
texture patterns can be successfully used in the field of breast cancer risk assessment.

3.2. A Disruption from the Classical One-ROI Approach for Risk Assessment

Another interesting research is the one done by Tan et al. [31], where the authors
aimed to evaluate the viability of predicting BC risk in women after they had a negative
mammogram. Given a sample of screened women, each woman was considered for the
study if had had two consecutive mammograms acquired in the authors’ facilities and
if the first mammography was negative. A dataset was then created with the accepted
women, where each case was composed by two mammograms—defined as “prior” and
“current” evaluations—and based on the current evaluation, the dataset was divided into
three subgroups. The first was composed of women who had positive results, confirmed
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with other evaluation methods, and women who had pre-cancerous masses that were
removed. The second subgroup consisted of women who had abnormalities in their
mammograms, were recalled, but then the lesions proved to be benign. Finally, the third
subgroup included women with negative mammograms and that were not recalled. In
the study, the researchers used all the “prior” evaluations, that were negative, to assess
breast cancer risk in the “current” evaluation. It is important to mention that, for each
dataset case, age, family history of BC, and the density rating by the BI-RADS scale were
the epidemiologic risk factors considered. For feature analysis purposes, the authors
segmented the breast in different regions and extracted features in the segmented areas,
therefore considering the whole breast for feature extraction. The extracted features could
be divided, once again, in different subgroups: Intensity-based and co-occurrence features—
in the horizontal direction—were extracted. Run-length (RL) features [32], that describe
runs of same intensity pixels in a given image were also considered in both the vertical
and horizontal direction. Besides that, another group of features, that the authors called
“x-axis/y-axis histogram cumulative projection” was considered, a brief explanation of this
group of features is given in the paper. Features were computed in the entire breast and
also in dense breast regions, that are defined as regions that are composed of pixels with
intensity above the median value of the whole breast.

Although the previously referred features were computed, they will not be directly
used for risk assessment purposes. What is done is that each feature is calculated from the
CC view of each breast and then, features that describe the bilateral asymmetry of each
individual feature will be computed through the following equations:

FAssymetry 1−60 =
| fi − gi|

max( fi, gi)
(1)

FAssymetry 61−120 = | fi − gi| (2)

FAssymetry 121−180 = | fi − gi|3 (3)

A set of 180 asymmetry features were calculated and, adding the epidemiologic data,
a final set of 183 features was considered. To choose the best features, a forward floating
selection method was applied- proposed and described by [33]. Once the selected features
were retrieved, a support vector machine (SVM) classifier, with a radial basis function
kernel, was trained and tested with the referred dataset.

Classifier’s performance validation was done using a 10-fold cross-validation method-
ology and, at each testing step the algorithm outputted a score ranging from 0 to 1. The
higher the score, the higher the probability of having an “image-detectable” cancer in
the next screening. Feature selection methodology, besides age, selected features from
Run-length, Intensity-based, and cumulative projection groups. For classification purposes,
using only the first and third subgroups the classifier had an AUC of 0.716 ± 0.020. Consid-
ering all the cases, the SVM model correctly predicted 71.3% using a 0.5 score as a decision
threshold for a classification between negative/benign cases and positive cases. Some
limitations of the developed work must be considered: The fact that the dataset used was
produced in laboratory does not reflect the ratio between positive and negative cases in
common BC screening programs; the methods used for validation may have resulted in
bias and, the fact that the same portion of the dataset was used both for features selection
and to evaluate the classifier accuracy may also have resulted in some bias in the process
of optimizing the algorithm. Besides that, only asymmetry features were computed, which
could lead to some masking effects of the effective texture of the parenchyma.

Zheng et al. [34] advocated, in 2015, that approaches that use a single ROI for risk
assessment are insufficient since they cannot properly define all breast parenchyma, since
it does not consider its heterogeneity. The authors stated that texture characterization
should be done across all breasts, using structuring elements for feature extraction. The
idea that these descriptors, calculated across all breasts recurring to structural elements,
could improve texture description was advanced by these researchers and that resulted
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in the development of a software, that they call lattice-based approach, to extract fea-
tures from structural elements across the entire breast. A comparison of the association
of texture features with cancer between the lattice-based approach and the single-ROI
methodology was performed. To use this methodology, breast area definition and pixel
value normalization was performed. The next step was PD% computing, achieved by using
a clustering algorithm that subdivided the breast into different regions with each region
having approximately the same composition; then, a SVM algorithm would classify each
subregion as being “fatty” or “dense”. PD% was simply computed by dividing the number
of dense areas by the total number of subdivisions defined.

The clustering algorithm used here is a variation of the fuzzy c-means (FCM), which
works by giving each pixel/data point a membership degree to each cluster. This degree is
related to distance metrics taken between the point and the cluster: the lower the distance,
the higher the membership degree. Fuzzy c-means will then, through various iterations, try
to minimize the intra-cluster variance while maximizing the inter-cluster variance. Besides
breast segmentation for % PD calculation, this algorithm has been used for other purposes.
A group of researchers used a variation of the FCM, where the influence of spatial neighbor
pixels and similar super-pixels is incorporated in the model, for lesion segmentation on
brain and breast MRI as also in mammograms [35]. The idea of modifying this algorithm
was held by the fact of FCM being highly sensitive to noise because spatial information was
not considered. The experimental results were evaluated with different metrics—specificity,
accuracy and false alarm Rate (FAR)—and compared to other commonly used segmentation
algorithms. Breast MRIs and mammograms were used to assess lesion segmentation, while
brain MRI is used to evaluate algorithm’s performance in noisy image enhancement. For
the brain MRI image, the highest results for both accuracy and specificity were obtained
for the methodology proposed by these authors, and the same can be said about the lowest
FAR results, proving that best results are obtained by this methodology. Moreover, it also
shows that the noise problem can be countered with this algorithm. Different types of
breast tissue, breast size and tumor size were considered when studying segmentation of
breast MRI images. Their results show that the standard FCM methodology achieved poor
results, due to noise, while their methodology provide the best results, with tumor edge
being as clear as possible (and not blurred as it happens with other algorithms). In terms of
accuracy, specificity and FAR, the proposed method has the best results across all cases.
Finally, for tumor segmentation in mammograms, four cases were analyzed, with different
characteristics, and the results show that the methodology adopted by the authors was
the one that was closer to the standard results obtained by clinicians/experts. Once again,
accuracy, specificity and FAR achieved their best results for the authors’ methodology. This
study provided clues that the proposed methodology can outperform commonly used
algorithms in the task of lesion or organ segmentation, even in the presence of noise.

Still concerning brain MRI, FCM has the potential to be used in a pipeline related
to neuro-radiosurgery [36]. The authors that propose this approach relate that assessing
necrotic tissue that occurs within the tumor might add knowledge about tumor develop-
ment. The goal of the methodology proposed is then to use FCM for necrosis extraction,
after a gross tumor volume segmentation(GTV). This pipeline might allow, for example,
to selectively choose the given dose accordingly to zone resistance to radiation. The use
of FCM after GTV will make the tumor characterization more precise, with necrotic and
enhancement areas being distinguished—by clustering them. This brain tumor necrosis
extraction will provide an increased clinically valuable insight about cancer characteristics,
while playing an important role in neuro-radiosurgery, in terms of dose redistribution.
Several metrics, ones related to spatial overlap, and others concerned with distance were
calculated. The first (sensitivity, specificity, etc.) compared the regions that were achieved
with this methodology, against the segmented areas obtained by an expert. The latter,
contrary to overlap-based metrics, considers the boundary’s voxel position in the space,
which should be used, since boundary delineation is very important in radiosurgery or
treatment planning. Considering overlap metrics, the proposed method provides higher
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results than conventional methodologies, providing clues that this is in fact an accurate
and reliable method. These positive results are corroborated by the spatial metrics, which
indicates that this pipeline serves its initial purposes. Given that, FCM presents itself once
again as a good clustering algorithm for different goals.

Getting back to Zheng’s research, once % PD calculation was performed, feature
extraction could be conducted, and for that, the lattice-based approach needed to be
considered. The authors display a grid over the entire breast tissue, where different values
for the distance between each intersection point, D, and for structural element size, W,
can be considered. The structural elements are centered in the intersection points and
will serve as different ROIs for feature extraction, so, each computed feature will have
different values across the breast. Although the optimal values for D and W might be
different for different regions across the breast, authors considered a fixed and equal value
for these components, resulting in a breast that is coated with structural elements. Intensity-
based; co-occurrence; run-length; local binary pattern; fractal dimension, and structural
features that describe “flow-like structures within the breast” were also considered—the
authors provide references for these novel features. In order to look for the optimal W
value, approaches with three increasing sizes—small, medium and large—were tested.
Each “final value” of the features was defined as the mean value of the said feature
across all structuring elements and the association between the computed features and
breast cancer was evaluated with a logistic regression classifier with leave-one-out cross
validation. Univariate and multivariate analysis were conducted, with feature selection
being done in the later one through a forward feature selection methodology applied at
each cross-validation loop. Considering univariate analysis and taking all window sizes
into account, the average AUC over the GLCM features was of 0.58 ± 0.03, which is better
than the one presented by the intensity-based features, being of 0.56 ± 0.05, the same
value that was presented by the run-length features. Structural features presented a worst
AUC than GLCM features, with a value of 0.57 ± 0.06. Comparing window sizes, the
performance seems to be better for small W values, with an average AUC of 0.58 ± 0.07
for a small window against AUCs of 0.57 ± 0.05 and 0.54 ± 0.03 for sizes medium and
large, respectively. The feature that presented a higher discriminative capacity was fractal
dimension for sizes small and medium, presenting an AUC of 0.69 ± 0.03. In where it
comes to multivariate analysis, using a logistic regression, the performance was also better
with smaller W sizes and the AUCs values obtained were of 0.85 ± 0.02, 0.81 ± 0.02 and
0.76 ± 0.03 for sizes small, medium and large respectively. All the features outperformed
PD% performance and no significance was obtained in the model when PD% was added
to the set of features. The lattice-based approach significantly outperformed the single-
ROI approach either from the retroaerolar area (AUC = 0.60 ± 0.03) or the central breast
region (AUC = 0.74 ± 0.03), despite the W size considered. The results may cause some
surprise once, contrary to what was proven by Li in 2004, the central breast region ROI
performed better than the retroaerolar area. Given what was discussed about this topic,
some conclusion must be drawn: the extraction of features by itself does not result in
better discriminative capacity but it is the combination of those features that gives positive
results; and W size is important for a better discriminative capacity, with an approach that
considers smaller W’s providing better outcomes. Nonetheless, some problems related to
the work done here must also be considered: the use of equal values for W and D might be a
limitation, since much more combinations could be tested if that condition was not present,
what could result in a better discriminative capacity; and PD% calculation was done by
considering one of the many possible options available to perform that computation, what
could also bias the results.

Changes in mammography texture features for breast cancer risk assessment were
studied by Tan et al. [37] in a study where, as done in 2013, the authors conjectured
that features that describe bilateral asymmetry might be important markers to predict
near-term breast cancer risk. What is done differently here is that the authors aim to
found features that allow the prediction models to have a better performance, and they
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compare the risk scores generated by their model with a time-lapse between a negative
and positive mammogram of a patient with a number of sequential mammograms. For
this study, women with at least four sequential mammograms were considered, with
the cancer/risk cases being the ones that were diagnosed with breast cancer in the most
recent mammogram, and the remaining being considered as control. The most recent
mammograms were considered as “current” evaluations and all the previous mammograms
were considered “prior” evaluations, classified as negative in an evaluation done by
radiologists, with no recalls happening in the “prior” group. The authors provide an
extensive description of two used groups of features—structural similarity features and
Weber descriptors—that will not be replicated here. Besides those groups, GLCM, RL and
intensity-based features were likewise computed. For GLCM and RL features, only the
mean value and the maximum value of each feature across computation directions (0◦,
45◦, 90◦, and 135◦) were considered. The breast was segmented and the ratios of the area,
within the segmentation, with intensity values above mean pixel intensity values for the
whole segmented breast, were considered for PD% measures. Concretely, the authors used
three thresholds to compute this ratio: (a) values above the mean; (b) values above the
maximum; (c) values below the minimum. Once this was achieved, the study proceeded
with the calculation of four features based in % region cutoff of the density function. Using
a Sobel gradient operator, statistical measures driven from gradients were considered.
Finally, the difference between the number of pixels present in each breast for the same
patient was calculated. Equation (3) was used, and the result represented the bilateral
asymmetry features between the left and right breast. A SVM algorithm, with a linear
kernel, was trained and tested using a leave-one-out cross-validation methodology and,
at each training session, stepwise regression was used to select the most relevant features.
This procedure was done three times, one for each of the “prior” mammograms. Besides
evaluating risk score evolution across the three “prior” mammograms, the authors also
aimed to study variations of individual feature values between groups, what was done by
computing the mean and standard deviation of the features between the “negative” and
“positive” group for each “prior image”. After that, using a t-test, p-values that assessed
the difference between groups at each “prior image” were generated. Given the already
explored problem of significantly different ages between high and low risk women, the
authors repeated the SVM procedure with two different age-matched groups using a criteria
of ±1 year and a criteria of ±3 years. Apart from that, the authors trained and tested three
different classifiers and, at each time, they used the features selected through one of the
prior images sets. Concerning the results, the AUC increased as the time approached the
current evaluation, with the values being 0.666± 0.029, 0.710± 0.028, and 0.730± 0.027. As
for feature difference results, different trends can be observed, with features having higher
discriminatory capacity across the three “prior” examinations (structural similarity), others
having significant discriminatory capacity in one or two of the examinations (run-length),
and others with no discriminatory capacity in any of the mammograms (contrast). In line
with previous research, one can conclude that although individual features might have
good discriminatory capacities, it is the use of a multi-feature ensemble, recurring to a
machine learning algorithm, that allows a good breast cancer risk assessment. Considering
the predicted risks and defining the midpoint as a threshold, the SVMs had an accuracy
of 65.7%, presenting a sensitivity of 46.5% and a specificity of 83.0%. When considering
the algorithms trained and tested with the age-matched group, no significant difference in
AUCs was observed. This, and the 2013 study are approaches widely different from the
common ones since they add time-dependent variables for risk prediction that can be used
to develop novel techniques for risk assessment in a personalized fashion. The authors
proved a decreasing trend in AUC values from the most recent “prior” evaluation to the
oldest but got results that point to the fact that this decrease might not occur linearly.

In this research the authors aimed to avoid the 2013 limitation of the cases not rep-
resenting a screened population by ensuring that the cases were randomly selected by
people who were not involved in model construction, what made the average women age
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in the “positive” group to be higher than the average in the “negative group” mimicking
what happens in screening programs. When analyzing this study, some limitations must
be considered: (a) model reproducibility might be affected by different acquisition systems
and noise and, therefore, methodologies to reduce acquisition impact must be developed;
(b) image features related to local region bilateral asymmetry were not used and might
improve the obtained AUC; (c) this model does not include epidemiological/ risk factors
which is a flaw, when compared to existing models; (d) the low accuracy values for indi-
vidual features might be an obstacle to clinical use; (e) an examination of how features
varied across the prior examinations was not considered but might be an interesting line of
research to pursue.

In 2019, a group of researchers [38] aimed for a novel approach for breast cancer risk
assessment. In this study each cancer case had age, ethnicity, and BMI matched controls. In
what comes to ethnicity, all cases were correctly matched, 83% of the cases were matched
for age (±5 years) and 94% of the BMI cases were also correctly matched (±1.5 kg/m2).
Feature extraction and PD% (done with the Volpara software, Lynnwood, WA, USA) were
extracted from the CC view and, for cancer cases, contralateral images were used to assess
risk. For feature extraction, five different subgroups of features can be considered: Intensity-
based; GLCM; run-length; structural patterns, like LBP and fractal dimension measures;
Weber local descriptors; Sobel gradient approaches introduced in the previous articles;
and a new set of features called MRELBP, that can describe macro and microstructure
information, having low effort computation and that are robust to image noise; and finally,
spectral features, related to Gabor, were also computed. Model validation was done with
leave-one-out cross-validation. Stepwise regression was used for feature selection and, at
each iteration, F-statistic was calculated in order to assess if each feature had a statistically
significant contribute to the model. Spearman’s rank correlation was also computed to
check for correlation between the more commonly selected features at each leave-one-out
loop. After feature selection was conducted, the selected features were merged using linear
discriminant analysis with the LDA classifier producing a risk score of each case to have
breast cancer, meaning that, at each leave-one-out step, 500 risk scores were generated.
When comparing the mean risk scores between cancers and controls, the system output
a risk of 0.55 for cancer cases and of 0.44 for controls and this difference was statistically
significant (p < 0.001). The same cannot be said about PD%, that was of 16.7% for cancer
cases and of 16.2% for controls, but with a p-value of 0.50. The LDA classifier provided
an AUC of 0.68 (95% CI 0.64–0.73), while the Volpara methodology presented an AUC of
only 0.52 (95% CI 0.47–0.57), this difference was tested and achieved statistical significancy,
proving that the classifier is able to extract more useful information than the measures
of PD% done by the software. Intensity-based, co-occurrence, gradient and MRELBP
features were amongst the chosen ones by feature selection. The six selected features
were not all correlated, and some were only correlated to another two selected features,
which proves, by the relative positive results obtained in the discrimination between cases
and controls, that the LDA classifier could combine information from both correlated and
uncorrelated features. Nonetheless, it can be noted that the obtained AUC was relatively
low when compared to other studies and the authors pointed that this might happen due
to differences in age and ethnicity of the women used in this study. Nonetheless, this study
provides a proof that the methodology used for risk stratification in Caucasian women can
be used, here, in Asian population at the same time that also provides new features that
have a great discriminative capacity in what concerns to breast cancer risk assessment.

Still referring to Asian population, Gandmokar et al. [39], in the Fifteenth International
Workshop on Breast Imaging (Leuven, Belgium, 2020), presented a breast cancer risk
prediction model based not only in mammographic texture feature but also in an enormous
set of epidemiological features (or risk factors), categorizing women into high-risk and
low-risk groups. For each woman in the study the following epidemiologic factors were
obtained: height, weight, BMI, age at menarche, menopause status, age at menopause, age
at first delivery, parity history, number of children, breastfeeding history, personal history
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of breast cancer, family history of breast cancer, and degree of consanguinity. For feature
assessment, contralateral images from the cancer patients were used and considered the
high-risk group and control women images were labeled as “low-risk”, it should be noted
than only CC views were used. Breast segmentation for density calculations was done
using a software called AutoDensity [40], from which results two thresholds, the first that
represents the bright area of the mammogram and the second, since that is computed
based on the dense area, represents the brightest area. Features concerning intensity-based
groups, GLCM manipulation, and Fractal Dimension were extracted (from the bright and
the brightest area) and added to the epidemiologic set of features. Then, these features were
fed to an ensemble of decision trees, acoplated with AdaBoost that was validated with a
leave-one-out cross-validation methodology and presented an AUC of 0.884 (CI 0.838–0.913)
in differentiating risk groups. Although the results are promising, study limitation must be
assessed; (a) the model was validated in a small dataset; (b) contralateral images were used
as high-risk but since the goal is to do a risk prediction the model should be constructed
using prior mammograms; (c) study population was from women recruited from a single
city which does not represent the usually found differences between women from different
locations; (d) the control and cancer cases were driven from different datasets.

3.3. Deep Learning in Risk Analysis

Deep learning, a sub-field of machine learning that can learn directly from a raw input,
is also used for breast cancer risk prediction. In 2016, Kallenberg et al. [41] aimed to use
unsupervised deep learning to perform breast density segmentation and mammographic
risk scoring. In order to overcome that problem, this research uses deep learning methods
to learn features from mammograms, in an automated fashion. The DL model used is
called convolutional sparse autoencoder. An autoencoder can be understood, in general, as
a neural network that works towards the aim of learning the input so well that will also
learn to replicate it as the output of the model; the process by which this occurs is based
in the learning of how to correctly compress and encode the input that will ultimately be
reconstructed. An autoencoder has an encoder, that maps the input layer to the hidden
layer, and a decoder, that maps the hidden layer to the output layer. Once the features are
learned and extracted, the resulting set of descriptors will be used to associate the data
with previously defined labels. This model was applied in two distinct phases; first, it was
asked to the model to make breast segmentation based on density values, and second to
address mammographic parenchymal patterns, considering the goal of predicting future
breast cancer development. The methods used here are based in a denoising autoencoder,
an approach in where the hidden layers have a higher dimension than the input layer.
The ground base idea is that the encoder will receive a corrupted version of the data and
will then learn how to reconstruct a version of the data that is not corrupted [42]. What
also happens in this methodology, is that various autoencoders can be assembled together
so that the learned features increase progressively in level of abstraction. The process by
which this occurs makes features to be learned by one encoder, with the respective decoder
being removed but the features being kept, then, the processed data is passed through a
new autoencoder, where data is reconstructed. This process occurs until the reconstruction
of the last hidden layer occurs [42]. The goal here is not to extract specific features, but
rather to learn features directly from the mammograms, hoping that this methodology
will be highly generalized, in opposite to what happens, in general, to a manual extraction
approach. The models are trained in a forward propagation model, with a constant update
of the learned weights, in order to optimize the process. A way of optimizing the features
is to look for a minimization of the difference (or loss) between the predictions of the
“top most layer” and the real labels. A division into multiple layers is done for feature
learning, before a classifier is trained to make prediction in the “top most layer”. This
results in a “multioptimization” problem, that the authors point to have some advantages,
like the fact that features are learned faster and in a more secure way, since each layer is
specifically optimized, or the fact that these methodologies can incorporate other units,
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like classifiers, that can be independently optimized. In this case, the authors use a sparse
autoencoder, which is a regular autoencoder where a sparsity limitation was forced in
the hidden layers [43], for learning features that represent information at multiple scopes.
The goal is to predict a “label mask” to each image, and, not only the entire image cannot
be computationally used to retrieve label masks, as downsampling the data is also not
possible since important information could be lost. What is suggested, instead, is that the
algorithm should learn local neighborhood regions in an image-patches. Concerning the
notation used in the paper, the goal is to map a patch, x ∈ X = Rc×m×m, with m × m being
the size of the patch and c being the number of channels in the patch, to a label patch,
y ∈ Y = RC×M×M, with M ×M being the size of the patch and having one channel per
label. Although the image and the label patches may have different sizes, they are centered
in the same location. Then, for training purposes, training data will be used to map X to Y.
The training data consists in (x,y) pairs extracted from random locations across the images
that are concerned with this part of the work. The mapping from X to Y does not occur
directly, what happens is that abstract feature representations are learned across multiple
layers. In other words, the input enters the algorithm and crosses multiple layers, with the
output of one layer being the input of the next, where multiple transformations are made
and learning is performed, until the last layer is reached, and a final feature representation
is obtained. Finally, a classifier will be used to map the final feature representation to Y.
For testing purposes, the hypothesis that was trained will be applied to a new image in
all possible patches within the said image—using a sliding window. When doing this, a
problem can arise: if the predicted output region is bigger than a pixel, there are predictions
that may overlap. The problem is solved by calculating the average probability for each
class. Mammogram analysis, conducted in a multi-scale fashion, is done by applying the
discrete scale space theory, through a Fourier implementation. Algorithm unsupervised
architecture consists of four layers: a convolutional layer, a pooling layer, and two final
convolutional layers. Going deeper in convolutional architecture, what happens is that the
convolutional layer will receive the input data, convolve it, do some transformations, and
then send the results as a non-linear activation function to create an activation/features
map. The output of the layer can be fed to another convolutional layer or to a pooling layer.
The pooling layer was defined based on the goal of the study, once it is invariant to small
distortions, but it is highly sensitive to small-scale details. Features are learned for each
scale alone and only merged after the learning process.

The approach proposed by the authors aims for an overcomplete feature represen-
tation, which means that this representation is larger than the input, and resorts to the
concept of sparsity. Sparsity can be used in feature representation by: (1) forcing most of
the entries to be zero and leaving few non-zero entries to represent the input signal; (2) nar-
rowing the number of examples that activate each unit. In this work, both approaches are
combined, leading to, respectively, “a compact encoding per example” and to “example
specific features”. Sparse overcomplete approach is robust to noise and, since each example
is going to be represent by specialized features, this methodology is designed to unscramble
hidden aspects in the data. As it was said, the algorithm will be used in two different tasks
and applied in three different datasets: the density dataset contained both MLO and CC
views for both left and right breast but, for each woman, only one view was available; the
texture dataset contained cancer cases and controls, that were matched both for age and
time of the first image available; finally, the Dutch breast screening dataset was composed
of cancer cases and healthy controls and the same matching as before was made. As for the
classification part, a two-layer neural network was used, with one layer being a previously
used and trained convolutional layer, and the other being a SoftMax classifier, meaning
that the previously learned parameters will be tuned through a supervised methodology.
Broyden–Fletcher–Goldfarb–Shanno algorithm was used as optimizer, and 5-fold cross-
validation was performed for a classification task that considers: “pectorales muscle and
background”, “fatty tissue”, and “dense tissue” as labels for the density scoring; in what
concerns texture scoring, “cancer” and “normal” are the considered labels. Regarding
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results, for density scoring, the output is a score, from 0 to 1, that represents the probability
of a given pixel to belong to the “dense class”. Classification was done by choosing a value
of probability to be a threshold, and the best results were obtained with a threshold of 0.75.
The results explored the correlation between mammographic % PD done by the authors
and by the radiologist, and a performance measure called Dice, that is given by:

D =
|A ∩ B|
|A|+ |B| (4)

where A is the automated segmented region and B is the segmentation done by the radiol-
ogist. For this dataset, the correlation coefficient had a value of 0.85 (95% CI: 0.83–0.88),
the Dice scores for fat and dense tissue were, respectively, of 0.95 ± 0.05 and 0.63 ± 0.19.
The algorithm trained for this dataset was used to estimate % PD in the Dutch dataset and
the cases had a value of 0.19 ± 0.11, the controls had a slightly smaller value—0.15 ± 0.11.
The correlation of % PD between both breasts was of 0.93 (95% CI: 0.92–0.95) and the
obtained AUC for differentiating cases and controls was of 0.59 (95% CI: 0.57–0.62). On the
other hand, the texture scoring represents the probability of a given pixel to be a part of
the cancer class. In order to get one texture score per image, the scores from 500 patches
randomly selected across the breast area were averaged. Besides the developed algorithm,
two other methods were used and evaluated in the performance of this task; one that
is based in multiscale local jet features, and other that uses static histograms. To avoid
bias, the algorithm was tested multiple times and outperformed the two well established
mammographic texture scores, with an AUC of 0.61 (95% CI: 0.57–0.66) vs. AUCs of 0.60
and 0.56 (95% CI: 0.51–0.61) for local jet and static histogram approaches, respectively.
Applying the algorithm to the Dutch dataset resulted in an AUC of 0.57 (95% CI: 0.54–0.61)
in the differentiation between cases and controls and produced a correlation for the mam-
mographic texture of 0.91 (95% CI: 0.90–0.92), between left and right breast. Based on
their results for correlation and % PD based classification, the authors advoke that this
methodology is close to the ones that are present in the scientific community and, based
in the outperformance of their methodology in the texture scoring task, they proceed to
state that this could be a better alternative to the handcrafted texture extraction that is the
current state-of-the-art. One of the downsides of this approach is that the authors assumed
that changes in mammography due to cancer occur in a generalized way across the breast,
but the opposite can also be true, with texture changes being visible only in restricted areas,
and an algorithm that could take this hypothesis into account should be considered as a
future development of the considered work.

In 2014, Petersen et al. [44] sought to do breast segmentation and risk scoring using
deep learning methodologies. Patients were considered as cancer cases for this study if
they had had a screen-detected or an interval cancer; in the first case, mammograms four
years prior from the diagnosis were considered; for interval cancer cases, mammograms
from 2–4 years before cancer appearance were examined. Patient cases, as happens in
other research, were age-matched with controls. An experienced radiologist rated the
mammograms in BI-RADS scale and computed mammographic PD%. The model used,
which is once again a convolutional sparse autoencoder, will learn features in an increasing
abstraction fashion, in order to associate the computed set of features to the considered
labels. The tasks that are going to be considered are: segmentation, with labels being
“background”, “pectoral muscle”, “breast tissue”; % PD scoring, with the labels being
“fatty tissue” and “dense tissue”; and texture scoring, with labels being “diseased” and
“healthy”. As mentioned before, this methodology considers patches from different scales
retrieved from the original image. The methodology for testing is the same as explained in
the previous paper, but a special reference must be made to the fact that when the sliding
window reaches the image border, the images is padded with constant values. The architec-
ture used in this study is the same as used by Kallenberg, and the authors make a reference
that, usually, convolutional and pooling layers are displayed in an alternate fashion, but
in both studies, one of the pooling layers is replaced by another convolutional layer in
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order to grant the conditions of noise invariance and small-scale details sensibility. As
for results, for segmentation, a dice metric was computed for an automated segmentation
and a segmentation done by an expert and the results are: 0.99 ± 0.01, for background;
0.95 ± 0.08, for pectorales muscle; and 0.98 ± 0.01 to breast tissue. The correlation be-
tween automated and manual mammographic % PD scores was of 0.87, and the AUC for
differentiating cases and controls, using the autoencoder was of 0.56 (95% CI: 0.51–0.61).
For texture analysis, the performance of the algorithm for both left and right view were
compared to a state-of-the-art texture scoring method and outperformed it (AUC = 0.65
[95% CI: 0.60–0.70] vs. 0.62 [95% CI: 0.57–0.67]). This research, although widely similar to
the last one, proves that the used methodology generalizes relatively well to other datasets.

Back to 2016, when Qiu et al. [45] tried to create an algorithm that could, in an
unsupervised fashion, estimate bilateral mammographic tissue density asymmetry, an
important risk factor for the development of breast cancer. The authors aim to verify if this
deep learning approach provides better results than the conventional machine learning
methodology. For this study, each case had a “prior” and a “current” evaluation, all the
prior mammograms were negative and the division between cancer and control cases was
done based on the “current evaluation”. The algorithm developed aims to predict, based
in the “prior” exam, the likelihood of a case (women) to have an image-detectable cancer
in the “current” mammogram. The deep learning network proposed by the authors has
8 layers and can be divided in two subsets: feature learning set, and classification set. The
first is composed by alternate convolutional and pooling layers, actually creating three
convolutional-pooling pairs. Convolutional layers apply convolutional kernels to the input
and, then, the pooling layers are responsible for granting that the bilateral asymmetry
is size and rotation independent. After passing through the first pair, a 20 × 48 × 48
feature map is created, and, when passing through the following two pairs, the final result
will be a 5 × 6 × 6 feature map, that is directly linked to the classifier—multiple layer
perceptron—that will generate the probability of having an image detectable cancer in the
next mammogram. During the training, with the 200 cases, a method called mini-batch
statistic gradient descend was used to optimize the algorithm, which the authors say that
provides better optimized parameters with lower computational effort. The algorithm was
tested with the test set and evaluated through a confusion matrix and ROC curve analysis.
This metrics allowed the authors to state that the specificity of the classifier was of 0.60,
and the sensitivity achieved a value of 0.703. The AUC value was of 0.697 ± 0.063 and the
overall accuracy, based on the confusion matrix, was of 71.4%. This methodology allowed
to overcome the problem of manually choosing features to describe bilateral asymmetry
once the features are optimal and directly learned from the input. The authors proceed to
state that, even though the metrics to evaluate the algorithm provide confidence, this is
yet an early study, with a small dataset that does not incorporate inter-women variations
and that, having only 8 layers, is not deep enough, which are limitation that need to be
overcome in order for this type of approaches to be considered in clinical practice.

Tables 1–3 present a summary of the works assessed in this review. The first addresses
questions concerning dataset description and host Institutions, while Table 2 is more
related to the methodology used. As for the final table, results and main conclusions are
addressed. In this table, for studies with more than one AUC result, only the highest value
is considered.
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Table 1. Studies Data Summary.

Study Institution Mammogram
View Group-Matched? Full Dataset Size

Hou et al., 2000 [18] University of
Chicago CC Yes. Age-matched 158 women = 15 high/143 low risk

Li et al., 2004 [27] University of
Chicago CC Yes. Age-matched 90 women = 30 high/60 low risk

Li et al., 2005 [30] University of
Chicago CC Yes. Age-matched 172 women = 30 high/142 low risk

Tan et al., 2013 [31] University of
Pittsburgh CC No. 645 women = 283 high/362 low risk

Zheng et al., 2015 [34] University of
Pennsylvania MLO Yes. Age-matched 424 women = 106 high/318 low risk

Tan et al., 2016 [37] University of
Pittsburgh CC and MLO Yes. Age-matched 335 women = 159 high/175 low risk

Tan et al., 2019 [38] Subang Jaya
Medical Center CC Yes. Age, Ethnicity,

BMI-matched 500 women = 250 high/250 low risk

Gandomkar et al., 2020 [39] Fudan University
Shanghai CC No. 1079 women = 85 high/993 low risk

Kallenberg et al., 2016 [41] University of
Copenhagen CC and MLO Yes. Age and

Acquisition time

Density: 493 healthy
Texture: 226 cancer and 442 controls
Dutch: 384 cancer and 1182 controls

Petersen et al., 2014 [44] University of
Copenhagen MLO Yes. Age-matched 495 women = 245 cases/250 controls

Qiu et al., 2016 [45] University of
Oklahoma CC No. 270 women = 135 cases/135 controls

Table 2. Methods Summary.

Study ROI Analyzed Intensity-
Based GLCM RL Other Features Classifier/Algorithm

Hou et al., 2000 [18] 256 × 256, manually
placed behind the nipple. x - - NGTDM,

Spectral LDA.

Li et al., 2004 [27]
256 × 256, 128 × 128 and

64 × 64 in
referred locations

x - - NGTDM,
Spectral ROCA.

Li et al., 2005 [30] 256 × 256, manually
placed behind the nipple x x - Fractal,

Spectral, Edge ROCA.

Tan et al., 2013 [31]
Entire breast

considered—segmented
into regions.

x x x Cumulative
Projection SVM.

Zheng et al., 2015 [34] Lattice-based approach.
D = W = 63, 127 and 255. x x x LBP, Fractal,

Edge Logistic Reg.

Tan et al., 2016 [37] Entire breast considered x x x Weber,
Structural sim. SVM.

Tan et al., 2019 [38] Entire breast considered x x x Structural,
Spectral LDA.

Gandomkar et al., 2020 [39] Two segmented areas
using AutoDensity x x - Fractal Decision Tree

Kallenberg et al., 2016 [41]

Patches with the smaller
scale being

4.8 mm × 4.8 mm and
the biggest

3.7 cm × 3.7 cm.

- - - - Sparse autoencoder.

Petersen et al., 2014 [44] Patches. - - - - Sparse autoencoder

Qiu et al., 2016 [45] 256 × 256, manually
placed behind the nipple - - - - Multiple Layer

Perception.
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Table 3. Results Summary.

Study AUC Results Main Conclusion

Hou et al., 2000 [18] AUC = 0.91

Mammographic features were found to be associated
with breast cancer risk. High-risk women tend to have
dense breasts and the patterns present e mammograms
tend to have low contrast and to be coarse.

Li et al., 2004 [27] AUC = 0.93 (highest value)
Features extracted immediately behind the nipple tend
to have the best performance. Concerning size, results
were not statistically significant.

Li et al., 2005 [30] AUC = 0.66 ± 0.05 − 0.86 ± 0.03
(only assessed individual features)

High-risk women tend to have dense breasts and their
pattern tend to be coarser, to have a lower fractal
dimension, to be lower in contrast and to have a small
edge gradient measure.

Tan et al., 2013 [31]

AUC = 0.716 ± 0.020
(first and third subgroup)

AUC = 0.725 ± 0.018
(all groups)

Risk calculation based on texture features of
mammographic asymmetry through a SVM classifier
has a good potential to predict the near-term risk of
breast cancer in women.

Zheng et al., 2015 [34] AUC = 0.85 ± 0.02 (highest value)

Lattice-based approach allows parenchyma
characterization across the entire breast, meaning that
the extracted features are provide better information
than the ones extracted from classic approaches.

Tan et al., 2016 [37] AUC = 0.730 ± 0.027 (highest value)
Proved a relationship between the risk scores
generated by the proposed model and the near-term
risk of having breast cancer.

Tan et al., 2019 [38] AUC = 0.68 (95% CI: 0.64–0.73)

Breast texture analysis has a great potential as an
independent risk factor. The study used an Asian
population and confirmed previous studies performed
in Caucasian women about the relationship between
texture patterns and breast cancer risk.

Gandomkar et al., 2020 [39] AUC = 0.884 (CI 0.838–0.913)
A model that combines texture information and
epidemiological factors might lead to an increased
discriminatory capacity of risk prediction.

Kallenberg et al., 2016 [41]
Density: AUC = 0.59 (95% CI: 0.57–0.62)
Texture: AUC = 0.61 (95% CI: 0.57–0.66)

and 0.57 (Dutch) (95% CI: 0.54–0.61)

Obtained breast density scores are positively related to
manual density scores, and texture scores have a
predictive value in what concerns to breast cancer.

Petersen et al., 2014 [44] AUC = 0.65 (95% CI: 0.60–0.70)

PMD scores correlate positively to manual scores and
mammographic texture are more related to future
breast cancer risk than scores related to
mammographic density.

Qiu et al., 2016 [45] AUC = 0.697 ± 0.063

This study concluded that deep learning technologies
may have the potential to develop new risk predicting
methods, that help to achieve an early detection of
breast cancer through negative mammograms.

4. Conclusions

Mainly, the reviewed articles, in terms of extracted features, had in common three
major groups (intensity-based, GLCM and RL), and then present many feature-group
variations, with spectral analysis being also vastly considered. In what comes to the feature
extraction procedure, older papers used a manually single-ROI approach, while more
recent ML studies opted to diversify the region analyzed. Some authors used several ROIs
across the breast, others segmented the breast in different regions and extracted features
from them, and yet, some research consider the entire breast for feature extraction. In
papers that compared their approach with the classical single-ROI methodology, authors
usually find that their procedure outperformed the use of a unique ROI. This may happen
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because, considering breast tissue heterogeneity, a single region does not account for this
diversity, and therefore a tissue characterization that takes into account the entire breast (or
more than one region) appears to be more robust. In terms of classifiers, the papers varied
widely, from LDA to SVM, passing through decisions trees and logistic regression. More
studies should be performed to assess if there is a classifier that is clearly superior to others.
Nonetheless, the LDA approach proposed in the first analyzed paper achieved higher
results than the other three classifiers, which would point that this classifier, for this type
of tasks might outperformed the others. However, the work proposed by Tan in 2019, that
used an LDA, was outperformed by a work conducted in 2013, that used an SVM. As it can
be perceived, there is not a clear conclusion to be made in terms of what classifier is the best.
Nevertheless, the results obtained by the reviewed papers allowed to conclude that texture
analysis along with machine learning algorithms can be correctly employed in risk analysis,
either by differentiating risk groups, or by giving a risk score to each patient. Besides
understanding that this type of methodology can be used, the research also points out that
procedures that consider the entire breast for feature extraction might provide more useful
information. While many of these studies were conducted in Caucasian population, the
study presented by Tan in 2019 allowed to understand that ML algorithms and texture
analysis can also be used, with good outcomes, in Asian populations. The results of the
deep learning approaches, although lower than the ones presented by the classical ML
approach, appear to be very promising, especially because dismisses the laborious work
of extracting handcrafted features, and allows the possibility of automatically finding
predictors that better serve the purpose of the study.

Given the articles discussed in this paper, excluding the ones that use deep learning,
two great future endeavors should be examined: first, considering the substantial differ-
ences in age and other risk factors between high-risk and low-risk groups, studies should
start using larger matched-groups and consider other risk factors than age, in an approach
analogous to what was done in 2019 [38], but with more dataset cases; secondly, most of the
papers did the validation of their model through cross-validation, meaning that training
and testing samples came from the same dataset, so, novel studies should try to validate
their models in an independent dataset. Machine learning methodologies are widely used
in this area, which is demonstrated by the given publications’ date range considered here
but should be interesting for new studies in the field of breast cancer risk assessment to
consider deep learning, as it happens to the last three papers that were analyzed. Machine
learning approaches proved to be substantially good in differentiating risk groups, but
what might be more valuable in terms of medical application is the generation of risk scores,
as done by Tan in 2013. The restriction to a high-risk/low-risk classification seems very
limitative and the focus in giving a risk score specific to each woman should be considered.

While the development of new methodologies in both machine and deep learning, that
suppress the weaknesses discussed in this section, might result in better outcomes, authors
should start looking for breast cancer risk assessment in the perspective of transforming
these algorithms and methods into real clinical applications.

The extensive review performed here allowed to have a general idea of what has
been done for breast cancer risk prediction using textural analysis, that is sometimes
combined with important risk factors. Although there are some downsides that can be
pointed out to research’s methodologies, they serve as a proof of concept that parenchymal
texture patterns provide important information about breast cancer risk and should, once
methodology’s flaws are overcome, be used in clinical practice, and have a positive effect
in millions of women that are diagnosed with breast cancer each year, worldwide.
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