
Journal of

Imaging

Article

Copy-Move Forgery Detection (CMFD) Using Deep Learning
for Image and Video Forensics

Yohanna Rodriguez-Ortega † , Dora M. Ballesteros †,* and Diego Renza †

����������
�������

Citation: Rodriguez-Ortega, Y.;

Ballesteros, D.M.; Renza, D.

Copy-Move Forgery Detection

(CMFD) Using Deep Learning for

Image and Video Forensics. J. Imaging

2021, 7, 59. https://doi.org/10.3390/

jimaging7030059

Academic Editor: Irene Amerini

Received: 16 February 2021

Accepted: 16 March 2021

Published: 20 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Engineering, Universidad Militar Nueva Granada, Bogotá 110111, Colombia;
est.yohanna.rodrig@unimilitar.edu.co (Y.R.-O.); diego.renza@unimilitar.edu.co (D.R.)
* Correspondence: dora.ballesteros@unimilitar.edu.co; Tel.: +57-1-650-0000
† These authors contributed equally to this work.

Abstract: With the exponential growth of high-quality fake images in social networks and media, it is
necessary to develop recognition algorithms for this type of content. One of the most common types
of image and video editing consists of duplicating areas of the image, known as the copy-move tech-
nique. Traditional image processing approaches manually look for patterns related to the duplicated
content, limiting their use in mass data classification. In contrast, approaches based on deep learning
have shown better performance and promising results, but they present generalization problems with
a high dependence on training data and the need for appropriate selection of hyperparameters. To
overcome this, we propose two approaches that use deep learning, a model by a custom architecture
and a model by transfer learning. In each case, the impact of the depth of the network is analyzed
in terms of precision (P), recall (R) and F1 score. Additionally, the problem of generalization is
addressed with images from eight different open access datasets. Finally, the models are compared
in terms of evaluation metrics, and training and inference times. The model by transfer learning of
VGG-16 achieves metrics about 10% higher than the model by a custom architecture, however, it
requires approximately twice as much inference time as the latter.

Keywords: copy-move forgery detection; computer vision; deep learning; fake image; transfer
learning; VGG

1. Introduction

In recent years, the expansion of Internet services and the proliferation and strength-
ening of social platforms such as Facebook, Instagram and Reddit have had a significant
impact on the amount of content circulating in digital media. According to the International
Telecommunication Union (ITU), at the end of 2019, 53.6% of the world’s population uses
the Internet, which means that approximately 4.1 billion people have access not only to
this technology, but also to different tools available online [1]. Although in most cases
the content shared is original or has only been manipulated for entertainment purposes,
in other cases the manipulation may be intentional for disinformation purposes, with polit-
ical and forensic repercussions, for example, using the fake content as digital evidence in a
criminal investigation.

Image or video manipulation refers to any action that can be performed on a digital
content using software editing tools (e.g., Adobe Photoshop, GIMP, PIXLR) or artificial
intelligence. In particular, the copy-move technique copies a part of an image and then
pastes it into the same image [2]. As editing tools advance, the quality of the fake images
increases and they appear to the human eye as original images. In addition, post-processing
manipulations, such as JPEG compression, brightness changes, or equalization, can reduce
the traces left by manipulation and make it more difficult to detect [3].

The copy-move forgery detection (CMFD) includes hand-crafted and deep learning-
based methods [2]. The former is mainly divided into block-based, keypoint-based and
hybrid approach. The second uses custom architectures from scratch or fine-tuned models

J. Imaging 2021, 7, 59. https://doi.org/10.3390/jimaging7030059 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-1801-1328
https://orcid.org/0000-0003-3864-818X
https://orcid.org/0000-0001-8073-3594
https://doi.org/10.3390/jimaging7030059
https://doi.org/10.3390/jimaging7030059
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jimaging7030059
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging7030059?type=check_update&version=2


J. Imaging 2021, 7, 59 2 of 16

of pre-trained architectures such as VGG-16 [4]. Block-based approaches use different
types of features extraction, for example, Fourier transform, DCT (Discrete Cosine Trans-
form) [5,6] or Tetrolet transform [7]. One of their concerns is the reduction of performance
when the copied object is rotated or resized, as the detection of counterfeiting is done
through a matching process [8]. On the other hand, keypoint-based approaches such as
SIFT (Scale Invariant Feature Transform) [9] and SURF (Speed-UP Robust Features) [10]
are more robust to rotation and lighting variations but they have several challenges to
overcome such as detecting counterfeits in regions of uniform intensity, natural duplicate
objects detected as fake duplicate objects, and dependence on actual key points in the
image [6]. A hybrid approach provided more stable results in terms of precision (P), recall
(R) and F1 score, but only for a single data set [11].

Recent approaches use Convolutional Neural Network (CNN) for feature extraction
and classification [12,13]. For example, a custom CNN with nine convolutional layers and
a fully connected (FC) layer was proposed in [14]. The architecture was trained separately
with CASIA v1 and CASIA v2 datasets, obtaining an accuracy of 98.04% and 97.83%,
respectively. A similar work used a custom model with six convolutional layers and three
FC layers, with batch normalization in all the convolutional layers, and dropout in the FC
layers (except the last one); using the CoMoFoD dataset, the internal validation of this
model reached an accuracy of 95.97% [15]. A less deep custom architecture uses only two
convolutional layers and two FC layers [16]. The authors trained and validated the model
with one, two and three datasets obtaining F1 scores of 90%, 94% and 95%, respectively.
Although they address the problem of generalization, their mixed datasets are unbalanced,
one with a ratio of 2:1 for fake and original images, and the other with a ratio of 2:3. Finally,
a data-driven local descriptor with CNN obtained F1 scores between 0.5 and 0.7 for the
CoMoFoD dataset [17].

Complementary to custom designs with CNNs, a second group of CNN-based ap-
proaches use transfer learning (TL). In this case, pre-trained models are used even for
feature extraction or by means of fine-tuning. For example, a pre-trained AlexNet model is
followed by a feature comparison block and a post-processing stage which provides F1
score of 93% for the GRIP dataset [18]. In other case, VGG-16 has been used as a feature ex-
tractor up to the last pooling layer [19]. Experiments were conducted with the MICC-F220
dataset reporting precision of 98%, recall of 89.5%, F1 score of 92% and accuracy of 95%.

Although there are many proposals that have addressed the problem of CMFD,
concerns and challenges remain as listed below:

• Most classification models using deep learning have been trained and validated with
a unique dataset, limiting their use to other kind of tampered images. In other words,
they have not addressed the problem of generalization;

• The CNN models trained with various datasets did not use class-balanced data, so
they could be biased to a particular class;

• Most methods did not report image prediction times, so it is not possible to know if
they are suitable in applications that require real time or massive data analysis;

• The deep learning-based works have used a single design strategy, either custom or by
transfer learning, but, to our knowledge, no work has compared the two approaches
for the same dataset.

According to the above, this research makes a contribution in the following aspects:

• Two models of CMFD based on deep learning are proposed, one corresponding to
custom design and the other by transfer learning. Additionally, the dependence of the
depth of the network on the performance of the classifier is evaluated.

• The generalization problem is addressed by training and validating the proposed
models with data from eight public datasets. Also, external validation results are also
compared when the architecture is trained on a single dataset.

• Finally, the inference time of the custom model is compared with that of the VGG-16
based model.



J. Imaging 2021, 7, 59 3 of 16

The rest of the paper is organized as follows—Section 2 presents the proposed archi-
tectures by custom design and transfer learning. Section 3 describes the experimental tests
and the models selected for each design strategy. Section 4 presents the results for the gen-
eralization problem, as well as the comparison between the proposed models in terms of
performance metrics and inference times. Section 5 discusses the results. Finally, Section 6
summarises the work.

2. Proposed Architectures for CMFD

We propose two approaches for CMFD. The first uses a custom design and the second
uses transfer learning. Both design strategies are based on CNNs. In the following, we will
explain each case.

2.1. Architectures by Custom Design

In this design strategy, we considered that the features that allow us to identify
whether an image is original or has been manipulated with the copy-move technique are
not found in very deep layers, since high-level features such as shape are not useful to
solve this kind of problem. This is supported by previous studies, which state that in
terms of network depth, the number of convolutional layers plus the number of FC layers,
should not exceed 10 layers [14–16]. In our design, we propose five architectures with
different depths, up to five convolutional layers (conv) with two FC layers. Figure 1 shows
the proposed architectures, where each block specifies the type of layer (i.e., conv, pooling
(pool) or FC), the number of filters and the size of the kernel. For example, block1_conv, 32,
(3× 3) is the first convolutional layer with 32 filters and kernel size of (3× 3).

In all cases, the input image is resized to 400× 400× 3. The first convolutional layer
has 32 filters of (3× 3) size, with the Leaky_ReLU activation function using alpha = 0.09.
In this layer, the padding is fixed as same, and the stride is 1 pixel. Its output is a feature
map of 400× 400× 32, which has the same height (H) and width (W) of the input image,
and the number of channels is equal to the number of filters. Next, the MaxPooling layer
reduces the size of the input, that is, the feature map, in terms of H and W, but preserving
the number of channels, according to Equation (1):

Ho ×Wo = d(H + 2p− k + 1)/se × d(W + 2p− k + 1)/se, (1)

where d.e is the ceiling function, k is the kernel size, s is the stride, p is the padding, Ho is the
height of the output, and Wo is the weight of the output. With H = 400, W = 400, p = 0, k = 3
and s = 3, the output is Ho ×Wo = d(400− 3 + 1)/3e × d(400− 3 + 1)/3e = 133× 133.

Hence, the difference between the architectures is the number of convolutional layers.
The second architecture has two conv+pool layers; the third architecture has three conv+pool
layers; and so on. All convolutional layers have padding equal to same so the H and W
values of the input feature maps are preserved. Except for the first MaxPooling layer, these
blocks work with k = 2. The last two layers are fully-connected with 1028 and 2 units,
respectively. Leaky_ReLU is used up to the penultimate layer, while softmax is used in the
last layer.

Table 1 summarizes the hyperparameters of the five architectures by custom design.
This table consists of four parts: the first part corresponds to the convolutional layers (from
block1_conv to block5_pool); the second part corresponds to the FC1 layer; the third part
corresponds to the FC2 layer; and the last part consolidates the five architectures.



J. Imaging 2021, 7, 59 4 of 16

Figure 1. Architectures by custom design: conv is the convolutional layer, pool is pooling layer, FC is the fully-connected layer.

Table 1. Hyperparameters of the proposed architectures by custom design: k is the kernel size, s is stride, p is padding.

Layer No. of Filters or Neurons k s p Output Shape Trainable Parameters

Input – – – – (400, 400, 3) 0
block1_conv 32 3 1 same (400, 400, 32) 896
block1_pool 32 3 3 0 (133, 133, 32) 0
block2_conv 32 3 1 same (133, 133, 32) 9248
block2_pool 32 2 2 0 (66, 66, 32) 0
block3_conv 64 3 1 same (66, 66, 64) 18,496
block3_pool 64 2 2 0 (33, 33, 64) 0
block4_conv 64 3 1 same (33, 33, 64) 36,928
block4_pool 64 2 2 0 (16, 16, 64) 0
block5_conv 64 3 1 same (16, 16, 64) 36,928
block5_pool 64 2 2 0 (8, 8, 64) 0

FC1 (architecture 1) 1028 – – – – 581,898,372
FC1 (architecture 2) 1028 – – – – 143,296,004
FC1 (architecture 3) 1028 – – – – 71,648,516
FC1 (architecture 4) 1028 – – – – 16,843,780
FC1 (architecture 5) 1028 – – – – 4,211,716

FC2 2 – – – – 2058

Architecture 1 – – – – – 581,901,326
Architecture 2 – – – – – 143,308,206
Architecture 3 – – – – – 71,679,214
Architecture 4 – – – – – 16,911,406
Architecture 5 – – – – – 4,316,270

Regarding activation function, Leaky_ReLU is chosen to avoid the dying ReLU prob-
lem. The alpha value (α) is fixed to 0.09 for convolutional layers, and 0.1 for the first FC
layer. This activation function is calculated according to Equation (2).

f (x) = max{αx, x}, (2)

where f (x) is the output of the activation function, and x is the input. Unlike the ReLU
function, negative values are allowed at the output.

The second group of hyperparameters are related to the training stage. We have
selected the following attributes: 80 epochs, categorical cross-entropy as loss function,



J. Imaging 2021, 7, 59 5 of 16

SGD as the optimizer with a learning rate of 0.001 and a decay of 0.0001. Finally, with the
purpose of reducing overfitting, we apply two strategies, dropout of 0.3 in the next-to-last
layer, and image augmentation with horizontal and vertical flip.

2.2. Architectures by Transfer Learning (TL)

VGG-16 is one of the widely known models for image classification, which was trained
with the sub-set of 1000 classes for the ImageNet Challenge [20]. The VGG architecture was
proposed by the Visual Geometry Group of the University of Oxford and it is characterized
by a stack of convolutional layers that precede a MaxPooling layer [21]. It has 3× 3 and
1× 1 filters, with a stride fixed to 1 pixel, and it includes 13 convolutional layers and 3 FC
layers. Compared to the proposed architectures by custom design, VGG-16 differs in the
depth of the network, in the number of filters in the convolutional layers, in the activation
function, and also in the number of convolutional layers stacked before the pooling layer.

We have selected the pre-trained model VGG-16 for the following reasons:

• It is a sequential architecture as the proposed one, then we can compare the perfor-
mance of the custom model with the model by transfer learning for the same type of
architecture and analyze whether the features learned from a pre-trained model are
useful for this type of classification problem;

• In recent work, some models by transfer learning with VGG-16 have been shown to
be useful for identifying fake images from different types of manipulations such as
copy-move [19] and colorization [12];

• Although VGG-16 is an architecture with a larger number of parameters and higher
inference times than other architectures such as Inception or ResNet, it can be pruned
for real-time applications without performance degradation [22].

Regarding transfer learning, there are several choices of using pre-trained models, one
of them replaces part of the layers of the original architecture and preserves the others [13].
For instance, VGG-16 architecture can be preserved up to block4_pool layer and then add
fully-connected layers with a different number of outputs. The new architecture will
have pre-trained (frozen) parameters corresponding to those of the layers block1_conv1 to
block4_pool, and trainable parameters corresponding to the new FC layers.

In our case, we tested the performance of four different architectures from VGG-16,
that is, different frozen points. Figure 2 shows the architectures with this design strategy
and Table 2 shows their corresponding hyperparameters. The first part corresponds to the
architecture that was transferred from VGG-16 with its pre-trained parameters. The second
part corresponds to the FC1 layer which depends on the frozen point. The third part is the
FC2 layer. The last part is the total number of parameters for each of the four architectures,
which includes the pre-trained parameters and the trainable parameters (i.e., FC1 + FC2).
In all cases, the input image size is 300× 300× 3.

On the other hand, to illustrate the features learned by the VGG-16 pre-trained model,
we have selected the block4_pool layer to display one of its feature maps. Figure 3 shows
the example for the filter 60. Similar patterns are detected in the feature maps for the two
flowers, that is, a green and yellow semi-circle appears in the corresponding areas that have
flowers. This type of pattern allows the classifier to make the decision on the originality of
the image.

Finally, to train the transfer-learning based model, the same hyperparameters defined
for the custom architecture are selected: 80 epochs, categorical cross-entropy as loss func-
tion, SGD as the optimizer with a learning rate of 0.001 and a decay of 0.0001. However,
in this case, the dropout value is 0.45.



J. Imaging 2021, 7, 59 6 of 16

Figure 2. Architectures by TL: conv is convolutional layer, pool is pooling layer, FC is fully-
connected layer.



J. Imaging 2021, 7, 59 7 of 16

Table 2. Hyperparameters of the architectures by transfer learning: k is the kernel size, s is stride, p is padding.

Layer No. of Filters or Neurons k s p Output Shape Trainable Parameters

Input – – – – (400, 400, 3) 0
block1_conv1 64 3 1 same (300, 300, 64) 1792
block1_conv2 64 3 1 same (300, 300, 64) 36,928
block1_pool 64 2 2 0 (150, 150, 64) 0

block2_conv1 128 3 1 same (150, 150, 128) 73,856
block2_conv2 128 3 1 same (150, 150, 128) 147,584
block2_pool 128 2 2 0 (75, 75, 128) 0

block3_conv1 256 3 1 same (75, 75, 256) 295,168
block3_conv2 256 3 1 same (75, 75, 256) 590,080
block3_conv3 256 3 1 same (75, 75, 256) 590,080
block3_pool 256 2 2 0 (37, 37, 256) 0

block4_conv1 512 3 1 same (37, 37, 512) 1,180,160
block4_conv2 512 3 1 same (37, 37, 512) 2,359,808
block4_conv3 512 3 1 same (37, 37, 512) 2,359,808
block4_pool 512 2 2 0 (18, 18, 512) 0

block5_conv1 512 3 1 same (18, 18, 512) 2,359,808
block5_conv2 512 3 1 same (18, 18, 512) 2,359,808
block5_conv3 512 3 1 same (18, 18, 512) 2,359,808
block5_pool 512 2 2 0 (9, 9, 512) 0

FC1 (architecture 1) 1028 – – – – 360,278,020
FC1 (architecture 2) 1028 – – – – 170,533,892
FC1 (architecture 3) 1028 – – – – 170,533,892
FC1 (architecture 4) 1028 – – – – 42,634,244

FC2 2 – – – – 2058

Architecture 1 – – – – – 362,015,566
Architecture 2 – – – – – 178,171,214
Architecture 3 – – – – – 185,250,638
Architecture 4 – – – – – 57,348,932

Figure 3. Example of feature maps for the block4_pool of the pre-trained VGG-16 model: (a) original
image, (b) fake image with copy-move, (c) output of the filter 60 for the original image, (d) output of
the filter 60 for the fake image. The source of (a,b) is [23] with permission of the authors.



J. Imaging 2021, 7, 59 8 of 16

3. Experimental Tests

Bearing in mind that one of the purposes of this research was to address the problem
of generalization, it is mandatory to consider several datasets for model training. Then,
a unified dataset should have diversity in image size, format, color space and editing
quality, that is, whether the manipulation is perceptible or not. This is done by unifying
several datasets, some of which have been widely used in the literature, while others
are new. Specifically, we have selected eight datasets, as follows: Coverage, CG-1050 v1,
CG-1050 v2, MICC-F220, MICC-F2000, Copy-move Forgery Dataset (CMFD), CASIA v1
and CASIA v2. Table 3 shows the characteristics of each dataset.

The unified dataset contains images in JPEG, BMP and TIF formats, color and grayscale
images, different sizes of the copied object and different orientation. They were split in
training, validation, and testing (60%, 20% and 20%, respectively). Additionally, all images
were converted to JPEG format, to train the model using images with a lossy compression
format. Table 4 shows the number of fake and original images taken from each dataset.

Table 3. Characteristics of the selected datasets.

Dataset Grayscale Color TIFF JPEG BMP Original Fake

COVERAGE [24] x x x x
CG-1050 v1 [25] x x x x x
CG-1050 v2 [26] x x x x x
MICC-F220 [27] x x x
MICC-F2000 [27] x x x x

CMFD dataset [23] x x x x
CASIA v1 [28] x x x
CASIA v2 [28] x x x

Table 4. Unified dataset: number of images taken from single datasets.

Dataset Fake Original

COVERAGE 100 99
CG-1050-V1 331 100
CG-1050-V2 328 1044
MICC-F220 29 0
MICC-F2000 700 346

CMFD 383 50
CASIA V1 370 0
CASIA V2 706 0

It was necessary to add original images since some datasets only contained fake
images. Table 5 shows the final distribution of the unified dataset, including 1308 original
images obtained from a personal repository.

Table 5. Distribution of the unified dataset: training, validation, and test.

Dataset Training Validation Test

Fake 1765 590 592
Original 1766 590 591

As shown in Table 5, the unified dataset is balanced by class, so that the models are
not biased towards a particular class.

3.1. Comparison Metrics

To compare the performance of the classifier, we use three metrics that are suitable
for balanced datasets, such as the unified dataset, corresponding to precision (P), recall



J. Imaging 2021, 7, 59 9 of 16

(R) and F1 score. Precision measures the ratio of images predicted as fake that belong
to that class. Recall gives the ratio of fake images that are correctly classified. Finally,
the F1 score is the harmonic mean between precision and recall. These metrics are obtained
using Equations (3)–(5):

P =
TP

TP + FP
, (3)

R =
TP

TP + FN
, (4)

F1 = 2× P× R
P + R

, (5)

where TP is the number of True Positives, FP is the number of False Positives and FN is the
number of False Negatives. The class fake is the positive class while the class original is the
negative class.

In addition, we use accuracy (acc) to compare our results with some of the state-of-the-
art proposals. This metric is obtained with Equation (6):

acc =
TP + TN

TP + FP + TN + FN
, (6)

The four metrics range between 0 and 1, their ideal value is 1 and the worst is 0.

3.2. Impact of the Depth for the Custom Architecture

To assess how architecture depth affects model performance, we trained the five
custom-designed architectures of Figure 1. As shown in Figure 4, model performance
decreased as depth increased, the F1 scores are very similar between layers block4_pool and
block5_pool with a very low overfitting. The impact of the depth of the architecture was
also analyzed in terms of external validation with the test dataset, that is, using images
unknown to the trained model. Figure 5 shows the behavior of F1 score, precision and
recall by varying the number of convolutional layers. According to the results, block2_pool
and block4_pool have the lowest variation in their metrics (P, R, F1), which means a better
balance between precision and recall, however, the highest scores correspond to block4_pool.

Considering the above results, the proposed model by custom design was obtained
from the architecture 4, that is, up to block4_pool with two FC layers.

Figure 4. Impact of the depth for the custom architecture in terms of F1 score: training vs validation. The x-axis corresponds
to the last layer before the FC1 layer, and the y-axis is the F1 score.



J. Imaging 2021, 7, 59 10 of 16

Figure 5. Impact of the depth for the custom architecture in terms of P, R and F1 score: external test. The x-axis corresponds
to the last layer before the FC1 layer, and the y-axis are the evaluated metrics.

3.3. Impact of the Depth for the Architecture by Transfer Learning

In the second approach, the four architectures in Figure 2 were evaluated, as it is
shown in Figure 6. Each architecture corresponds to a specific freezing point of the pre-
trained VGG-16 model: block3_pool, block4_pool, block5_conv3 and block5_pool. The worst
metrics were obtained for the most superficial freezing layer, where the metrics for training
and validation did not exceed 0.5. Using deeper freezing points, the F1 score in training
exceeded 0.9 for block4_pool and block5_pool and 0.8 for block5_conv3. In validation, the F1
score presented values of 0.83, 0.81 and 0.81 for block4_pool, block5_conv3 and block5_pool,
respectively. In summary, the F1 score did not increase when increasing the network
freezing point beyond the block4_pool layer.

Finally, the four models by transfer learning were validated with the test dataset.
Figure 7 shows the results in terms of F1 score. For the block3_pool layer, the best metric is
precision, but for the block5_conv3 layer the best metric is recall. The good balance between
precision and recall is found in block4_pool layer in which P, R, and F1 score are very close
among them. This layer is a breaking point in the performance of the classifier. As the
freezing point gets deeper, the performance metrics decrease, being lower than 0.71 for the
block5_pool layer.

Therefore, the proposed model by transfer learning was obtained from the architecture
2, that is, up to block4_pool from VGG-16, plus two new FC layers.

Figure 6. Impact of the depth for the architecture by transfer learning using VGG-16, in terms of F1 score: training vs.
validation. The x-axis corresponds to the selected last layer of VGG-16, and the y-axis is the F1 score.



J. Imaging 2021, 7, 59 11 of 16

Figure 7. Impact of the depth for the architecture by transfer learning using VGG-16, in terms of P, R and F1: external test.
The x-axis corresponds to the selected last layer of VGG-16, and the y-axis are the evaluated metrics.

4. Results

Considering that the TL-based model obtained better performance metrics than the
custom-designed model (i.e., 0.78 vs 0.68 for F1 score), the TL-based model is selected for
the generalization tests in Sections 4.1 and 4.2. In addition, both models are compared in
terms of performance, training and inference times, in Section 4.3.

4.1. Training with a Single Dataset

In this section we trained the architecture 2 of the TL-based strategy with six different
datasets, (i.e., CASIA v1, CASIA v2, CG-1050 v1, CG-1050 v2, Copy-move forgery dataset
(CMFD) and MICC-F2000), obtaining six different models. Figure 8 shows the results in
terms of F1 score for training and validation. It should be noted that, for the datasets of
CASIA v1, MICC-F2000 and CG-1050 v1, F1 scores are very close to each other for training
and validation, and close to 1; while for CASIA v2 and CMFD, the values are higher than
0.9. Only, for the CG-1050 v2 dataset, the validation value is distant from the training one.
In summary, the same architecture is able to obtain high scores for different datasets when
the model is validated with data similar to those used in the training stage.

Figure 8. Comparison in terms of F1 score with a single dataset (training vs. validation). The x-axis corresponds to the
model trained with the specific dataset, and the y-axis is the F1 score.



J. Imaging 2021, 7, 59 12 of 16

The next step is to compare the results with those reported in the literature with a
single dataset. Table 6 shows either the acc or the F1 score for some works, divided in three
groups: CASIA (v1, v2), CMFD and MICC (F2000, F220, F600). For the copy-move forgery
dataset (CMDF) group, the results were very similar between them. For the CASIA group,
similar results are found for custom CNN and by transfer learning models. For the MICC
group, deep learning-based methods outperform hand-crafted based methods. However,
it is not clear whether the classifiers are biased to one class, as few papers report all four
metrics: acc, P, R and F1. For instance, in [29] the authors reported a precision of 89.0%
and recall of 100%, which implies that these metrics are not balanced, and specifically,
the classifier is slightly biased to the positive class.

Thus, our proposed TL-based model exceeds most of the results reported by other
works, in two of the three groups of this comparison. It should be noted that transfer
learning with VGG-16 had already been used for the same classification task (i.e., ref [19])
up to the block5_pool layer, but its results in terms of F1 score are lower than those of our
work. This is because after the block4_pool layer the performance decreases, as is reported
in Figure 7.

Table 6. Comparison between state-of-the-art approaches in terms of accuracy (acc) and F1 score for the datasets: CASIA
(v1, v2), CMFD and MICC (F2000, F220, F600). The higher the better.

Method/Year/Reference CASIA CMFD MICC acc F1

CNN (9 conv layers)/2016/[14] x 98.0%
Our–VGG-16 based/2020 x 98.0% 99.0%

Keypoint clustering/2020/[30] x 93.8%
Our–VGG-16 based/2020 x 94.0% 93.0%

VGG-16 based (block5_pool)/2019/[19] x 95.0% 92.0%
CNN (6 conv layers)/2020/[31] x 99.5%

CNN (3 conv layers, dual branch)/2021/[29] x 96.0% 94.0%
Hand-crafted (feature point)/2016/[32] x 74.0%

Hand-crafted (hybrid feature
extraction)/2020/[11] x 93.0%

Our–VGG-16 based/2020 x 97.0% 97.0%

4.2. Adressing the Problem of Generalization

We evaluate the generalization capacity when the architecture by transfer learning is
trained with a single dataset versus several datasets. We test the six models trained with a
single dataset (Section 4.1) against the unified dataset, and we compare their results with
the selected model of Section 3.3. Figure 9 shows a radar plot in which each vertex of the
triangle corresponds to P (up), R (down, right) and F1 score (down, left). The best model is
the one whose curve is the most external, without biasing any of the metrics.

As shown in Figure 9, the outermost curve corresponds to the model trained with
the unified dataset, in which there is an adequate balance between P and R, and therefore
the three values (P, R and F1 score) are very similar between them. The second place is
occupied by the model trained with CASIA v2 in which again the metrics are balanced but
are lower than in the first case. One of the worst curves was found with the model trained
with CMFD dataset, in which R is high but P is low. This means that few fake images are
labelled as original, but many original images are labelled as fake.

According to the above, not only the results for individual datasets are important to
know the quality of the model, but also the generalization results. An architecture trained
and evaluated on a single dataset can achieve high F1 score values, but it is no guarantee
of high performance for new images.



J. Imaging 2021, 7, 59 13 of 16

Figure 9. Ability of generalization: single dataset vs. unified dataset (UD). The triangle represents P
(up), R (down, right) and F1 score (down, left).

4.3. Custom Model vs. Vgg-16 Based Model

In this last test section, we compare the two proposed models in terms of performance
(Table 7), number of parameters (Table 8) and training and inference times (Table 9).

In terms of performance, the model by transfer learning shows higher scores in all
four statistics. However, in both models, there is a high trade-off between accuracy and
recall, and therefore, the amount of misclassifications is similar for the two classes (original
and fake).

Table 7. Comparison of the two proposed models in terms of acc, P, R and F1 score.

Model acc P R F1

Model by custom design 0.68 0.67 0.69 0.68
Model by transfer learning 0.78 0.78 0.79 0.78

In the second comparison, all parameters are trainable in the custom architectures,
while only the FC layer parameters are trainable in the architectures by transfer learning.
In the first case, architecture 4 from Table 1 was selected, while in the second case, architec-
ture 2 from Table 2 was selected. As shown in Table 8, the total number of parameters of
the second approach is much higher than the former.

Table 8. Comparison of the two proposed models in terms of number of parameters.

Model Parameters Trainable Non-Trainable

Model by custom design 16,911,406 16,91,406 0
Model by transfer learning 178,171,214 170,535,950 7,635,264

On the other hand, in terms of training and inference times (Table 9), the model by
custom architecture uses about 65% of that of the transfer-learning-based.



J. Imaging 2021, 7, 59 14 of 16

Table 9. Comparison of the two proposed models in terms of training and validation times, h is
hours, sec is seconds.

Model Training Time (h) Inference Time by Image (sec)

Model by custom design 1.8 0.0354
Model by transfer learning 2.8 0.0532

In summary, the model by the custom architecture has a lower number of parameters
than the model by transfer learning, with less inference time, but with a lower success rate
in the classification.

5. Discussion

This research addressed the generalization problem, where models trained with a
single dataset can show very high results with similar data, but their performance decreases
significantly with data dissimilar to that of the training stage. In most papers, copy forgery
detection models have been trained and validated (internally) with a single dataset or with
datasets from the same “family”, for example, CASIA (v1 and v2) or MICC (2000, F220
F600), but not with data from multiple and highly diverse datasets.

Fitting the model for single datasets is not a very difficult task, as presented in
Figure 8, where the same architecture was used to train six single models with high results
in five of the six cases. However, in a real scenario, the trained models must classify images
dissimilar to those used in the training stage, and then, models trained with a single data
set do not perform adequately, as was shown in Figure 9. For instance, the model trained
with the CMFD dataset obtained F1 scores close to 1 when evaluated with images from the
same dataset, but its performance decreased when tested with images from other datasets
showing high recall and very low precision.

For this reason, to approach a real scenario, we used a unified dataset from different
individual datasets, some of which have already been used in other works and others are
new, with a high diversity as summarized in Table 3. Obtaining a trained model with high
precision and recall, and a proper balance between these two metrics was not an easy task,
so it was necessary to evaluate several hyperparameters. After several adjustments of the
hyperparameters (both related to the architecture as well as the training stage) we obtained
two promising models, which are presented in this paper.

It is worth noting that the task of copy-move forgery detection is not yet solved,
because every day in social networks new high quality manipulated images are found,
which could be classified not only by an algorithm but by human beings as originals.

6. Conclusions

In this paper we proposed two deep learning-based models, a custom model and a
TL-based model, to evaluate its effectiveness in the CMFD task. Additionally, we address
the generalization problem when the architecture is trained only with one dataset but
tested with several datasets versus the approach trained with a large dataset. Finally, we
evaluate not only the performance of the proposed models but their training and inference
times. According to our results, the custom architecture with few convolutional layers
have greater generalization problems than those with more layers; however, in the VGG-16
pre-trained model it was found that when using a freezing point beyond the block4_pool
layer the classifier results get worse. Additionally, it was found that models trained with
a single dataset tend to classify images into a single class (original or fake), such that P
and R metrics are not balanced (one high and one low). The best balance between these
metrics was obtained when the weights of the pre-trained VGG-16 model were frozen in
the block4_pool layer and the unified dataset was used. Besides, the improved performance
in classifying original and fake images in the VGG-16 based model has a direct relationship
with the inference time, which is almost double that of the custom model.



J. Imaging 2021, 7, 59 15 of 16

Future work may consider extending the training dataset, assessing the impact of
other hyperparameters on classifier performance and a hybrid approach mixing an image
pre-processing stage using domain transformation (e.g., DFT, DCT, and DWT) with feature
extraction based on deep learning.

Author Contributions: Conceptualization, D.M.B. and D.R.; methodology, Y.R.-O. and D.M.B. and
D.R.; software, Y.R.-O. and D.M.B.; validation, Y.R.-O.; formal analysis, D.M.B.; investigation, D.M.B.
and D.R.; data curation, Y.R.-O.; writing—original draft preparation, Y.R.-O. and D.M.B.; writing—
review and editing, D.R.; visualization, D.M.B.; supervision, D.M.B. and D.R. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by “Vicerrectoría de Investigaciones—Universidad Militar Nueva
Granada”, grant number IMP-ING-2936 of 2019–2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data CG-1050 used in this study are openly available in [25,26].

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

acc Accuracy
CNN Convolutional Neural Network
CMFD Copy-Move Forgery Detection
conv Convolutional layer
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DWT Discrete Wavelet Transform
FC Fully-Connected
P Precison
pool Pooling layer
R Recall
SIFT Scale Invariant Feature Transform
SURF Speed-Up Robust Features

References
1. ITU. Statistics. Available online: https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx (accessed on 4 Decem-

ber 2020).
2. Thakur, R.; Rohilla, R. Recent Advances in Digital Image Manipulation Detection Techniques: A brief Review. Forensic Sci. Int.

2020, 312, 110311. [CrossRef]
3. Abd Warif, N.B.; Wahab, A.W.A.; Idris, M.Y.I.; Ramli, R.; Salleh, R.; Shamshirband, S.; Choo, K.K.R. Copy-move forgery detection:

survey, challenges and future directions. J. Netw. Comput. Appl. 2016, 75, 259–278. [CrossRef]
4. Ferreira, W.D.; Ferreira, C.B.; da Cruz Júnior, G.; Soares, F. A review of digital image forensics. Comput. Electr. Eng. 2020,

85, 106685. [CrossRef]
5. Dua, S.; Singh, J.; Parthasarathy, H. Detection and localization of forgery using statistics of DCT and Fourier components. Signal

Process. Image Commun. 2020, 82, 115778. [CrossRef]
6. Gani, G.; Qadir, F. A robust copy-move forgery detection technique based on discrete cosine transform and cellular automata. J.

Inf. Secur. Appl. 2020, 54, 102510. [CrossRef]
7. Meena, K.B.; Tyagi, V. A copy-move image forgery detection technique based on tetrolet transform. J. Inf. Secur. Appl. 2020,

52, 102481. [CrossRef]
8. Sharma, S.; Ghanekar, U. A hybrid technique to discriminate Natural Images, Computer Generated Graphics Images, Spliced,

Copy Move tampered images and Authentic images by using features and ELM classifier. Optik 2018, 172, 470–483. [CrossRef]
9. Alberry, H.A.; Hegazy, A.A.; Salama, G.I. A fast SIFT based method for copy move forgery detection. Future Comput. Inform. J.

2018, 3, 159–165. [CrossRef]
10. Badr, A.; Youssif, A.; Wafi, M. A Robust Copy-Move Forgery Detection In Digital Image Forensics Using SURF. In Proceedings of

the 2020 8th International Symposium on Digital Forensics and Security (ISDFS), Beirut, Lebanon, 1–2 June 2020; pp. 1–6.

https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
http://doi.org/10.1016/j.forsciint.2020.110311
http://dx.doi.org/10.1016/j.jnca.2016.09.008
http://dx.doi.org/10.1016/j.compeleceng.2020.106685
http://dx.doi.org/10.1016/j.image.2020.115778
http://dx.doi.org/10.1016/j.jisa.2020.102510
http://dx.doi.org/10.1016/j.jisa.2020.102481
http://dx.doi.org/10.1016/j.ijleo.2018.07.021
http://dx.doi.org/10.1016/j.fcij.2018.03.001


J. Imaging 2021, 7, 59 16 of 16

11. Tinnathi, S.; Sudhavani, G. An Efficient Copy Move Forgery Detection Using Adaptive Watershed Segmentation withAGSO and
Hybrid Feature Extraction. J. Vis. Commun. Image Represent. 2020, 74, 102966. [CrossRef]

12. Ulloa, C.; Ballesteros, D.M.; Renza, D. Video Forensics: Identifying Colorized Images Using Deep Learning. Appl. Sci. 2021,
11, 476. [CrossRef]

13. Pachón, C.; Ballesteros, D.M.; Renza, D. Fake Banknote Recognition Using Deep Learning. Appl. Sci. 2021, 11, 1281. [CrossRef]
14. Rao, Y.; Ni, J. A deep learning approach to detection of splicing and copy-move forgeries in images. In Proceedings of the 2016

IEEE International Workshop on Information Forensics and Security (WIFS), Abu Dhabi, United Arab Emirates, 4–7 December
2016; pp. 1–6.

15. Thakur, R.; Rohilla, R. Copy-Move Forgery Detection using Residuals and Convolutional Neural Network Framework: A Novel
Approach. In Proceedings of the 2019 2nd International Conference on Power Energy, Environment and Intelligent Control
(PEEIC), Greater Noida, India, 18–19 October 2019; pp. 561–564.

16. Kumar, S.; Gupta, S.K. A Robust Copy Move Forgery Classification Using End to End Convolution Neural Network. In
Proceedings of the 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future
Directions) (ICRITO), Noida, India, 4–5 June 2020; pp. 253–258.

17. Liu, Y.; Guan, Q.; Zhao, X. Copy-move forgery detection based on convolutional kernel network. Multimed. Tools Appl. 2018,
77, 18269–18293. [CrossRef]

18. Muzaffer, G.; Ulutas, G. A new deep learning-based method to detection of copy-move forgery in digital images. In Proceedings
of the 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey,
24–26 April 2019; pp. 1–4.

19. Agarwal, R.; Verma, O.P. An efficient copy move forgery detection using deep learning feature extraction and matching algorithm.
Multimed. Tools Appl. 2019, 79, 1–22. [CrossRef]

20. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

21. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
22. He, Y.; Zhang, X.; Sun, J. Channel pruning for accelerating very deep neural networks. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1389–1397.
23. Ardizzone, E.; Bruno, A.; Mazzola, G. Copy–move forgery detection by matching triangles of keypoints. IEEE Trans. Inf. Forensics

Secur. 2015, 10, 2084–2094. [CrossRef]
24. Wen, B.; Zhu, Y.; Subramanian, R.; Ng, T.T.; Shen, X.; Winkler, S. COVERAGE—A novel database for copy-move forgery detection.

In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016;
pp. 161–165.

25. Castro, M.; Ballesteros, D.M.; Renza, D. A dataset of 1050-tampered color and grayscale images (CG-1050). Data Brief 2020,
28, 104864. [CrossRef]

26. Castro, M.; Ballesteros, D.M.; Renza, D. CG-1050 v2: Original and Tampered Images. 2019. Available online: https://data.
mendeley.com/datasets/28xhc4kyfp/1 (accessed on 17 December 2020).

27. Amerini, I.; Ballan, L.; Caldelli, R.; Del Bimbo, A.; Serra, G. A sift-based forensic method for copy–move attack detection and
transformation recovery. IEEE Trans. Inf. Forensics Secur. 2011, 6, 1099–1110. [CrossRef]

28. Dong, J.; Wang, W.; Tan, T. Casia image tampering detection evaluation database. In Proceedings of the 2013 IEEE China Summit
and International Conference on Signal and Information Processing, Beijing, China, 6–10 July 2013; pp. 422–426.

29. Goel, N.; Kaur, S.; Bala, R. Dual branch convolutional neural network for copy move forgery detection. IET Image Process. 2021,
15, 656–665. [CrossRef]

30. Chen, H.; Yang, X.; Lyu, Y. Copy-move forgery detection based on keypoint clustering and similar neighborhood search algorithm.
IEEE Access 2020, 8, 36863–36875. [CrossRef]

31. Elaskily, M.A.; Elnemr, H.A.; Sedik, A.; Dessouky, M.M.; El Banby, G.M.; Elshakankiry, O.A.; Khalaf, A.A.; Aslan, H.K.; Faragallah,
O.S.; Abd El-Samie, F.E. A novel deep learning framework for copy-moveforgery detection in images. Multimed. Tools Appl. 2020,
79, 19167–19192. [CrossRef]

32. Yu, L.; Han, Q.; Niu, X. Feature point-based copy-move forgery detection: covering the non-textured areas. Multimed. Tools Appl.
2016, 75, 1159–1176. [CrossRef]

http://dx.doi.org/10.1016/j.jvcir.2020.102966
http://dx.doi.org/10.3390/app11020476
http://dx.doi.org/10.3390/app11031281
http://dx.doi.org/10.1007/s11042-017-5374-6
http://dx.doi.org/10.1007/s11042-019-08495-z
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/TIFS.2015.2445742
http://dx.doi.org/10.1016/j.dib.2019.104864
https://data.mendeley.com/datasets/28xhc4kyfp/1
https://data.mendeley.com/datasets/28xhc4kyfp/1
http://dx.doi.org/10.1109/TIFS.2011.2129512
http://dx.doi.org/10.1049/ipr2.12051
http://dx.doi.org/10.1109/ACCESS.2020.2974804
http://dx.doi.org/10.1007/s11042-020-08751-7
http://dx.doi.org/10.1007/s11042-014-2362-y

	Introduction
	Proposed Architectures for CMFD
	Architectures by Custom Design
	 Architectures by Transfer Learning (TL)

	Experimental Tests
	Comparison Metrics
	Impact of the Depth for the Custom Architecture
	Impact of the Depth for the Architecture by Transfer Learning

	Results
	Training with a Single Dataset
	Adressing the Problem Of Generalization
	Custom Model vs. Vgg-16 Based Model

	Discussion
	Conclusions
	References

