# Incoherent Radar Imaging for Breast Cancer Detection and Experimental Validation against 3D Multimodal Breast Phantoms

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Ideal Scattering Configuration and Beam-Forming

## 3. Incoherent Image Procedures

#### 3.1. Incoherent Beam-Forming

#### 3.2. Discrete Data Setting

#### 3.3. Incoherent MUSIC

#### 3.4. Numerical Comparison

## 4. Experimental Analysis

#### 4.1. Measurement Set-Up

#### 4.2. Breast Phantom

#### 4.3. Clutter Rejection Algorithm

#### 4.4. Reconstruction Results

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Ferlay, J.; Soerjomataram, I.; Eser, R.D.S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer
**2015**, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed] - Levi, F.; Bosetti, C.; Lucchini, F.; Negri, E.; La Vecchia, C. Monitoring the decrease in breast cancer mortality in Europe. Eur. J. Cancer Prev.
**2005**, 14, 497–502. [Google Scholar] [CrossRef] [PubMed] - Myers, E.R.; Moorman, P.; Gierisch, J.M.; Havrilesky, L.J.; Grimm, L.J.; Ghate, S.; Davidson, B.; Mongtomery, B.R.C.; Crowley, M.J.; McCrory, D.C.; et al. Benefits and Harms of Breast Cancer Screening: A Systematic Review. JAMA
**2015**, 314, 1615–1634. [Google Scholar] [CrossRef] [PubMed] - Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin.
**2016**, 66, 7–30. [Google Scholar] [CrossRef] [Green Version] - Hellquist, B.N.; Czene, K.; Hjälm, A.; Nyström, L.; Jonsson, H. Effectiveness of population-based service screening with mammography for women ages 40 to 49 years with a high or low risk of breast cancer: Socioeconomic status, parity, and age at birth of first child. Cancer
**2012**, 118, 1170–1171. [Google Scholar] [CrossRef] - Preece, A.W.; Craddock, I.; Shere, M.; Jones, L.; Winton, H.L. Maria M4: Clinical evaluation of a prototype ultrawideband radar scanner for breast cancer detection. J. Med. Imaging
**2016**, 3, 033502-1–033502-7. [Google Scholar] [CrossRef] - O’Loughlin, D.; O’Halloran, M.; Moloney, B.M.; Glavin, M.; Jones, E.; Elahi, M.A. Microwave Breast Imaging: Clinical Advances and Remaining Challenges. IEEE Trans. Biomed. Eng.
**2018**, 65, 2580–2590. [Google Scholar] [CrossRef] - Kwon, S.; Lee, S. Recent Advances in Microwave Imaging for Breast Cancer Detection. Int. J. Biomed. Imaging
**2016**, 5054–5912. [Google Scholar] [CrossRef] - Larsen, L.; Jacobi, J. Microwaves offer promise as imaging modality. Diagn. Imaging
**1982**, 11, 44–47. [Google Scholar] - Nikolova, N.K. Microwave imaging for breast cancer. IEEE Microw. Mag.
**2011**, 12, 78–94. [Google Scholar] [CrossRef] - Golnabi, A.H.; Meaney, P.M.; Epstein, N.R.; Paulsen, K.D. Microwave imaging for breast cancer detection: Advances in three-dimensional image reconstruction. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 5730–5733. [Google Scholar]
- Wang, L. Early Diagnosis of Breast Cancer. Sensors
**2017**, 17, 1572. [Google Scholar] [CrossRef] [PubMed] - Donelli, M.; Craddock, I.; Gibbins, D.; Sarafianou, M. A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm. Prog. Electromagn. Res. M
**2011**, 18, 179–195. [Google Scholar] [CrossRef] [Green Version] - Isernia, T.; Pascazio, V.; Pierri, R. On the local minima in a tomographic imaging technique. IEEE Trans. Geosci. Rem. Sens.
**2001**, 39, 1596–1607. [Google Scholar] [CrossRef] - Chew, W.C. Waves and Fields in Inhomogeneous Media; IEEE Press: New York, NY, USA, 1995. [Google Scholar]
- Chen, J.; Yao, K.; Hudson, R. Source localization and beamforming. IEEE Signal Process. Mag.
**2002**, 19, 30–39. [Google Scholar] [CrossRef] [Green Version] - Hagness, S.C.; Taove, A.; Bridges, J.E. Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed focus and antenna array sensors. IEEE Trans. Biomed. Eng.
**1998**, 45, 1470–1479. [Google Scholar] [CrossRef] [Green Version] - Lim, H.; Nhung, N.; Li, E.; Thang, N. Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm. IEEE Trans. Biomed. Eng.
**2008**, 55, 1697–1704. [Google Scholar] [PubMed] - Klemm, M.; Craddock, I.J.; Leendertz, J.A.; Preece, A.; Benjamin, R. Improved delay-and-sum beamforming algorithm for breast cancer detection. Int. J. Ant. Propag.
**2008**, 2008, 761402. [Google Scholar] [CrossRef] [Green Version] - Soldovieri, F.; Solimene, R. Ground Penetrating Radar Subsurface Imaging of Buried Objects. In Radar Technology; Kouemou, G., Ed.; IntechOpen: Rijeka, Croatia, 2010; Chapter 6. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Sanchez, J.M.; Fortuny-Guasch, J. 3-D Radar Imaging Using Range Migration Techniques. IEEE Trans. Antennas Propag.
**2000**, 48, 728–737. [Google Scholar] [CrossRef] - Stolt, R.H. Migration by Fourier Transform. Geophysics
**1978**, 43, 23–48. [Google Scholar] [CrossRef] - Gazdag, J.; Sguazzero, P. Migration of Seismic Data. IEEE Proc.
**1984**, 72, 1302–1315. [Google Scholar] [CrossRef] - Takeda, M.; Wamg, W.; Duan, Z.; Miyamoto, Y. Coherence holography. Opt. Express
**2005**, 13, 9629–9635. [Google Scholar] [CrossRef] [PubMed] - Goodman, J. Introduction to Fourier Optics; McGraw Hill: New York, NY, USA, 1968. [Google Scholar]
- Soumekh, M. Synthetic Aperture Radar Signal Processing with Matlab Algorithms; Wiley-Interscience: New York, NY, USA, 1999. [Google Scholar]
- Flores-Tapiaand, D.; Pistorius, S. Real time breast microwave radar image reconstruction using circular holography: A study of experimental feasibility. Med. Phys.
**2011**, 38, 5420–5431. [Google Scholar] [CrossRef] [PubMed] - Solimene, R.; Cuccaro, A.; Ruvio, G.; Tapia, D.F.; Halloran, M.O. Beamforming and Holography Image Formation Methods: An Analytic Study. Opt. Express
**2016**, 24, 9077–9093. [Google Scholar] [CrossRef] [PubMed] - Solimene, R.; Catapano, I.; Gennarelli, G.; Cuccaro, A.; Dell’Aversano, A.; Soldovieri, F. SAR imaging algorithms and some unconventional applications: A unified mathematical overview. IEEE Sign. Process. Mag.
**2014**, 31, 90–98. [Google Scholar] [CrossRef] - Ruvio, G.; Solimene, R.; D’Alterio, A.; Ammann, M.J.; Pierri, R. RF breast cancer detection employing a non-characterized vivaldi antenna and a MUSIC-like algorithm. Int. J. RF Microw. Comput. Aided Eng.
**2013**, 23, 598–609. [Google Scholar] [CrossRef] [Green Version] - Ruvio, G.; Solimene, R.; Cuccaro, A.; Ammann, M.J. Comparison of Non-Coherent Linear Breast Cancer Detection Algorithms Applied to a 2-D Numerical Breast Model. IEEE Antennas Wirel. Propag. Lett.
**2013**, 41, 853–856. [Google Scholar] [CrossRef] - Schmidt, R. Multiple Emitter Location and Signal Parameter Estimation. IEEE Trans. Antennas Propag.
**1986**, 34, 276–280. [Google Scholar] [CrossRef] [Green Version] - Ruvio, G.; Solimene, R.; Cuccaro, A.; Fiaschetti, G.; Fagan, A.J.; Cournane, S.; Cooke, J.; Ammann, M.J.; Tobon, J.; Browne, J.E. Multimodal Breast Phantoms for Microwave, Ultrasound, Mammography, Magnetic Resonance and Computed Tomography Imaging. Sensors
**2020**, 20, 2400. [Google Scholar] [CrossRef] - Solimene, R.; Ruvio, G.; Aversano, A.D.; Cuccaro, A.; Ammann, M.J.; Pierri, R. Detecting point-like sources of unknown frequency spectra. Prog. Electromagn. Res. B
**2013**, 50, 347–364. [Google Scholar] [CrossRef] [Green Version] - Ruvio, G.; Solimene, R.; Cuccaro, A.; Gaetano, D.; Browne, J.E.; Amman, M.J. Breast cancer detection using interferometric MUSIC: Experimental and numerical assessment. Med. Phys.
**2014**, 41, 102101–102111. [Google Scholar] [CrossRef] [Green Version] - Ruvio, G.; Cuccaro, A.; Solimene, R.; Brancaccio, A.; Basile, B.; Ammann, M.J. Microwave bone imaging: A preliminary scanning system for proof-of-concept. IEEE Healthc. Technol. Lett.
**2016**, 3, 218–221. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Solimene, R.; Cuccaro, A. Front wall clutter rejection methods in TWI. IEEE Geosci. Remote Sens. Lett.
**2014**, 11, 1158–1162. [Google Scholar] [CrossRef] - Tivive, F.H.C.; Amin, M.G.; Bouzerdoum, A. Wall clutter mitigation based on eigen-analysis in through-the-wall radar imaging. In Proceedings of the 2011 17th International Conference on Digital Signal Processing (DSP), Corfu, Greece, 6–8 July 2011; pp. 6–8. [Google Scholar]
- Solimene, R.; D’Alterio, A. Entropy-Based Clutter Rejection for Intrawall Diagnostics. Int. J. Geophys.
**2012**, 2012, 418084. [Google Scholar] [CrossRef] [Green Version]

**Figure 2.**Comparing I-MUSIC and beam-forming (BF) for single frequency data. The left column refers to I-MUSIC; the right one to BF. In panels (

**a**,

**b**) ${N}_{o}=49$ whereas in panels (

**c**,

**d**) ${N}_{o}=7$.

**Figure 3.**Illustrating the role of the frequency band. In all the reconstructions only ${N}_{o}=7$ sensors are considered. In the top panels the frequency band is $[1,3]$ GHz, in the bottom panels the frequency band is reduced to $[2,3]$ GHz. Finally, (

**a**,

**d**) refer to I-MUSIC, (

**b**,

**e**) to BF and (

**c**,

**f**) to IBF.

**Figure 4.**Schematic diagram showing the MBI scanning setup. The system antenna + phantom is immersed in a coupling medium. The antenna is connected to a Vector Network Analyzer (VNA) scanning the phantom at a fixed height in multimonostatic configuration. This allows collecting data for a single coronal slice.

**Figure 5.**Illustrating entropy behaviour for the case of phantom B. The (

**left**) panel shows the entropy ${\u03f5}_{s}\left({t}_{m}\right)$ and the red dashed circle identifies the time-gating value (3 ns). The (

**right**) panel shows ${\widehat{\u03f5}}_{s}$, the orange and green shaded regions highlights the set of sensors’ positions whose data can be retained.

**Figure 6.**Reconstructions and MR image for phantom A. (

**a**) Reconstruction with only time-gating, ${N}_{f}=20$. (

**b**) Reconstruction with time-gating + rejection of the first SVD projection of the scattering matrix, ${N}_{f}=20$ (

**c**) Reconstruction with time-gating + sensor selection + rejection of the first SVD projection of the scattering matrix, ${N}_{f}=20$. (

**d**) Reconstruction with time-gating + sensor selection + rejection of the first SVD projection of the scattering matrix, ${N}_{f}=40$. (

**e**) Reconstruction with time-gating + sensor selection + rejection of the first SVD projection of the scattering matrix, ${N}_{f}=100$. (

**f**) MR coronal slice image of Phantom A. In particular, in panel (

**f**) the blue dashed circle indicates the circular boundary of the spatial region within which the reconstructions reported in the other panels have been achieved. This is highlighted even in panel (

**e**). Moreover, in the latter, the yellow circle denotes the tumor location and size.

**Figure 7.**Reconstructions and MR image for phantom A. (

**a**) Reconstruction with only time-gating, ${N}_{f}=20$. (

**b**) Reconstruction with time-gating + rejection of the first two SVD projections of the scattering matrix, ${N}_{f}=20$ (

**c**) Reconstruction with time-gating + sensor selection + rejection of the first two SVD projections of the scattering matrix, ${N}_{f}=20$. (

**d**) Reconstruction with time-gating + sensor selection + rejection of the first two SVD projections of the scattering matrix, ${N}_{f}=40$. (

**e**) Reconstruction with time-gating + sensor selection + rejection of the first two SVD projections of the scattering matrix, ${N}_{f}=100$. (

**f**) MR coronal slice image of Phantom B. In particular, in panel (

**f**) the blue dashed circle indicates the circular boundary of the spatial region within which the reconstructions reported in the other panels have been achieved. This is highlighted even in panel (

**e**). Moreover, in the latter, the yellow circle denotes the tumor location and size.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Cuccaro, A.; Dell’Aversano, A.; Ruvio, G.; Browne, J.; Solimene, R.
Incoherent Radar Imaging for Breast Cancer Detection and Experimental Validation against 3D Multimodal Breast Phantoms. *J. Imaging* **2021**, *7*, 23.
https://doi.org/10.3390/jimaging7020023

**AMA Style**

Cuccaro A, Dell’Aversano A, Ruvio G, Browne J, Solimene R.
Incoherent Radar Imaging for Breast Cancer Detection and Experimental Validation against 3D Multimodal Breast Phantoms. *Journal of Imaging*. 2021; 7(2):23.
https://doi.org/10.3390/jimaging7020023

**Chicago/Turabian Style**

Cuccaro, Antonio, Angela Dell’Aversano, Giuseppe Ruvio, Jacinta Browne, and Raffaele Solimene.
2021. "Incoherent Radar Imaging for Breast Cancer Detection and Experimental Validation against 3D Multimodal Breast Phantoms" *Journal of Imaging* 7, no. 2: 23.
https://doi.org/10.3390/jimaging7020023