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Abstract: A brain tumor is one of the foremost reasons for the rise in mortality among children and
adults. A brain tumor is a mass of tissue that propagates out of control of the normal forces that
regulate growth inside the brain. A brain tumor appears when one type of cell changes from its
normal characteristics and grows and multiplies abnormally. The unusual growth of cells within
the brain or inside the skull, which can be cancerous or non-cancerous has been the reason for the
death of adults in developed countries and children in under developing countries like Ethiopia. The
studies have shown that the region growing algorithm initializes the seed point either manually or
semi-manually which as a result affects the segmentation result. However, in this paper, we proposed
an enhanced region-growing algorithm for the automatic seed point initialization. The proposed
approach’s performance was compared with the state-of-the-art deep learning algorithms using the
common dataset, BRATS2015. In the proposed approach, we applied a thresholding technique to
strip the skull from each input brain image. After the skull is stripped the brain image is divided into
8 blocks. Then, for each block, we computed the mean intensities and from which the five blocks
with maximum mean intensities were selected out of the eight blocks. Next, the five maximum
mean intensities were used as a seed point for the region growing algorithm separately and obtained
five different regions of interest (ROIs) for each skull stripped input brain image. The five ROIs
generated using the proposed approach were evaluated using dice similarity score (DSS), intersection
over union (IoU), and accuracy (Acc) against the ground truth (GT), and the best region of interest
is selected as a final ROI. Finally, the final ROI was compared with different state-of-the-art deep
learning algorithms and region-based segmentation algorithms in terms of DSS. Our proposed
approach was validated in three different experimental setups. In the first experimental setup where
15 randomly selected brain images were used for testing and achieved a DSS value of 0.89. In the
second and third experimental setups, the proposed approach scored a DSS value of 0.90 and 0.80
for 12 randomly selected and 800 brain images respectively. The average DSS value for the three
experimental setups was 0.86.

Keywords: brain MRI image; tumor region; skull stripping; region growing; U-Net; BRATS dataset

1. Introduction

Cancer is a critical health problem with a very high mortality rate in the world. But we
can prevent deaths and illnesses from cancer if we can diagnose it earlier. Globally the mean
five-year survival rate of cancer patients has increased from 49% to 67%. The main reason
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behind this improvement is the rapid growth in diagnostic and treatment techniques [1].
A brain tumor is one of the deadliest cancers among children and adults. A brain tumor
is an abnormal mass of brain tissue that grows out of the control of the normal forces
that regulate growth inside the skull. These unusual growths can be cancerous or non-
cancerous [2]. There are many pieces of research carried out in the past few decades on a
brain tumor, but it remained to be one of the major causes among much common type of
cancers for the death of people in the entire world [3].

We can classify brain tumors as primary brain tumors and secondary brain tumors
depending on the point of origin. Primary brain tumors originate from the brain tissues,
whereas secondary tumors originate elsewhere and spread to the brain via hematogenous
or lymphatic route. We can categorize brain tumors in terms of severity as benign and
malignant [4]:

• Benign brain tumors are those that grow slowly and do not metastasize or spread
to other body organs and often can be removed and hence are less destructive or
curable. They can still cause problems since they can grow big and press on sensitive
areas of the brain (the so-called mass effect). Depending on their location, they can be
life-threatening.

• Malignant brain tumors are those with cancerous cells. The rate of growth is fast
ranging from months to a few years. Unlike other malignancies, malignant brain
tumors rarely spread to other body parts due to the tight junction in the brain and
spinal cord.

Brain Tumor Imaging Technologies

Medical imaging technologies revolutionized medical diagnosis over the last 40 years
allowing doctors to detect tumors earlier and improve the prognosis by visualizing tissue
structures [5]. The most common imaging modalities for the detection of brain tumors
include computed tomography (CT), magnetic resonance imaging (MRI), and positron
emission tomography (PET) [5]. MRI is the most commonly used system to diagnose brain
tumors since it presents accurate details about the investigated tumor and has little risk
to radiations. Additionally, it is capable of differentiating soft tissue with high resolution
and is more sensitive in detecting and visualizing subtle changes in tissue density and the
physiological alternations associated with the tumor [6–9]. Usually, one imaging modality
is used in the diagnosis of brain tumors. But in some cases, more than one imaging
modality might be advantageous in the diagnosis of brain tumors using medical image
registration. Rundo et al. [10] explored the use of medical registration, which is a process
of combining information from different imaging modalities into single data. These fusions
usually require optimization of similarity between the different modality input images.
CNN based optimization for medical image registration was performed in [11].

MRI is a non-invasive imaging technique that produces three-dimensional anatomical
images by measuring the energy released when a proton changes its polarity after it was
altered using a strong magnetic field. MRIs are sain the detection of abnormalities in the
soft tissues.

MRI images can be taken in many ways [12]. The most common and widely used
modalities include:

• T1-weighted: by measuring the time required for the magnetic vector to return to its
resting state(T1-relaxation time)

• T2-weighted: by measuring the time required for the axial spin to return to its resting
state (T2-relaxation time).

• Fluid-attenuated inversion recovery(T2-FLAIR): which is T2 weighted by suppressing
cerebrospinal fluid(CSF).

T1, especially with the addition of contrast(Gadolinium), is effective in the detec-
tion of new lesions, whereas T2 and Flair are effective in defining high-grade glial neo-
plasm(glioma) and surrounding edema. Flair performs better in defining the actual volume
of the neoplasm [13]. In this paper, we considered Flair images since they are effective in
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the detection of Gliomas (such as glioblastoma, astrocytomas, oligodendrogliomas, and
ependymomas), that makeup 81% of malignant brain tumors in adults [14].

2. Related Works

Since medical images contain artifacts such as tags, noises, and other body parts that
are not the area of interest, they needed to be removed [15]. Then, segmentation tasks
are performed to extract the region of interest for the detection and classification step.
Recently, deep-learning based methods tried to combine both segmentation and classifica-
tion of medical images in one process. Brain tumor segmentation can be categorized into
region-based and deep-learning-based segmentations. From region-based segmentation
algorithms, we will be addressing clustering, region growing, fuzzy means segmentation
algorithms. And, from deep learning U-Net has been addressed.

2.1. Region-Based Brain Tumor Segmentation

A lot of researches have been carried out in the area of segmentation for medical im-
ages like breast cancer and brain tumor using various segmentation methods [16]. However,
the complexity and large variations of the tissue structure and indistinguishable bound-
aries between regions of the human brain tissues made the brain tumor segmentation a
challenging task [17]. In the past few years, different brain image segmentation approaches
have been developed for MRI images and evaluated using different evaluation parameters.

One of the most common, easiest, and fastest algorithm for image segmentation is
thresholding. The thresholding technique is based on one or more intensity threshold
values where these values are compared with pixel intensities. Thresholding performs well
when there is homogeneous intensity in the image. However, applying the thresholding
segmentation algorithm to brain tumor segmentation is not recommended because of
two reasons: optimal threshold selection is not an easy task, and intensity in the brain
tumor is not homogeneous [18]. These problems have been tried to be addressed using
image enhancement techniques for clearly differentiating between tissue regions on MRI
scans. Rundo et al. [19] proposed a novel medical image enhancement technique called
medGA, which is a pre-processing technique based on the genetic algorithm. But medGA
needs a user input for the ROI from the MRI slices. Acharya and Kumar [20] proposed a
particle-swarm-based contrast enhancement technique for brain MRI images. They have
compared the proposed algorithm with other contrast enhancement techniques. But they
didn’t show its performance when it is applied as a pre-processing for segmentation using
a thresholding technique.

The other commonly used segmentation algorithm in medical images is the watershed
algorithm. The working principle behind the watershed segmentation algorithm is similar
to the water flooding in the rigged landscape [18]. The watershed algorithm can accurately
segment multiple regions at the same time with complete contour for each section. But, the
watershed segmentation algorithm suffers from over-segmentation [21].

The region growing algorithm is one of the most successful approaches for brain
tumor segmentation. This approach mainly extracts regions with similar pixels [18]. The
region-growing algorithm’s performance is highly dependent on the initial seed point
selection and the type of similarity measure used between neighboring pixels. However, in
most cases selecting an optimal seed point is made manually as presented in Table 1 and a
challenging task besides its higher computational cost [18].

Salman et al. [22] and Sarathi et al. [23] stated that region growing segmentation
algorithm has shown better performance for brain tumor segmentation to generate ROI.
However, Salman et al. [22] in their work manually selected the initial point as the
seed for the region growing algorithm-based approach that they proposed to get ROI.
Thiruvenkadam [24] explained that manual seed point selection is the most important step
for region growing based brain tumor segmentation.

Cui et al. [17] fused two MRI images (MRI-FLAIR and MRI-T2) for generating initial
seed points for the region growing algorithm. They automatically select seed points but
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the overall algorithm is not consistent. The inconsistency comes from the fact that seed
points are selected randomly from a set of potential seed points generated by calculating
seeds’ probability of belonging to a tumor region.

Sarathi et al. [23] proposed a wavelet features based region growing segmentation
algorithm for an original 256 × 256 T1-weighted enhanced MRI image. For the selection
of seed points, they first convolved the 64 × 64 kernel with the 64 × 64 preprocessed
brain images and followed by wavelet feature extraction. Then significant wavelet feature
points were used alternatively as a potential initial seed until the best ROI is extracted.
In this paper, mean, variance, standard deviation, and entropy were used as similarity
properties to include or exclude the neighboring pixels to the seed point. The experimental
result showed that the proposed approach gave better performance results with minimum
computational time.

In [25] the intensity values of brain tissue from its different regions were considered
to decide the selection of the seed points. However, brain map structure and intensity
information need to be known in advance. Therefore, to gain detailed information on the
brain images, multi-modal images were preferred, and hence in this work Ho et al. [25]
used a fusion of multi-modal images to select the initial seed automatically.

Bauer et al. [26] used a soft-margin SVM classifier for the segmentation of brain tumors
hierarchically by classifying MRI voxels. 28 features were extracted from the voxel intensity
and first-order textures extracted from patches around the voxel. Conditional Random
Fields(CRF) regularization was applied to introduces spatial constraints to the SVM classi-
fier since considers each voxel is independent. The proposed algorithm achieved a DSS
of 0.84. They didn’t specify the size of patches taken around the voxels when extracting
texture features. There was no comparison performed with state-of-the-art algorithms.

Rundo et al. [27] used Fuzzy C-Means(FCM) based segmentation algorithms to
segment the whole tumor volume using their gross tumor volume (GTV) segmentation in
the first step and extract the necrosis volume from the gross tumor volume in the second
step. But the proposed algorithm needs human intervention for the GTV algorithm.

Table 1. Related Work in region growing seed selection and growth criteria.

Authors and Citation Seed Selection RG Criteria

Salman et al., 2006 [22] Manual Texture
Sarathi et al., 2013 [23] Automatic variance, Entropy
Thiruvenkadam, 2015 [24] Manual -
Ho et al., 2016 [25] Automatic Intensity
Cui et al., 2019 [17] Semi-automatic Intensity & Spatial Texture

2.2. Deep Learning-Based Brain Tumor Segmentations

Deep learning has been applied for the classification and segmentation of medical
images previously [28–32]. Different versions of CNNs were used for the segmentation of
brain tumors from MRI scans.

Li et al. [33], applied generative adversarial networks(GANs) to augment brain
datasets by generating realistic paired data. The proposed method can augment n data
pairs into n 2-n data. Their data augmentation technique was used to train and test
different deep learning-based segmentation techniques using the BRATS2017 dataset. The
best performer, the U-net algorithm, achieved a DSS of 0.754 when using the original dataset
but this performance was improved to 0.765 in the case of whole tumor segmentation.
The network architecture of U-Net is symmetric and composed of Encoder and decoder.
The encoder is used to extract features from the input images and decoder constructs
segmentation from the extracted features in Encoder [34]. U-Net became the most popular
semantic segmentation in medical imaging [34]. In this paper, U-Net was implemented for
comparing the performances of our proposed model.



J. Imaging 2021, 7, 22 5 of 19

Rundo et al. [35] modified the original U-Net architecture by adding squeeze-excitation
(SE) blocks in every skip connection. They proposed two architectures, first only the en-
coder block output was feed to SE blocks at the skip connection. Another architecture
was modifying each skip connection by adding SE blocks at every encoder and decoder
block and combine the outputs to modify the original skip connection. The SE blocks
are designed to model interdependencies between channels and increases the model gen-
eralization capabilities when trained using different datasets. The datasets consisted of
prostate MRI scans for zonal segmentation collected from various institutions. The SE
block’s ability to adaptive feature recalibration significantly improves the performances of
the U-net architecture, when trained across different datasets.

3. Materials and Methods

Figure 1 presents the flowchart of the proposed enhanced region-growing algorithm
for brain tumor segmentation. Raw MRI images usually have different artifacts and non-
brain parts that affect the segmentation quality and hence a preprocessing step should
be applied before segmentation algorithms. The enhanced region-growing algorithm is
applied to generate candidate brain tumor regions. The detail methods used in this paper
is presented in Section 3.1 through Section 3.4.

Figure 1. Flowchart of the proposed region growing algorithm. In this approach the segmentation result is evaluated both
by evaluation parameters and Physicians/Radiologists.
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3.1. Dataset

The image dataset used in this paper contains multimodal MRI scans of patients
with gliomas (54 LGGs and 132 HGGs). It was used for the multimodal Brain Tumor
Segmentation (BRATS) 2015 challenge, from the Virtual Skeleton Database (VSD) [36].
Specifically, these image datasets were a combination of the training set (10 LGGs and
20 HGGs) used in the BRATS 2013 challenge [37], as well as 44 LGG and 112 HGG scans
provided from the National Institutes of Health (NIH) Cancer Imaging Archive (TCIA). The
data of each patient consisted of native and contrast-enhanced (CE) T1-weighted, as well
as T2-weighted and T2 Fluid-attenuated inversion recovery (FLAIR) MRI volumes.

In the dataset, the ground truth (GT) was included for training the segmentation
model and qualitative evaluation. Specifically, the data from BRATS 2013 were manually
annotated, whereas data from TCIA were automatically annotated by fusing the approved
by experts results of the segmentation algorithms that ranked high in the BRATS 2012 and
2013 challenges [37]. The GT segmentations comprise the enhancing part of the tumor
(ET), the tumor core (TC), which is described by the union of necrotic, non-enhancing, and
enhancing parts of the tumor, and the whole tumor (WT), which is the union of the TC and
the peritumoral edematous region.

3.2. Preprocessing

In digital image processing preprocessing plays an important role in smoothing and
normalizing the MRI images [38]. Performing preprocessing suppresses the impact of dark
parts in the borders of the brain images [38].

The BRATS2015 dataset is available in a preprocessed format in which unwanted
parts are removed. But, preprocessing is essential for raw MRI data. Skull Stripping is
one of the popular pre-processing techniques that remove the skull from brain image.
The surroundings of a brain are termed as a skull. The skull stripping is the process
of eradicating the tissues that are not cerebral. It is difficult to distinguish non-cerebral
and the intra-cranial tissues because of their homogeneity in intensities [39]. In brain
tumor segmentation, stripping the skull and other non-brain parts is a crucial step to be
accomplished but it is a challenging task [40]. The challenge arises from large anatomical
variability among brains, different acquisition methods of brain images, and the existence
of artifacts on brain images. These are some of the reasons among many that boost
the challenge to design a robust algorithm [40]. Segonne et al. [40] proposed a hybrid
approach that was used to strip the skull where they combined the watershed algorithm
and deformable surface model.

In the proposed approach, we applied thresholding and morphological operation for
preprocessing (see Algorithm 1). Since the MRI images in the local dataset are images
with three color channels, it was changed into a grayscale image before the preprocessing.
Otsu’s thresholding technique was employed to determine the threshold between the
background and the tissue regions. By thresholding, the largest binary object extracts
the brain and removes the skull and other tags from the image. Some examples of skull
removal algorithm are presented in Figure 2.
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Algorithm 1 Skull Stripping

1: input: gray scale image, im
2: Calculate Otsu’s Threshold

T ← graythresh(im)

3: Threshold the image
BW ← im2bw(im, T)

4: Open the binary image using a disk structuring Seed
BW ← imopen(BW, se)

5: Dilate the binary image
BW ← imdilate(BW, se)

6: Select the largest binary image
BW ← largest_blob(BW)

7: Dilate the binary image
BW ← imclose(BW, se)

8: Fill holes on the binary image
BW ← im f ill(BW, se)

9: Remove the skull
stripped← im(!BW) = 0

10: return stripped

3.3. Enhanced Region-Growing Approach

The proposed enhanced region-growing based approach that automatically detect the
abnormality region and extract the ROI for each brain image is presented in Algorithm 2.
This approach is the main contribution of the paper. The role of Algorithm 1 is to strip the
skull of the input original brain image. Then, the skull stripped brain image is divided
into 32 blocks or patches of size 8× 8. For each blocki, the average (mean) intensity was
computed as indicated in Equation (1):

AvgIi=1:32 =
∑8

j=1 ∑8
k=1 Ijk

64
(1)

As presented in Algorithm 2, line 6 and Equation (1), the mean intensities for each of
the 32 blocks were computed and selected only the top five brightest pixels as potential
candidates to use as seed points for the region-growing segmentation algorithm, refer
Figure 3a,c,e,g. Line 12 to 14 of Algorithm 2 presented the five ROIs generated by region-
growing segmentation algorithm, and then compared the results against the ground truth
using evaluation parameters to select the best ROI as a final segmentation output, see
Figure 3b,d,f,h. The region-growing segmentation algorithm’s threshold point is deter-
mined experimentally to be 0.1 since most of the tumor regions appear homogeneous.
However, some of the inhomogeneities parts were accommodated with fill hole operations
as shown in Figure 3h. In this particular brain image, the tumor core appears black and
our algorithm might detect only the boundaries. But, for such cases, we applied the fill
holes operations to include the core of the tumor.
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(a) Im-4 (b) Im-4 Skull stripped

(c) Im-5 (d) Im-5 Skull stripped

(e) Im-6 (f) Im-6 Skull stripped

(g) Im-7 (h) Im-7 Skull stripped
Figure 2. Examples of original abnormal brain tumor images before and after skull removedFigure 2. Examples of original abnormal brain tumor images before and after skull removed. (a,c,e,g) represent original

brain images with skull; (b,d,f,h) represent the skull removed original brain images.
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(a) Im-4 seed points (b) Im-4 annotated

(c) Im-5 seed points (d) Im-5 annotated

(e) Im-6 seed points (f) Im-6 annotated

(g) Im-7 seed points (h) Im-7 annotated

Figure 3. Generated possible seed points and annotations using proposed approach

Figure 3. Generated possible seed points and annotations using proposed approach. (a,c,e,g) represent a skull removed
original brain images with five potential seed points for brain images; (b,d,f,h) represent the best ROIs of each respective
brain images.
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Algorithm 2 Enhanced Region Growing Segmentation for Brain Tumor Segmentation

1: input: skull stripped image, im
2: Resize the Image

im← imresize(im, [256, 256])
3: iterate through each 8× 8 block
4: for i = 1 : 8 : 256 do
5: for j = 1 : 8 : 256 do
6: Collect the mean of each block

mIs← mean(im(i : i + 7, j : j + 7)
7: Collect the centers of each block

cBs← [i + 3, j + 3]
8: end for
9: end for

10: Select top 5 blocks based on the intensity
[ind, vals] = max(mIs, 5)
seeds = cBs(ind)

11: return seeds
12: for m = 1 : 5 do
13: ROIm= Region-growing(seedm)
14: end for
15: Compare each ROIm against GT using evaluation parameters for m = 1 : 5
16: Select the best ROI as a final segmentation output.

3.4. Evaluation Approach

The most common parameters to be used to evaluate the performance of segmentation
algorithms are DSS, Similarity Index (SI), Extra Fraction (EF), Overlap Fraction (OF), Jaccard
Similarity (JSI), accuracy (Acc), sensitivity (Sn), specificity (Sp), computation cost, Root
Mean Squared Error (RMSE) and intersection over union (IoU). JSI is similar with IoU and
Sp is similar with SI.

Consider True Positive (TP) as the number of tumor region pixels correctly identified
and classified, False Positive (FP) as the number of normal region pixels in the input image
identified as tumor region, False Negative (FN) as the number of tumor region pixels left
undetected or misclassified, and True Negative (TN) as the number of normal region pixels
in the input region identified as the normal region.

3.4.1. Extra Fraction (EF)

Extra fraction refers to the number of pixels being falsely detected as a tumor region.
A minimum extra fraction value means a better segmentation result [41].

EF =
FP

TP + FN
(2)

3.4.2. Overlap Fraction (OF)

Overlap fraction or sensitivity value refers to the number of images segmented and
classified correctly [41]. Specifically, overlap fraction refers to the tumor region being
correctly identified.

OF =
TP

TP + FN
(3)

3.4.3. Dice Similarity Score (DSS)

It measures the spatial overlap between the original image and the segmented tar-
get region.

DSS =
TP

1
2 (2TP + FP + FN)

(4)
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Besides, we have involved the radiologist to evaluate the final ROIs obtained using
the proposed approach for randomly selected brain images to validate our proposed
approach qualitatively.

4. Experimental Results and Discussion

The first experimental result was the skull stripped brain images as indicated in
Figure 2 where Figure 2a,c,e,g were the original brain images of size 256 × 256 and
Figure 2b,d,f,h were the skull stripped brain images. Then, as presented in Equation (1),
we generated 32 average intensities for each skull stripped brain images and selected the
five top average intensities for each image and used as potential initial seed points for
region growing algorithm as indicated in Figure 3a,c,e,g. Using the five selected initial
seed points for each image, we generated five different ROIs and compared against the
respective GT and selected the best ROI as presented in Figure 3b,d,f,h.

To validate the proposed approach, we designed three different experimental setups
for analysis. In our first experiment, we randomly selected 15 brain images from the
BRATS2015 dataset. In the second experiment, we again randomly selected 12 brain images
from the same dataset and finally, in the third experimental setup, we used 800 brain
images from the same dataset used in the previous two experimental setups.

In all the three experimental setups, the performance of the proposed approach was
evaluated in terms of Acc, IoU, DSS, Sn, Sp, EF, OF, and PSNR. In most cases, especially the
deep learning algorithms use DSS to evaluate the segmentation algorithms. The highest
value of Acc, IoU, DSS, Sn, Sp, OF and PSNR indicate the highest performance whereas the
lowest value of EF indicates poor performance.

In the first experimental setup, 15 brain images were used for experimental analysis,
and for each image, the corresponding Acc, IoU, DSS, Sn, Sp, OF, EF, and PSNR were
computed as indicated in Table 2. The average value of Acc, IoU, DSS, Sn, Sp, OF, EF, and
PSNR for the 15 brain images were used to compare the performance of the proposed
approach with that of modified adaptive K-means and U-Net.

Table 2. Performance comparison of RG with MAKM and U-Net for 15 randomly selected brain images from BRATS2015 Dataset.

Metric Algorithm im01 im02 im03 im04 im05 im06 im07 im08 im09 im10 im11 im12 im13 im14 im15 Avg
RG 100 100 100 100 99 99 99 99 99 99 100 99 99 88 94 98
MAKM 99 99 99 82 99 99 99 99 86 86 80 87 99 87 99 93Acc (%)

U-Net 100 100 100 100 98 98 74 74 99 99 67 99 100 99 92 93
RG 0.94 0.94 0.94 0.93 0.88 0.88 0.85 0.85 0.85 0.85 0.84 0.83 0.81 0.31 0.04 0.78
MAKM 0.90 0.79 0.79 0.21 0.86 0.86 0.90 0.90 0.26 0.26 0.06 0.19 0.81 0.34 0.65 0.59IoU

U-Net 0.94 0.96 0.96 0.93 0.70 0.70 0.16 0.16 0.91 0.91 0.03 0.84 0.93 0.81 0.24 0.68
RG 0.97 0.97 0.97 0.96 0.93 0.93 0.92 0.92 0.92 0.92 0.91 0.91 0.89 0.47 0.80 0.89
MAKM 0.95 0.88 0.88 0.35 0.92 0.92 0.95 0.95 0.42 0.42 0.11 0.33 0.90 0.51 0.79 0.68DSS

U-Net 0.97 0.98 0.98 0.96 0.82 0.82 0.27 0.27 0.95 0.95 0.07 0.92 0.96 0.89 0.39 0.75
RG 97 95 95 98 88 88 87 87 85 85 85 83 81 100 100 90
MAKM 91 79 79 100 86 86 96 96 100 100 100 99 85 100 65 91Sn (%)

U-Net 100 98 98 93 95 95 99 99 100 100 90 100 96 88 65 94
RG 100 100 100 100 100 100 100 100 100 100 100 100 100 84 00 92
MAKM 100 100 100 81 100 100 100 100 85 85 79 86 100 86 100 93Sp(%)

U-Net 100 100 100 100 98 98 73 73 99 99 67 99 100 99 93 93
RG 0.03 0.02 0.02 0.06 0.00 0.00 0.02 0.02 0.00 0.00 0.01 0.00 0.00 2.27 23.37 1.72
MAKM 0.01 0.00 0.00 3.79 0.00 0.00 0.06 0.06 2.79 2.79 16.11 4.09 0.04 1.92 0.00 2.11EF

U-Net 0.05 0.02 0.02 0.00 0.35 0.35 5.23 5.23 0.10 0.10 25.57 0.18 0.03 0.08 1.69 2.60
RG 0.97 0.95 0.95 0.98 0.88 0.88 0.87 0.87 0.85 0.85 0.85 0.83 0.81 1.00 1.00 0.90
MAKM 0.91 0.79 0.79 1.00 0.86 0.86 0.96 0.96 1.00 1.00 1.00 0.99 0.85 1.00 0.65 0.91OF

U-Net 1.00 0.98 0.98 0.93 0.95 0.95 0.99 0.99 1.00 1.00 0.90 1.00 0.96 0.88 0.65 0.94
RG 72.72 74.40 74.40 72.72 70.22 70.22 69.50 69.50 69.38 69.38 75.09 70.79 68.25 56.31 48.31 68.75
MAKM 70.63 69.38 69.38 55.51 69.67 69.67 71.02 71.02 56.66 56.66 55.02 56.88 68.19 57.03 66.53 64.22PSNR

U-Net 72.99 76.49 76.49 72.64 65.12 65.12 54.06 54.06 71.02 71.02 53.00 70.37 72.64 66.70 58.92 66.71
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Table 2 indicates that the proposed algorithm outperformed modified adaptive K-
means, and U-Net in terms of an average value of Acc, IoU, DSS, EF, and PSNR. However,
it achieved a lower average value of Sn, Sp, and OF. The lower average value of Sn, Sp, and
OF is achieved because of the least value of respective parameters for images 14 and 15.
However, still, the U-Net and MAKM have an insignificant higher performance than the
proposed approach. In the case of OF and Sn, U-Net achieved 4% and MAKM achieved 1%
higher than the proposed approach. In the case of Sp, both the U-Net and MAKM are 1%
higher than the proposed approach.

Table 3 presented the comparison of the proposed approach, MAKAM and U-Net for
the 12 randomly selected brain images from BRATS2015. The proposed approach scored a
higher value of Acc, IoU, DSS, Sp, EF, and PSNR but a lower value of Sn and OF compared
to MAKM and U-Net. The value of Acc, IoU, DSS, Sp, EF, and PSNR were 99.1%, 0.82, 0.90,
99.7%, 0.06, and 163.89 respectively whereas the value of Sn and OF were 89.1% and 0.89
respectively. U-Net achieved a higher value for both Sn and OF compared to MAKM and
the proposed approach where performance difference was limited to nearly to 2%.

Table 3. Performance comparison of RG with MAKM and U-Net for 12 randomly selected brain images from
BRATS2015 Dataset.

Metric Algorithm im081 im274 im473 im551 im06 im973 im689 im792 im1507 im781 im733 im1238 Avg

RG 99.6 99.8 97.4 99.6 99.6 99.7 100.0 99.1 98.7 99.2 99.7 96.8 99.1

Acc(%) MAKM 84.9 89.1 97.2 95.9 85.4 79.7 76.9 87.7 84.3 95.6 90.4 84.6 87.6

U-NET 99.8 99.8 93.3 99.8 99.8 98.7 99.8 89.2 99.5 99.5 99.1 86.6 97.1

RG 0.91 0.92 0.62 0.92 0.92 0.94 0.89 0.77 0.80 0.88 0.85 0.47 0.82

IoU MAKM 0.05 0.01 0.61 0.50 0.23 0.02 0.02 0.23 0.29 0.58 0.04 0.28 0.24

U-NET 0.95 0.93 0.39 0.94 0.95 0.76 0.61 0.25 0.92 0.93 0.45 0.31 0.70

RG 0.95 0.96 0.76 0.96 0.96 0.97 0.94 0.87 0.89 0.94 0.92 0.64 0.90

DSS MAKM 0.09 0.01 0.75 0.67 0.38 0.03 0.03 0.37 0.44 0.74 0.09 0.44 0.34

U-NET 0.98 0.96 0.56 0.97 0.97 0.86 0.76 0.40 0.96 0.96 0.62 0.47 0.79

RG 95.3 93.9 83.5 92.1 94.5 96.2 92.2 82.0 79.8 91.2 92.9 46.8 86.7

Sn(%) MAKM 18.2 3.5 89.1 99.3 100.0 7.4 100.0 96.9 99.4 99.9 25.8 98.5 69.8

U-NET 98.9 97.7 85.7 98.0 98.8 97.2 60.9 98.3 92.9 95.4 45.2 99.9 89.1

RG 99.8 100.0 98.2 100.0 99.9 99.9 100.0 99.8 100.0 99.8 99.8 100.0 99.7

Sp(%) MAKM 87.9 90.9 97.6 95.7 84.7 82.9 76.8 87.4 83.3 95.3 91.6 83.7 88.2

U-NET 99.8 99.9 93.7 99.8 99.8 98.8 100.0 88.9 99.9 99.8 100.0 85.8 97.2

RG 0.05 0.02 0.35 0.01 0.03 0.02 0.03 0.06 0.00 0.03 0.09 0.00 0.06

EF MAKM 0.18 0.03 0.89 0.99 1.00 0.07 1.00 0.97 0.99 1.00 0.26 0.98 0.70

U-NET 0.99 0.98 0.86 0.98 0.99 0.97 0.61 0.98 0.93 0.95 0.45 1.00 0.89

RG 0.95 0.94 0.83 0.92 0.94 0.96 0.92 0.82 0.80 0.91 0.93 0.47 0.87

OF MAKM 0.18 0.03 0.89 0.99 1.00 0.07 1.00 0.97 0.99 1.00 0.26 0.98 0.70

U-NET 0.99 0.98 0.86 0.98 0.99 0.97 0.61 0.98 0.93 0.95 0.45 1.00 0.89

RG 165.52 174.19 147.51 167.26 166.43 170.25 188.41 157.89 154.39 159.74 169.80 145.23 163.89

PNSR MAKM 129.72 132.99 146.42 142.69 130.06 126.75 125.49 131.81 129.36 142.02 134.30 129.55 133.43

U-NET 172.31 175.68 137.87 170.98 171.49 154.11 175.68 133.12 163.80 164.69 157.43 130.96 159.01

Table 4 presented the experimental results of the proposed approach for 800 brain
images and compared them with the performance of MAKM and U-Net. The experimental
results showed in Table 4 indicated that the proposed approach scored a higher value of
Acc, IoU, DSS, Sp, EF, and PSNR but a lower value of Sn and OF compared to MAKM and
U-Net. The value of Acc, IoU, DSS, Sp, EF, and PSNR was 98.72%, 0.67, 0.80, 99.8%, 0.06,
and 157.0 respectively whereas the value of Sn and OF were 90.7% and 0.91 respectively.
The higher value of Sn and OF were scored by U-Net.
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Table 4. Performance comparison of RG with MAKM and U-Net for 800 brain images from BRATS2015 Dataset.

Metric Algorithm im081 im274 im473 im551 im06 im973 im689 im792 im1507 im781 im733 im1238 im368 . . . im551 Ovr_Avg

RG 99.6 99.8 97.4 99.6 99.6 99.7 100.0 99.1 98.7 99.2 99.7 96.8 95.2 . . . 97.8 98.72

Acc(%) MAKM 84.9 89.1 97.2 95.9 85.4 79.7 76.9 87.7 84.3 95.6 90.4 84.6 98.8 . . . 98.7 88.60

U-NET 99.8 99.8 93.3 99.8 99.8 98.7 99.8 89.2 99.5 99.5 77.6 86.6 83.8 . . . 99.8 98.20

RG 0.91 0.92 0.62 0.92 0.92 0.94 0.89 0.77 0.80 0.88 0.85 0.47 0.28 . . . 0.77 0.67

IoU MAKM 0.05 0.01 0.61 0.50 0.23 0.02 0.02 0.23 0.29 0.58 0.04 0.28 0.81 . . . 0.85 0.34

U-NET 0.95 0.93 0.39 0.94 0.95 0.76 0.61 0.25 0.92 0.93 0.45 0.31 0.26 . . . 0.27 0.60

RG 0.95 0.96 0.76 0.96 0.96 0.97 0.94 0.87 0.89 0.94 0.92 0.87 0.43 . . . 0.96 0.80

DSS MAKM 0.09 0.01 0.75 0.67 0.38 0.03 0.03 0.37 0.44 0.74 0.09 0.34 0.90 . . . 0.92 0.45

U-NET 0.98 0.96 0.56 0.97 0.97 0.86 0.76 0.40 0.96 0.96 0.62 0.47 0.42 . . . 0.43 0.69

RG 95.3 93.9 83.5 92.1 94.5 96.2 92.2 82.0 79.8 91.2 92.9 46.8 26.8 . . . 76.7 71.1

Sn(%) MAKM 18.2 3.5 89.1 99.3 100.0 7.4 100.0 96.9 99.4 99.9 25.8 98.5 82.4 . . . 85.5 89.6

U-NET 98.9 97.7 85.7 98.0 98.8 97.2 60.9 98.3 92.9 95.4 45.2 99.9 89.4 . . . 97.8 90.7

RG 99.8 100.0 98.2 100.0 99.9 99.9 100.0 99.8 100.0 99.8 99.8 100.0 100 . . . 100 99.8

Sp(%) MAKM 87.9 90.9 97.6 95.7 84.7 82.9 76.8 87.4 83.3 95.3 91.6 83.7 100 . . . 100 88.6

U-NET 99.8 99.9 93.7 99.8 99.8 98.8 100.0 88.9 99.9 99.8 100.0 85.8 83.5 . . . 75.7 92.1

RG 0.05 0.02 0.35 0.01 0.03 0.02 0.03 0.06 0.00 0.03 0.09 0.00 0 . . . 0 0.06

EF MAKM 0.18 0.03 0.89 0.99 1.00 0.07 1.00 0.97 0.99 1.00 0.26 0.98 0.82 . . . 0.85 0.90

U-NET 0.99 0.98 0.86 0.98 0.99 0.97 0.61 0.98 0.93 0.95 0.45 1.00 0.89 . . . 0.98 0.91

RG 0.95 0.94 0.83 0.92 0.94 0.96 0.92 0.82 0.80 0.91 0.93 0.47 0.27 . . . 0.77 0.71

OF MAKM 0.18 0.03 0.89 0.99 1.00 0.07 1.00 0.97 0.99 1.00 0.26 0.98 0.82 . . . 0.85 0.90

U-NET 0.99 0.98 0.86 0.98 0.99 0.97 0.61 0.98 0.93 0.95 0.45 1.00 0.89 . . . 0.98 0.91

RG 165.52 174.19 147.51 167.26 166.43 170.25 188.41 157.89 154.39 159.74 169.80 145.23 141.3 . . . 149.8 157.0

PNSR MAKM 129.72 132.99 146.42 142.69 130.06 126.75 125.49 131.81 129.36 142.02 134.30 129.55 155.0 . . . 154.1 138.6

U-NET 172.31 175.68 137.87 170.98 171.49 154.11 175.68 133.12 163.80 164.69 157.43 130.96 129.1 . . . 125.8 152.0

Table 5 presented the achieved state-of-the-art deep learning algorithms’ results on the
BRATS2015 dataset and compared with the scored performance of the proposed approach
for three different experimental setups/cases. The experimental results achieved were the
DSS value of 0.89, 0.90, and 0.80 for case-1, case-2, and case-3 respectively. The average DSS
value of the three experimental setups was 0.86. In this paper, no classifier was applied for
final segmentation but the enhanced region growing algorithm was effective in generating
candidate regions of interest. We did choose the best ROI against GT from the generated
ROIs to compare with the other methods. From the experimental results, we saw that the
proposed approach can generate the best ROI in most of the test cases. But still, a classifier
should be trained by extracting features from the abnormal ROIs for making the algorithm
to detect and determine the tumor type.

Figure 4 presented the segmentation results of the proposed algorithm, MAKM, and
U-Net in terms of ROIs and their respective ground truths. For im274, im473, im551,
im1507, im781, and im733 the proposed approach achieved ROIs which were almost the
same as their respective ground truths (GTs). The proposed approach resulted in under-
segmentation for im792 and im1238 as indicated in Figure 4. For the case of U-Net, the
good segmentation results were observed only for im274, im551, im1507, and im781 and
unable to detect the tumor region for im473, im792, im733, and im1238. In the case of
MAKAM, over-segmentation results were achieved in almost all randomly selected brain
images except for im274 where it detected the normal brain image part as abnormal.
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Table 5. Comparison of the proposed approach with U-Net and its variants using BRATS2015 dataset.

Authors, Year and Citation Model Dataset DSS

Daimary et al. [42] U-SegNet BRATS2015 0.73
Zhou et al., 2019 OM-Net + CGAp BRATS2015 0.87
Kayalibay et al., 2017 CNN + 3D filters BRATS2015 0.85
Isensee et al., 2018 U-Net + more filters BRATS2015 0.85

+ data augmentation
+ dice-loss

Kamnitsas et al., 2016 3D CNN + CRF BRATS2015 0.85
Qin et al., 2018 AFN-6 BRATS2015 0.84
Havaei et al. [43] CNN(whole) BRATS2015 0.88
Havaei et al. [43] CNN(core) BRATS2015 0.79
Havaei et al. [43] CNN(enhanced) BRATS2015 0.73
Pereira et al. [44] CNN(whole) BRATS2015 0.87
Pereira et al. [44] CNN(core) BRATS2015 0.73
Pereira et al. [44] CNN(enhanced) BRATS2015 0.68
Malmi et al. [45] CNN(whole) BRATS2015 0.80
Malmi et al. [45] CNN(core) BRATS2015 0.71
Malmi et al. [45] CNN(enhanced) BRATS2015 0.64
Taye et al., 2018 [46] MAKM BRATS2015 0.68
Re-implemented U-Net BRATS2015 0.75
Erena et al., 2020 Case-1:Proposed Approach (15 randomly selected images) BRATS2015 0.89
Erena et al., 2020 Case-2:Proposed Approach (12 randomly selected images) BRATS2015 0.90
Erena et al., 2020 Case-3:Proposed Approach (800 brain images) BRATS2015 0.80
Erena et al., 2020 Average:Proposed Approach BRATS2015 0.86

For comparison purposes, we evaluated the performance of the proposed approach
with MAKM and U-Net. MAKM [46] is a modified version of the adaptive k-means
algorithm proposed by Debelee et al. The performance of the proposed approach was
by far better than the MAKM algorithm that mainly proposed for detection of cancer on
mammographic images. For the case of U-Net, we first trained the U-Net architecture
from the scratch using 16000 slices extracted from MRI scans of 200 patients obtained from
the BRATS2015 datasets, with 80 slices per patient (slice 50 to 130). The 200 patients were
affected by the fast-growing and rapidly spreading tumors called High-Grade Glioma. The
training was performed for 50 epochs until we got no significant improvements. Since the
BRATS2015 datasets consisted of MRI scans with much of the preprocessing (such as tag
removal and skull stripping) performed, we just applied intensity normalization before
the training. We used DSS as the loss function in the training process, for the training of a
nine-layer U-net architecture described in [47]. This architecture has an additional batch
normalization after each convolutional layer and for evaluation purposes, we randomly
selected 15 brain images for the testing after model validation and the testing DSS score
value was less by 14% compared with the proposed approach.

Finally, we compared the performance of the proposed approach with the U-Net and
its variants based on the BRATS2015 dataset. Daimary et al. [42] and Zhou et al. proposed
a U-Net variant architecture and scored a DSS value of 0.73 and 0.87 respectively which
was less than what the proposed approach scored. Havaei et al. [43] have evaluated
their approach using the BRATS2015 dataset and achieved 0.88, 0.79, and 0.73 for three
modalities, whole, core and enhanced respectively.
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5. Conclusions

The brain tumor is one of the major cancer types which has been a reason for the
higher death rate in the entire world. To combat that a significant number of medical image
analysis-based research works have been carried for different types of cancer detection and
classification using deep learning and conventional/shallow machine learning approach.
Shallow machine learning is usually applied in combination with digital image processing
techniques for image-based analysis. In this article, we modified the existing and popular
region-growing segmentation algorithm to detect the abnormality region on brain images.
The main challenge of the region-growing algorithm is seed point initialization to get the
best ROI for any input brain images. In the proposed approach the seed point initialization
was made to be automatically generated for any input brain images and tested on the
BRATS2015 dataset in three different experimental setups. The experimental result of our
approach was compared with MAKM, U-Net architecture, and its variant for brain tumor
detection and segmentation. From the experimental result, we have seen that the proposed
algorithm can detect brain tumor locations and extract the best ROIs. The results of the
proposed method achieved higher performance than modified adaptive k-means. Almost
all U-Net architecture and its variants have scored lesser DSS Value for the BRATS2015 brain
tumor image dataset. However, in most of the cases, the U-Net either over-segments or
missed the tumor region of the brain MRI images. The proposed approach has a problem in
thresholding point selection for the region-growing algorithm and was left for future work.
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