
Journal of

Imaging

Article

Multi-Frequency GPR Microwave Imaging of Sparse Targets
through a Multi-Task Bayesian Compressive Sensing Approach

Marco Salucci *,† and Nicola Anselmi †

����������
�������

Citation: Salucci, M.; Anselmi, N.

Multi-Frequency GPR Microwave

Imaging of Sparse Targets through a

Multi-Task Bayesian Compressive

Sensing Approach. J. Imaging 2021, 7,

247. https://doi.org/10.3390/

jimaging7110247

Academic Editor: Loreto Di Donato

Received: 7 October 2021

Accepted: 18 November 2021

Published: 21 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Civil, Environmental and Mechanical Engineering, DICAM, ELEDIA Research Center
(ELEDIA@UniTN-University of Trento), Via Mesiano 77, 38123 Trento, Italy; nicola.anselmi.1@unitn.it
* Correspondence: marco.salucci@unitn.it; Tel.: +39-0461-281502
† These authors contributed equally to this work.

Abstract: An innovative inverse scattering (IS) method is proposed for the quantitative imaging
of pixel-sparse scatterers buried within a lossy half-space. On the one hand, such an approach
leverages on the wide-band nature of ground penetrating radar (GPR) data by jointly processing
the multi-frequency (MF) spectral components of the collected radargrams. On the other hand, it
enforces sparsity priors on the problem unknowns to yield regularized solutions of the fully non-
linear scattering equations. Towards this end, a multi-task Bayesian compressive sensing (MT-BCS)
methodology is adopted and suitably customized to take full advantage of the available frequency
diversity and of the a-priori information on the class of imaged targets. Representative results
are reported to assess the proposed MF-MT-BCS strategy also in comparison with competitive
state-of-the-art alternatives.

Keywords: inverse scattering (IS); microwave imaging (MI); ground penetrating radar (GPR); multi-
frequency (MF); multi-task Bayesian compressive sensing (MT-BCS)

1. Introduction

During the last decades, many efforts have been devoted to the development of
microwave imaging (MI) techniques for retrieving reliable and easy-to-interpret images of
subsurface regions starting from the radargrams collected above the interface with a ground
penetrating radar (GPR) [1–9]. The solution of the arising subsurface inverse scattering
(IS) problem poses several challenges, mainly related to the intrinsic non-linearity (NL)
and the ill-posedness (IP) [10]. On the one hand, the NL can be avoided by introducing
Born-like approximations of the scattering equations [5], provided that weak scatterers
are at hand and assuming that qualitative guesses (i.e., location and shape) are sufficient
for the targeted application. Otherwise, multi-resolution strategies, integrated with both
deterministic [7,9] and stochastic [8] optimization techniques, proved to be effective in
mitigating the NL by reducing the ratio between unknowns and non-redundant informative
data. On the other hand, the IP issue can be tackled by collecting the maximum amount
of information from the scattering experiments. For instance, the wide-band nature of
GPR measurements above the interface [1] provides an intrinsic frequency diversity in the
collectable data. Such an information on the scenario under test can be profitably exploited
with both frequency-hopping (FH) [6,7] and multi-frequency (MF) [8,9] MI techniques by
processing each spectral component in a cascaded fashion or jointly, respectively.
Another effective recipe against the IP is the use of the a-priori information on the class of
imaged targets. As a matter of fact, compressive sensing (CS)-based techniques [6,11–14]
faithfully retrieved sparse objects (i.e., objects representable with few non-null expansion
coefficients with respect to a suitably-chosen representation basis). Recently, CS-based
methods have been proposed mainly to address and enhance the data acquisition speed in
stepped frequency continuous wave (SFCW) GPRs [15–18]. Moreover, several deterministic
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CS strategies have been proposed for the tomographic imaging of buried targets that are
intrinsically sparse with respect to the imaged domain including, for instance, landmines [19].
In such a framework, Bayesian CS (BCS) solvers have emerged as effective, computationally-
fast, and also feasible tools since they do not require the compliance of the scattering
operator with the restricted isometry property (RIP), whose check is often computationally
unaffordable [11].

Following this line of reasoning, this paper presents a novel MF approach for reliably,
robustly, and efficiently solving the GPR-MI of pixel-sparse subsurface objects. The
proposed approach is based on a fully non-linear contrast source (CSI) formulation of
the scattering equations, then solved by means of a customized multi-task BCS (MT-BCS)
solver [13,14] based on a joint marginal likelihood maximization strategy that enforces the
correlation between multi-static/multi-view wide-band GPR data. Therefore, to the best
of the authors’ knowledge, the main novelty of this work relies on the development of a
novel subsurface IS methodology combining the regularization capabilities of the BCS with
those arising from the joint processing of multi-chromatic data. Accordingly, paramount
challenges in GPR-MI are addressed related to (i) the implementation of an effective strategy
counteracting the strong IP of the subsurface IS problem, (ii) the quantitative imaging of
the subsurface domain to yield easy-to-interpret guesses of its EM composition, and (iii) the
solution of the arising MF-CSI problem with high computational efficiency.

2. Mathematical Formulation

Let us consider a two-dimensional transverse magnetic (2D-TM) half-space scenario
where the investigation domain D is a subsurface region within a lossy soil with relative
permittivity εrs and conductivity σs (Figure 1).
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Figure 1. Geometry of the 2D-TM GPR-MI problem.

By considering a multi-static/multi-view measurement system, D is illuminated by V
z-oriented line sources placed in an observation domain Ω at distance H above the interface
(Figure 1). The v-th (v = 1, . . . , V) total electric field measured in time-domain by the m-th
(m = 1, . . . , M; M = (V − 1)) receiver in Ω, rv

m (rv
m = (xv

m, yv
m = H)), at the time-instant t

(0 ≤ t ≤ T), is given by [1]

ev(rv
m, t) = ev

i (r
v
m, t) + ev

s (r
v
m, t) (1)
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where ev
i and ev

s are the incident and scattered fields, respectively, while T is the duration
of the GPR probing window. Being

∆ f = ( fmax − fmin) (2)

the 3 dB bandwidth of the transmitted waveform, the scattered field at the p-th (p = 1, . . . , P)
frequency,

fp = fmin +
(p− 1)∆ f
(P− 1)

(3)

turns out to be

Ev
s,p(r

v
m) = Φp{ev(rv

m, t)− ev
i (r

v
m, t)}; m = 1, . . . , M; v = 1, . . . , V (4)

where Φp{a(r, t)} =
∫ ∞
−∞ a(r, t) exp

(
−j2π fp

)
dt is the Fourier transform. Moreover, it is

related to the contrast function,

τp(r) = [εr(r)− εrs] + j
[

σs − σ(r)
2π fpε0

]
(5)

modeling the unknown dielectric distribution in the investigation domain D at frequency
fp (p = 1, . . . , P), by the data equation [1]

Ev
s,p(r

v
m) =

∫
D

Gv
p(r

v
m, r)Jv

p(r)dr (6)

where Gv
p(rv

m, r) is the half-space Green’s function [1], while

Jv
p(r) = τp(r)Ev

p(r) = τp(r)Φp{ev(r, t)} (7)

is the v-th (v = 1, . . . , V) equivalent current induced within the investigation domain.

Inverse Problem Solution Approach

To numerically solve the inverse problem at hand, the Equation (6) is first recast into
the following matrix expression

ξv
p = Ψv

pυv
p (8)

by partitioning D into N square sub-domains centered at {rn; n = 1, . . . , N} so that

ξv
p =

[
<
(

Ev
s,p

)
, =
(

Ev
s,p

)]T
(9)

being Ev
s,p =

{
Ev

s,p(rv
m); m = 1, . . . , M

}
,

υv
p =

[
<
(

Jv
p

)
, =
(

Jv
p

)]T
(10)

being Jv
p =

{
Jv
p(rn); n = 1, . . . , N

}
, and

Ψv
p =

 <(Gv
p

)
−=

(
Gv

p

)
=
(

Gv
p

)
−<

(
Gv

p

) , (11)

Gv
p being the (v, p)-th (v = 1, . . . , V; p = 1, . . . , P) (M× N) half-space Green’s matrix [1],

while .T stands for the transpose operator and <( . )/=( . ) denotes the real/imaginary part.
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Successively, the solution of (8) is found with a customized multi-frequency multi-task
BCS (MF-MT-BCS) technique [14] by jointly enforcing the spatial sparsity of the unknown
components of the equivalent currents{

υv
p; v = 1, . . . , V; p = 1, . . . , P

}
(12)

(υ̃v
p =

{
υ̃v

p,n; n = 1, . . . , 2N
}

; υ̃v
p,n = <

(
J̃v
p(rn)

)
and υ̃v

p,(n+N)
= =

(
J̃v
p(rn)

)
), and their

correlation among the different illuminations and spectral components, the number of
“tasks” solved in parallel being equal to L = (V × P). More specifically, the v-th
(v = 1, . . . , V) equivalent current at the p-th (p = 1, . . . , P) frequency is computed as

υ̃v
p =

[
diag(α̃) +

(
Ψv

p

)†
Ψv

p

]−1(
Ψv

p

)†
ξv

p (13)

by applying a fast relevant vector machine (RVM) method [14] to solve the following
optimization problem

α̃ = arg

{
max

α

[
−0.5

P

∑
p=1

V

∑
v=1

(2M + 2δ1) log
[(

ξv
p

)†(
Uv

p

)−1
ξv

p + 2δ2

]
+ log

∣∣∣Uv
p

∣∣∣]} (14)

for retrieving the set of 2N hyper-parameters α = {αn; n = 1, . . . , 2N}shared among the V
views and P frequencies. In (14),

Uv
p = I + Ψv

p[diag(α)]−1
(

Ψv
p

)†
, (15)

I being the identity matrix, is an auxiliary matrix analogous to (14) in [14], while δ1 and δ2

are BCS control parameters. Moreover, . † and | . | indicate the conjugate transpose and the
determinant, respectively.

Finally, the contrast distribution (n = 1, . . . , N) at the central frequency,

fc =
( fmin + fmax)

2
(16)

is derived as

τ̃(rn) =
1
P

P

∑
p=1

(
<
{

τ̃p(rn)
}
+ j

fp

fc
=
{

τ̃p(rn)
})

(17)

where

τ̃p(rn) =
1
V

V

∑
v=1

J̃v
p(rn)

Ẽv
p(rn)

(18)

J̃v
p(rn) = υ̃v

p,n + jυ̃v
p,(n+N)

and Ẽv
p(rn) being the (v, p)-th (v = 1, . . . , V; p = 1, . . . , P)

retrieved current and the corresponding total electric field in the n-th (n = 1, . . . , N)
cell of the investigation domain (rn ∈ D), respectively.

3. Numerical Assessment

To assess the proposed MF-MT-BCS approach, representative numerical results are
shown and discussed in this Section. A square investigation domain D of side 0.8 m buried
in a medium with εrs = 4.0 and σs = 10−3 (S/m) [9] has been considered as a reference
benchmark scenario. Moreover, a set of V = 20 sources and M = (V − 1) = 19 probes
(for each illumination), located in an observation domain Ω placed at H = 0.1 m above
the interface (Figure 1), has been chosen for the sensing setup to collect the time-domain
GPR radargrams. These latter have been simulated with the GPRMax2D SW [20], while the
scattered spectrum has been sampled at P = 9 uniformly-spaced frequencies within the
3 dB band ( fmax, fmin) = (200, 600) MHz (∆ f = 400 MHz, fc = 400 MHz of the Gaussian



J. Imaging 2021, 7, 247 5 of 12

monocycle excitation centered at f0 = 300 MHz [6]. As for the setting of the MF-MT-BCS
control parameters (14), the optimal trade-off values (δ1, δ2) =

(
6× 10−1, 9× 10−5) have

been derived from a preliminary calibration performed by blurring the time-domain total
field data samples with different levels of white Gaussian noise. Finally, to provide a
quantitative measure of the reconstruction accuracy, the following integral error has been
considered [9]

Ξreg =
1

Nreg

Nreg

∑
n=1

|τ(rn)− τ̃(rn)|
|τ(rn) + 1| (19)

where τ(rn) and τ̃(rn) denote the actual and retrieved contrast at frequency fc, respectively,
while “reg” indicates that the computation considers the whole imaged domain (“reg”⇒
“tot”), the target support (“reg”⇒ “int”), or the external background (“reg”⇒ “ext”).

The first test case is concerned with the “Two-Bars” scattering profile of Figure 2a
(εr = 5, σ = 10−3 (S/m)⇒τ = 1.0). The MF-MT-BCS data inversion gives a very accurate
image of D independently on the data signal-to-noise ratio (SNR) and it faithfully recovers
the support, as well as the contrast value of the two buried scatterers (Figure 2b,c vs.
Figure 2a).

To better point out the advantage of jointly processing all spectral components of the
scattered field, as done by the proposed MF inversion scheme, the results of two FH-based
state-of-art BCS solution strategies are reported in Figure 2 for comparison purposes. It is
worthwhile to remind oneself that these methods process each p-th (p = 1, . . . , P) frequency
in a cascaded fashion, from the lowest to the highest one, by either enforcing the correlation
between multiple views (L = V tasks—FH-MT-BCS method [6]) or considering each view
as a single task (L = 1—FH-ST-BCS method [6]). As it can be observed, the MF-MT-BCS
outperforms both FH strategies, the worst inversion being performed by the FH-ST-BCS
(Figure 2f,g). Such outcomes are quantitatively confirmed by the values of the total error,
Ξtot, reported in Figure 3 versus the SNR. The MF-MT-BCS does not only provide the lowest
errors, but it is also significantly more robust against the data noise since, for instance,
Ξtot |

SNR=35 [dB]
MF−MT−BCS

Ξtot |
SNR=35 [dB]
FH−MT−BCS

= 2.5 × 10−1 (Figure 2e vs. Figure 2c) and
Ξtot |

SNR=35 [dB]
MF−MT−BCS

Ξtot |
SNR=35 [dB]
FH−ST−BCS

= 3.0 × 10−2

(Figure 2g vs. Figure 2c) in the most critical working conditions (i.e., SNR = 35 dB on
time-domain total field).

Similar conclusions can be drawn also when dealing with a more complex-shaped
scatterer. As a matter of fact, the “S-shaped” object (τ = 1.0, Figure 4a) has been imaged
by the MF-MT-BCS (Figure 4b vs. Figure 4a) remarkably better than the FH-MT-BCS
(Figure 4c) and the FH-ST-BCS (Figure 4d), both FH methods failing in retrieving the actual
support of the scatterer.

The MF-MT-BCS is more effective to recover objects with a higher conductivity than
the hosting medium, as well. Indeed, despite the increased complexity due to the presence
of a non-null imaginary part of the contrast and the non-negligible amount of noise, it is the
only method able to provide an accurate guess of both the real part (Figure 5c vs. Figure 5a)
and the imaginary one (Figure 5d vs. Figure 5b) of the “Diagonal” scatterer (εr = 5,
σ = 10−2 (S/m)⇒ τ = 1.0− j0.4—Figure 5a,b). In addition to the pictorial representations
in Figure 5, the performance of each inversion method have been quantified in terms
of the total, the internal (i.e., within the target support), and the external (i.e., in the
background) errors [9], the corresponding values being reported in Table 1. Finally, it is
worth pointing out the higher efficiency exhibited by the MF-MT-BCS thanks to the “one-
shot” inversion of all P frequency components of the GPR spectrum. As a representative
example, let us consider that the reduction in the inversion time on a standard laptop with
Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz and 16 (GB) of RAM memory amounts to
∆t|FH−MT−BCS
∆t|MF−MT−BCS

= 22.1 and ∆t|FH−ST−BCS
∆t|MF−MT−BCS

= 85.8, respectively (Table 1).
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Figure 2. Numerical assessment (“Two-Bars” Scatterer, τ = 1.0, N = 400)—Actual (a) and retrieved
(b–g) dielectric profile by (b,c) the MF-MT-BCS, (d,e) the FH-MT-BCS, and (f,g) the FH-ST-BCS when
processing noisy data at (b,d,f) SNR = 50 dB and (c,e,g) SNR = 35 dB.
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Figure 4. Numerical assessment (“S-Shaped” Scatterer, τ = 1.0, N = 400, SNR = 35 dB)—Actual (a) and
retrieved (b,d) dielectric profile by (b) the MF-MT-BCS, (c) the FH-MT-BCS, and (d) the FH-ST-BCS.
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Figure 5. Numerical assessment (“Diagonal” Scatterer, τ = 1.0− j0.4, N = 400, SNR = 35 dB)—Actual
(a,b) and retrieved (c–h) real part (a,c,e,g) and imaginary part (b,d,f,h) of the contrast outputted by
(c,d) the MF-MT-BCS, (e,f) the FH-MT-BCS, and (g,h) the FH-ST-BCS.
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Table 1. Numerical assessment (“Diagonal” Scatterer, τ = 1.0− j0.4, N = 400, SNR = 35 dB)—Total,
internal, and external reconstruction errors [9] and inversion time for the MF-MT-BCS, the FH-MT-
BCS, and the FH-ST-BCS methods.

MF-MT-BCS FH-MT-BCS FH-ST-BCS

Ξtot 5.94× 10−4 6.11× 10−3 1.09× 10−2

Ξint 7.92× 10−2 3.37× 10−1 3.57× 10−1

Ξext 0.0 3.60× 10−3 8.24× 10−3

∆t (s) 3.1 68.5 266

Having assessed the superior performance of the MT-MT-BCS over the two FH-based
methods, the last set of numerical benchmarks is aimed at verifying the robustness of
the proposed IS strategy when taking into account the effects of soil inhomogeneity and
non-planar air–soil interfaces.

Towards this end, a square-shaped target with τ = 1.0 has been imaged when
considering a uniform random perturbation of the soil permittivity within the range
εrs ∈ [3.5, 4.5], as shown in Figure 6a. Despite the higher complexity of the problem at
hand and the non-negligible amount of noise on measurements, the retrieved contrast
distribution in Figure 6a indicates that the MF-MT-BCS is capable of retrieving the unknown
target with a remarkable accuracy, as also quantitatively verified by the computed internal
error (Ξint = 2.17× 10−1).
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Figure 6. Numerical assessment (“Square-Shaped” Scatterer, τ = 1.0, N = 400, SNR = 35 dB)—Actual
(a) and retrieved (b) dielectric profile by the MF-MT-BCS when considering a randomly-varying
inhomogeneous soil permittivity.

Similar outcomes are obtainable also when dealing with a smoothly-varying background
medium [7], as shown in Figure 7a. As a matter of fact, the plot of the retrieved dielectric
profile in Figure 7b indicates that the performance of the MF-MT-BCS is not jeopardized in
such operative conditions, with Ξint = 2.33× 10−1.

The MF-MT-BCS exhibits a high robustness also when the air–soil interface is not
planar as in previous test cases. To prove it, let us consider in the following the subsurface
scattering scenario depicted in Figure 8a, where random perturbations of the air–soil
interface have been considered when imaging an investigation domain D buried at a depth
of d = 0.1 m. Regardless of the presence of the non-planar interface (not modeled by the
considered half-space Green’s operator used in the inversion [1]), a highly accurate guess
of the actual target has been yielded by the MF-MT-BCS (Ξint = 1.88× 10−1—Figure 8c vs.
Figure 8b).
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Figure 7. Numerical assessment (“Square-Shaped” Scatterer, τ = 1.0, N = 400, SNR = 35 dB)—Actual
(a) and retrieved (b) dielectric profile by the MF-MT-BCS when considering a smoothly-varying
inhomogeneous soil.
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Figure 8. Numerical assessment (“Square-Shaped” Scatterer, τ = 1.0, N = 400, SNR = 35 dB)—Imaging
scenario (a) and actual (b) and retrieved (c) dielectric profile by the MF-MT-BCS when considering a
non-planar air–soil interface.

4. Conclusions

A novel sparsity-promoting strategy has been proposed to effectively solve the 2D
GPR-MI problem. Thanks to the adopted MF strategy, the MF-MT-BCS method allows
a computationally-efficient exploitation of the frequency-diversity of the GPR data by
correlating all the multi-chromatic components extracted from the measured radargrams.
As a result, it outperforms available FH-based solution strategies formulated within the
BCS framework by exhibiting remarkably higher accuracy, robustness, and computational
efficiency. It is worth pointing out that the main assumption for the successful application
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of the proposed method is that the unknown targets are intrinsically sparse (i.e., they are
small-sized with respect to the investigation domain D or, in other words, their support
occupies a low percentage of total number of pixels, N). However, depending on the
targeted application, such a limitation can be easily overcome by exploiting other (i.e.,
non-pixel) representations allowing to represent the problem unknowns with few non-null
expansion coefficients and thus enabling a proficient application of the CS paradigm [21].
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