
Journal of

Imaging

Article

An Automated Approach for Electric Network Frequency
Estimation in Static and Non-Static Digital Video Recordings

Georgios Karantaidis ∗ and Constantine Kotropoulos

����������
�������

Citation: Karantaidis, G.;

Kotropoulo, C. An Automated

Approach for Electric Network

Frequency Estimation in Static and

Non-Static Digital Video Recordings.

J. Imaging 2021, 7, 202. https://

doi.org/10.3390/jimaging7100202

Academic Editors: Irene Amerini,

Gianmarco Baldini and Francesco

Leotta

Received: 23 July 2021

Accepted: 29 September 2021

Published: 2 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Informatics, School of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
costas@csd.auth.gr
* Correspondence: gkarantai@csd.auth.gr

Abstract: Electric Network Frequency (ENF) is embedded in multimedia recordings if the recordings
are captured with a device connected to power mains or placed near the power mains. It is exploited
as a tool for multimedia authentication. ENF fluctuates stochastically around its nominal frequency
at 50/60 Hz. In indoor environments, luminance variations captured by video recordings can also
be exploited for ENF estimation. However, the various textures and different levels of shadow and
luminance hinder ENF estimation in static and non-static video, making it a non-trivial problem.
To address this problem, a novel automated approach is proposed for ENF estimation in static and
non-static digital video recordings. The proposed approach is based on the exploitation of areas with
similar characteristics in each video frame. These areas, called superpixels, have a mean intensity
that exceeds a specific threshold. The performance of the proposed approach is tested on various
videos of real-life scenarios that resemble surveillance from security cameras. These videos are of
escalating difficulty and span recordings from static ones to recordings, which exhibit continuous
motion. The maximum correlation coefficient is employed to measure the accuracy of ENF estimation
against the ground truth signal. Experimental results show that the proposed approach improves
ENF estimation against the state-of-the-art, yielding statistically significant accuracy improvements.

Keywords: estimation by rotational invariant techniques (ESPRIT); short-time Fourier transform
(STFT); multiple signal classification (MUSIC); simple linear iterative clustering (SLIC); video foren-
sics

1. Introduction

The vast amount of information contained in multimedia content, i.e., audio, image,
and video recordings, has prompted perpetrators to commit forgery attacks distorting the
digital content. Digital forensics advancements have experienced an exponential growth in
the last decades, as digital manipulation methods are constantly evolving and affecting
various aspects of social and economic life. To this end, emphasis has been put on advancing
emerging technologies in the field of digital forensics, which can efficiently verify the
authenticity of multimedia content and cope with multimedia forgeries. A comprehensive
survey of image forensics techniques can be found in [1].

In recent years, the Electric Network Frequency (ENF) has been employed as a tool
in forensic applications. The ENF is a time-varying signal, which fluctuates around its
nominal frequency, i.e., 50 Hz in Europe and 60 Hz in the United States. These fluctuations
are due to the instantaneous load differences of the power network (i.e., the power grid).
They exhibit an identical trend within the same interconnected network. The ENF is a
non-periodic signal, which can act as a fingerprint for digital forensics applications [2].
It can be embedded in digital audio recorded by devices plugged into the power mains
or by devices placed near the electric outlets and power cables. The ENF can be captured
in video recorded in indoor environments due to fluorescent light. Illumination intensity
variations resemble ENF variations in the power grid [3]. Thus, ENF estimation can be
exploited for multimedia authentication, timestamp verification, and forgery detection in
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audio and video recordings. Until recently, the research has mainly been focused on audio
recordings, where many advances have been achieved.

To begin with, let us briefly survey ENF estimation in audio recordings, because the
same ENF estimation methods are also applied to a one-dimensional (1D) time-series ex-
tracted from video recordings. A comprehensive study addressing the ENF detection prob-
lem was presented in [4], where many practical detectors were introduced. The detectors
were shown to have a reliable performance in relatively short recordings, enabling accurate
ENF detection in real-world forensic applications. An alternative to the conventional Short-
Time Fourier Transform (STFT) is advanced spectral estimation [5], offering high-resolution
at the expense of increased computational complexity. For example, an iterative adaptive
approach accompanied by a dynamic programming was applied to frequency tracking.
An optimized maximum-likelihood estimator for ENF estimation was proposed by em-
ploying a multi-tone harmonic model [6]. Multiple harmonics were combined to provide a
more accurate estimation of the ENF signal and the Cramer–Rao bound was used to bound
the variance of the proposed estimator. Following the same reasoning, a spectral estimation
approach was presented in [7], combining the ENF at multiple harmonics. Each harmonic
was weighted depending on its signal-to-noise (SNR) ratio. A pre-processing approach
was proposed in [8] that was based on robust principal component analysis to reduce noise
interference and to enable accurate ENF estimation. There, a weighted linear prediction
approach was also employed for ENF estimation. In [9], a lag window was designed to offer
an optimal trade-off between smearing and leakage by maximizing the relative energy in
the main lobe of the window. It was incorporated in the Blackman–Tukey method, offering
accurate ENF estimation with low computational requirements. A Fourier-based algorithm
for high-resolution frequency estimation was introduced in [10]. Specific spectral lines
were taken into consideration instead of the entire frequency band. In [11], a comprehen-
sive study of the parameters that affect ENF estimation accuracy was undertaken. In the
pre-processing stage, signal filtering and temporal window choice were found to be critical
in delivering accurate estimation results. A fast version of Capon spectral estimator based
on Gohberg–Semencul factorization was presented in [12]. That method along with the use
of a Parzen temporal window led to accurate ENF estimation. To address the problem of
noise and interference, frequency demodulation was employed for ENF estimation [13].
Several high-resolution frequency estimation methods were discussed in [14]. That work
aimed to achieve high performance and to maintain low computational complexity by
using as few samples per frame as possible. An integrated and automated scheme for
ENF estimation was developed in [15]. A framework for ENF estimation from real-world
audio recordings was presented in [16]. First, signal enhancement was proposed, which
was based on harmonic filtering. Second, graph-based harmonic selection was elaborated.
In [17], a unified approach was proposed to detect multiple weak frequency components
under low SNR conditions. Iterative dynamic programming and adaptive trace compensa-
tion were employed to identify the frequency components. A multi-tone model for ENF
detection applied prior to ENF estimation was presented in [18].

The ENF can also be exploited to detect tampering in multimedia recordings. An edit
detection approach taking advantage of the time-varying nature of ENF was proposed
in [19]. Multimedia authentication was formulated as a problem of phase change analysis
employing the Fourier Transform in [20]. An audio verification system for tamper detection
and timestamp verification was proposed in [21]. The system employed absolute-error-
maps. A tamper detection framework based on support vector machines was introduced
in [22]. That framework exploited abnormal ENF variations caused by tampered regions.

In [23], it was demonstrated that the ENF can be exploited to determine the location
of recordings even if they are captured within the same interconnected grid. A multi-class
machine learning system was proposed to identify region-of-recordings in [24]. It took
advantage of features related to ENF differences among power grids without the need for
a reference ENF signal. A convolution neural network system was tested for identifying
audio recordings that have been recaptured in [25]. The system worked properly for very
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short audio clips and was able to combine both the fundamental ENF and its harmonics.
To cope with noise interference, a filtering algorithm was introduced in [26]. It employed
a kernel function to create a time–frequency representation facilitating ENF estimation.
The existence of reliable ENF reference databases is critical for multimedia authentication
applications. A method to create ENF reference databases based on geographical informa-
tion systems (GIS) was presented in [27]. Recently, ENF was explored as a tool for device
identification [28]. The proposed method was based on the analysis of harmonic ampli-
tude coefficients, which were employed to deliver an accurate identification of acquisition
devices. The ENF is a stochastic signal and its values depend on various exogenous and
endogenous factors. In [29], a study was carried out on the factors affecting the capture of
ENF in audio recordings as well as on the impact of the audio characteristics.

Although significant attention has been paid to ENF estimation in audio recordings, it
was found that the ENF can also be traced in video recordings. The ENF can be estimated
in videos captured under the illumination of fluorescent bulbs in indoor environments [3].
ENF variations caused by power grid networks affect the illumination intensity, and each
frame captures a time-snapshot of ENF. ENF video estimation approaches can be divided
into two categories based on the recording sensor type. The first category consists of
videos captured by charge-coupled device (CCD) sensors, which employ a global shutter
mechanism. This type of sensor instantly captures all pixels of a frame. Thus, each frame
depicts a specific time snapshot. When CCD sensors are used, the state-of-the-art approach
for ENF estimation is based on averaging all pixels in each frame of static videos [3]. For
non-static videos, state-of-the-art ENF estimation suggests averaging all steady pixels in
each video frame. The second category consists of videos captured by complementary metal
oxide semiconductor (CMOS) sensors. Such sensors employ a rolling shutter mechanism,
which acquires a row at a time in each video frame [3,30]. A comprehensive analysis of the
rolling shutter effect was conducted in [31]. An analytical model for videos captured using
a rolling shutter mechanism was developed, demonstrating the relation between ENF
variations and the idle period length. ENF-based video forensics are not trivial, especially
for non-static video recordings. ENF presence detection based on superpixels (i.e., multiple
pixels) was proposed in [32]. The proposed approach could be applied to static and non-
static videos captured by both CCD and CMOS camera sensors. Recently, a method for
ENF estimation in non-static videos was presented in [33]. This method could be accurately
utilized in video recordings whose frame rate is unknown. The ENF was applied to
video recordings for camera identification in [34]. Video synchronization can be efficiently
achieved by employing the ENF. Video synchronization methods were developed in [35,36]
that were based on ENF signal alignment. A forgery detection algorithm based on ENF
signal was proposed in [37] without needing any ground truth signal. A technique to detect
false frame injection attacks in video recordings using the ENF was discussed in [38]. ENF
was employed to authenticate video feeds from surveillance cameras. ENF estimation and
detection in single images captured by CMOS camera sensors constitutes a challenging task.
Novel investigations taking into consideration the ENF strength were described in [39].
ENF estimation in videos with a rolling shutter mechanism was presented in [40]. Both
parametric and non-parametric spectral estimation methods were combined for accurate
ENF estimation.

In this paper, inspired by [32], an automated approach is proposed for ENF estimation
from CCD video recordings based on Simple Linear Iterative Clustering (SLIC) [41]. Areas
of common characteristics that include superpixels are generated using the SLIC algorithm.
The proposed approach takes into consideration only the superpixels whose average
intensity exceeds a predefined threshold. It is shown that within these areas, the embedded
ENF is not hindered by any interference, resulting in more accurate estimation regardless
of whether the video recording is static or not. The novelty of the proposed approach lies in
(1) the creation of areas with similar characteristics and (2) the estimation of ENF exploiting
only these areas in contrast to what has been achieved for ENF estimation in videos so
far. The motivation for the development of the proposed approach is to mitigate the
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interference and noise caused by textures, shadows, and brightness that are present in real-
life applications, such as surveillance videos. By doing so, we advance the related literature,
where static videos are mostly used, such as the “white wall” recordings. From a practical
point of view, the proposed approach enables automated ENF estimation regardless of
whether the video recording is static or non-static. Thus, it can be applied to practical
forensics applications, such as multimedia content authentication, indicating the place
where a recording was captured, and revealing the time the recording was made. It is worth
noting that the proposed approach is tested on real-world static and non-static videos
of escalating difficulty in order to simulate real conditions. The maximum correlation
coefficient (MCC) between the estimated ENF and the reference signal is employed to
measure ENF estimation accuracy. Moreover, hypothesis testing is performed to assess the
statistical significance of the improvements delivered by the proposed approach.

The remainder of the paper is organized as follows. Section 2 details ENF fundamen-
tals, and Section 3 presents the proposed approach; Section 4 describes the dataset and
discusses the derived results; conclusions, limitations, and future research are drawn in
Section 5.

2. ENF Fundamentals

The ENF was initially introduced by C. Grigoras [2,42] to attest to the authenticity
of digital recordings, to determine the time they were recorded, and to indicate the area
they were captured. In particular, when it comes to video recordings, ENF estimation can
determine whether the multimedia content has undergone major alterations. Moreover,
ENF can reveal the area where the indoor video was recorded. When the estimated
ENF is compared against a reference ground truth, the time the video was recorded is
revealed. The proposed approach aims at improving ENF estimation, whose practical
applications fall into forensic science. The importance of ENF is due to its unique properties,
which makes it a powerful tool in forensic applications. Once the ENF signal has been
estimated, a comparison against a reference ENF database should be made in order to
assess estimation accuracy.

The most remarkable properties of the ENF signal are summarized as follows:

• The ENF is a non-periodic signal randomly fluctuating around the fundamental
frequency.

• ENF fluctuations are identical within the same interconnected network.
• The ENF signal can also be found in higher harmonics [43].

Many approaches have been proposed to efficiently estimate ENF depending on the
particularities of each recording.

2.1. ENF Estimation

The ENF is embedded in the electric light signal. Assuming stationarity within short-
time segments of the signal, the ENF is modeled as

s(t) = A sin(2π f t + φ) (1)

where f is the fluctuating frequency representing the ENF component, A is the signal
magnitude, and φ corresponds to signal phase. There are more complex ENF models, such
as that proposed in [44].

It has been shown recently that ENF traces can be embedded in video recordings due
to light intensity variations. Such recordings are captured in the presence of fluorescent
light or the light emitted by incandescent bulbs [35]. The light intensity is directly connected
to electric current and its nominal frequency is influenced by the ENF signal, fluctuating
at twice the nominal frequency of ENF, i.e., 100 Hz in Europe, and 120 Hz in the United
States. The lower temporal sampling rate of cameras capturing video recordings compared
to frequency components in light flickering results in a significant aliasing of ENF signals.
Thus, ENF is present at different frequencies than those appearing in audio recordings.
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These frequencies can be derived by applying the sampling theorem [45]. In addition
to the fundamental frequency of power mains, it is the frame rate of video camera that
influences the aliased base frequency of ENF in video recordings [3]. The aliased frequency
fE emanated from fluorescent illumination is given as follows [46]:

fE = | fl − γ fs| ≤
fs

2
(2)

where fs denotes the sampling frequency of camera, fl denotes the frequency of light source
illumination, and γ denotes an integer. Aliased frequencies of ENF based on different
camera frame rates and power main frequencies are listed in Table 1.

Table 1. Aliased frequencies of ENF with respect to (w.r.t.) camera frame rate and fundamental ENF
at power mains frequency [3].

Power Mains (Hz) Camera Frame Rate fs (fps) Aliased Base Frequency (Hz)

50 29.97 10.09
50 30 10
60 29.97 0.12
60 30 0

The ENF estimation procedure in video recordings differs slightly from that employed
in audio ones. The difference is in the pre-processing stage. Two cases are examined
depending on whether the video recordings are static or non-static. Regarding static videos,
the state-of-the-art [3] suggests computing the mean intensity of each frame, transforming
the two-dimensional (2D) images into a 1D time-series. It is worth noting that the majority
of experiments conducted so far employ static recordings of white wall videos. Here,
we employ a variety of static recordings different than white wall videos, as detailed
in Section 4.1. Regarding non-static videos, the current practice is to compute the mean
intensity of relatively stationary areas of each frame. In both categories, a 1D time-series is
formed and the estimation procedure follows that employed for audio recordings. This
time-series is treated as a raw signal that is passed through a zero-phase bandpass filter
around the frequencies where ENF appears. Specifically, the bandpass edges of the filter
are set at 9.9 and 10.1 Hz when the nominal frame rate is 30 Hz despite the fact that the
nominal frame rate was claimed to be 29.97 Hz in [33]. The bandpass edges employed
herein accommodate also the aliased base frequency, which corresponds to a nominal frame
rate of 29.97 Hz. The filtering procedure is of crucial importance in ENF estimation [11].
Subsequently, the signal is split into V overlapping segments of L samples size. Each
segment is shifted by S s from its immediate predecessor and is multiplied by an L-size
rectangular window. Any temporal window can be employed in the pre-processing
procedure. Afterward, the prevalent frequency of each segment is estimated by spectral
estimation. Frequently, a quadratic interpolation is used to overcome the interference
that hinders the entire procedure and results in more precise ENF estimation [5,9]. Here,
the estimated ENF signal f is calculated by employing shifts of 1 s (i.e., S = 1).

3. Proposed Method

Here, a video ENF estimation approach for static and non-static video recordings is
proposed. It is based on the SLIC algorithm for image segmentation. The SLIC algorithm
generates superpixels, which are regions of similar characteristics. The idea behind the
proposed approach is that in regions having high luminance levels and not hindered by
shadows or dark areas, light source variations can easily be detected, and thus, the ENF
signal can be estimated more accurately. The first step of the proposed approach generates
N regions with similar characteristics in the first frame of a video recording. Afterward,
the mean intensity values ζn(1), n = 1, 2, . . . , N of all regions in the first frame are
computed and only those exceeding a predefined threshold τ are retained. Let ζ(1) be
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the vector with elements ζn(1). If N = |{n : ζn(1) > τ}| denotes the size of region mean
intensity values exceeding the threshold, then the mean intensity value for the first frame
is given as follows:

x(1) =
1
N

N

∑
n=1

ζn(1)u(ζn(1)− τ) (3)

where u(ζn(1)− τ) denotes the Heaviside function.
In the next step, the generated regions from the first frame are located in all Λ frames

of the video recording. For a video recording with a duration of 12 min, Λ = 21,600 frames.
Employing these regions, the mean intensity values of the regions are computed and, then,
the mean intensity value in each frame is calculated, as in (3). In this way, each video frame
is represented by an intensity value x(t), t = 1, 2, . . . , Λ.

A non-parametric, namely the STFT, and a parametric method, i.e., the Estimation by
Rotational Invariant Techniques (ESPRIT), were employed for ENF estimation. Hereafter,
the frames, indexed by t, will be referred to as samples.

The STFT is one of the most common methods in time-frequency analysis of signals.
Assuming stationary within the short-time segments of the signal, the Discrete-Time Fourier
transform is computed for each time segment [47]:

Xl(ω) =
∞

∑
t=−∞

x(t)w(t− lG)e−jωt (4)

where w(t) denotes a window function of length L, Xl(ω) is the discrete-time Fourier trans-
form of the windowed data centered around lG, and G = S fs is the hop size in samples.
The proper selection of window function constitutes a very important issue in STFT and,
generally, in the majority of time–frequency analysis methods. This is because an optimal
trade-off between time and frequency resolution is sought. Let φ̂l(ωκ) ∝ |Xl(ωκ)|2 be the
periodogram of the L = D fs samples long lth segment, where ωκ , κ = 0, 1, . . . , Q− 1 are
the frequency samples with Q = 4 L. Specifically, the frequency sample ωκ that corre-
sponds to the maximum periodogram value is extracted as a first ENF estimate. Afterward,
a quadratic interpolation is employed to obtain a refined ENF estimate.

ESPRIT is also employed to estimate the ENF signal. Let R̂ be the sample covari-
ance matrix

R̂ =
1
L

L

∑
t=m

x̃(t)x̃>(t) (5)

where > stands for transposition and

x̃(t) , [x(t), x(t− 1), . . . , x(t−m + 1)]>. (6)

Let Ŝ be the subspace spanned by the W principal eigenvectors of R̂. Let
Ŝ1 = [Im−1|0] Ŝ and Ŝ2 = [0|Im−1] Ŝ, where Im−1 denotes the (m− 1)× (m− 1) identity
matrix. ESPRIT estimates the angular frequencies

{
ωκ

}W
κ=1 as − arg(v̂κ), where

{
v̂κ

}W
κ=1

are the eigenvalues of the estimated matrix φ̂ [48]:

φ̂ = (Ŝ>1 Ŝ1)
−1 Ŝ>1 Ŝ2 (7)

The frequency − 1
2π arg(v̂κ) fs (in Hz), which is closest to the aliased base frequency is

the ENF estimate. Here, m = 10 and W = 3.
The proposed approach combines the generation of the mean intensity time-series

x(t) with either the ESPRIT or the STFT method. An outlook of the proposed approach is
depicted in Algorithm 1.
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Algorithm 1 Proposed SLIC-based approach for ENF estimation in video recordings.
Inputs: Number of video frames Λ, number of superpixels N, threshold τ, cut-off frequen-
cies, segment duration L, number of overlapping segments V, ESPRIT parameters m and
W, and reference ground truth.
Output: Estimated ENF vector f .
1 Perform SLIC in the first frame of the video recording to generate N regions of similar

characteristics and luminance, i.e., superpixels.
2 Compute mean intensity values ζn(1) of each generated region.
3 The mean intensity values of regions exceeding threshold τ in the computation of x1.
4 Locate the generated regions in the Λ− 1 remaining frames and repeat steps 2-3 to

compute x(t), t = 2, 3, . . . , Λ.
5 Having computed the 1-D time-series x(t), x(t) is bandpass filtered using the cut-off

frequencies described in Section 2.1.
6 The filtered signal is split into V overlapping segments. Each segment is obtained by

multiplying the filtered signal with an L-size rectangular window. Any segment is
shifted from its immediate predecessor segment by S s.

7 In each segment, the prevalent frequency derived by the ESPRIT method is employed
as the ENF estimate. In the case of STFT, the frequency that corresponds to the
maximum periodogram value is extracted as the ENF estimate.

8 Compute the MCC between the estimated ENF and the reference ground truth.

Evaluation Metric

Having estimated ENF, a matching procedure is applied in order to objectively assess
estimation accuracy. Having calculated the reference ENF captured by power mains,
the MCC [49] is used to compare the estimated ENF from video recordings against the
reference one. Let f = [ f1, f2, . . . , fK]

> be the estimated ENF signal at each second. Let
also g = [g1, g2, . . . , gK̃]

> for K̃ > K be the reference ground truth ENF, which is known,
and g̃(p) =

[
gp, gp+1, . . . , gp+K−1

]> be a segment of g starting at p. The following index
is determined:

popt = argmax
p

c(p) (8)

where p = 1, 2, . . . , K̃− K + 1 and c(p) is the sample correlation coefficient between f and
g̃(p) defined as:

c(p) =
f> g̃(p)

‖ f‖2‖g̃(p)‖2
. (9)

In Section 4.9, Fisher’s transformation was employed to assess whether the pairwise
differences between the MCC delivered by the proposed approach and that of state-of-the-
art one are statistically significant at a significance level of 5%.

4. Results

The estimation of the ENF signal is significantly affected by the nature of video
recordings. In static videos, ENF presence is not affected and, thus, estimation accuracy
is much higher than that in non-static videos. There, continuous motion hinders ENF
estimation accuracy. Many approaches aim at overcoming this difficulty. For this reason,
the state-of-the-art approach for ENF estimation in video [3], which employs intensity
averaging with the Multiple Signal Classification (MUSIC) method, examines whether
the video to be analyzed is a static or a non-static one. For brevity, from now on, the
state-of-the-art [3] approach for both static and non-static videos will be referred to as
MUSIC. The proposed approach employs either ESPRIT or STFT after SLIC. The novelty
of the proposed approach lies in the fact that CCD sensors capture a time snapshot using
a global shutter mechanism, which makes the distinction between static and non-static
video obsolete. Thus, the proposed approach is applied regardless of whether the video
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recording is a static or a non-static one. It is tested on six video recordings of escalating
difficulty from the publicly available dataset [50]. These recordings are either static and
non-static ones. A reference ground truth signal is also available. The results are compared
to those obtained by MUSIC [3]. The video recordings of the dataset employed in the paper
are publicly available (https://zenodo.org/record/3549379#.YUIK7bgzaUl, accessed in 8
September 2021).

4.1. Dataset

Six different video recordings were recorded in Vigo, Spain, at a nominal ENF 50 Hz.
Two different cameras were employed, namely, a GOPRO Hero 4 Black and an NK
AC3061-4KN without an anti-flicker filter [50]. The video recordings are named as movi,
i = 1, 2, 3, 4, 5, 6 and their types are listed in Table 2.

Table 2. Types of six video recordings employed for ENF estimation.

Video Name Video Type

mov1 static
mov2 static
mov3 non-static
mov4 non-static
mov5 non-static
mov6 non-static

Recording mov1 is closer to what is known as “white wall” video in the literature.
Going a step further, it depicts a flat colored wall of low brightness. This kind of recording
can be exploited to evaluate whether ENF variations can be embedded and, subsequently,
estimated in such a static and seemingly noise-free environment. mov2 is also a static
video, which contains regions with different textures, brightness, and shadows. This video
is more challenging than mov1. mov3 can be categorized as a non-static video. It starts
showing a white wall and a wooden table. Then, an object is placed on the table and a
human hand rapidly shakes white papers at regular intervals on the right region of the
recording. mov4 is a non-static video, where human movement appears. It is a complex
recording and consists of several textures. It takes place within an office, where a human is
constantly moving. Both the background wall and the floor are captured. mov5 constitutes
one of the most challenging recordings, which resembles a real-life scene captured by a
security camera. It is recorded within the complex environment of a room. The scene
contains several objects with different colors and textures. The most significant challenge
of mov5 is that the movement affects the majority of the frames and more than 50% of the
pixels of each frame. mov6 represents another challenging video recording, which contains
a constant movement of a person inside a room. The movement takes place close to the
camera, affecting most pixels in each frame. In all cases, the camera is fixed. Sample frames
of the video recordings are depicted in Figure 1. The estimated ENF signal is compared
against a reference ground truth obtained from power mains.

https://zenodo.org/record/3549379#.YUIK7bgzaUl
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(a) (b) (c)

(d) (e) (f)

Figure 1. Sample frames of the six video recordings employed. (a) On the top left, there is a snapshot
of a static video, recording a dark wall, while (b) on the top middle there is a snapshot of a static
video, which captures the interior of a room. (c) On the top right, a table is depicted on which an
object is placed. (d) On the bottom left, a person is constantly moving in an office. (e) On the bottom
middle, there is a room with different textures and a person is moving covering a large part of the
camera field many times. (f) On the bottom right, a person is moving in front of the camera lens
inside a room.

4.2. Experimental Evaluation

The approach detailed in Section 2.1 was applied to the six video recordings and
the estimated ENF was compared against the MUSIC [3] for static and non-static videos.
Particularly, for static videos, the state-of-the-art approach [3] suggests averaging intensity
values in each frame, while for non-static videos, intensity values are averaged within
relatively static regions of each frame. In all comparisons, a rectangular temporal window
was employed. The predefined threshold τ was set at MV/3, where MV is the median of N
average intensity values within the generated regions in each frame. All approaches were
implemented in MATLAB 2016a. A 64-bit operating system with an Intel(R) Core(TM)
i7− 5930K CPU at 3.5 GHz was used in the experiments conducted.

4.3. ENF Estimation in Static Video mov1

The ESPRIT method was tested for ENF estimation in mov1. The static nature of mov1
enables an accurate ENF estimation. The proposed approach, which employs the SLIC-
based segmentation and intensity averaging resulted in an MCC of 0.9926, outperforming
the MUSIC [3] where the MCC was measured to be 0.9658. When STFT was employed,
the MCC was found to be 0.8662. Different segment durations in ENF estimation affect the
results obtained. The MCC was computed for various segment durations D, as depicted in
Figure 2. When a segment duration of 1 s was employed, the proposed approach using the
ESPRIT worked satisfactorily, yielding an MCC of about 0.79, while the MCC was measured
to be about 0.5, when the MUSIC [3] was used. The performance of ENF estimation depends
also on the filter order ν of the bandpass filter. The MCC is plotted versus various filter
orders in Figure 3. The top performance of the proposed approach, employing the ESPRIT,
is achieved when ν = 111. Despite mov1 is a trivial recording, the proposed approach
offers significant improvements in ENF estimation accuracy against the method in [3]. The
computational time of the proposed approach employing SLIC+ESPRIT was about 506.8 s,
while the MUSIC [3] required about 492.5 s.
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Figure 2. Maximum correlation coefficient of the proposed approach employing SLIC+ESPRIT for
various segment durations against the MUSIC [3] (mov1).

Figure 3. Maximum correlation coefficient of the proposed approach employing SLIC+ESPRIT for
various filter orders and segment durations (mov1).

4.4. ENF Estimation in Static Video mov2

The static recording mov2 is more challenging than mov1 due to different textures and
various levels of luminance. The STFT was employed for ENF estimation yielding an MCC
of 0.9704. The MUSIC [3] resulted in an MCC of 0.9466. The ESPRIT method achieved an
MCC of 0.9526. In this case, there is a strong correlation between the proposed approach
and the method in [3] w.r.t. segment duration. Smaller segment durations resulted in lower
MCCs in both approaches. For longer segment durations, both approaches yielded a higher
MCC, as shown in Figure 4. Similar behavior was noticed when different filter orders were
employed. When the bandpass filter order ν = 81 was used, the top performance was
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observed. The MCC of the proposed approach employing SLIC+STFT for various values of
bandpass filter order and segment duration is plotted in Figure 5. The proposed approach
employing SLIC+STFT required about 627.2 s. The computational time of the MUSIC [3]
one was approximately 704.7 s.

Figure 4. Maximum correlation coefficient of the proposed approach employing SLIC+STFT for
various segment durations against the MUSIC [3] (mov2).

Figure 5. Maximum correlation coefficient of the proposed approach employing SLIC+STFT for
various bandpass filter orders and segment durations (mov2).

4.5. ENF Estimation in Non-Static Video mov3

The STFT method was employed for ENF estimation. mov3 is a challenging video
depicting movements and different textures. Thus, ENF estimation is a non-trivial task. The
STFT achieved an MCC of 0.9877, outperforming the method in [3], which reached an MCC
of 0.9191. The ESPRIT method resulted in an MCC of 0.7271. As can be seen in Figure 6,
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the longer the segment duration, the more accurate the ENF estimation. The top result
w.r.t. the MCC was measured for bandpass filter order ν = 51. In mov3, improper values
of filter order can lead to a significant reduction in MCC. Increasing the segment duration
usually results in a more accurate ENF estimation w.r.t. the MCC. In this experiment,
it has been noticed that when a large value of bandpass filter order is employed, increasing
segment duration deteriorates estimation accuracy. The impact of filter order in MCC is
demonstrated in Figure 7. The computational time of the proposed approach employing
SLIC+STFT was about 468.5 s, while the MUSIC [3] required 531.4 s.

Figure 6. Maximum correlation coefficient of the proposed approach employing SLIC+STFT for
various segment durations against the MUSIC [3] (mov3).

Figure 7. Maximum correlation coefficient of the proposed approach employing SLIC+STFT for
various bandpass filter orders and segment durations (mov3).
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4.6. ENF Estimation in Non-Static Video mov4

The non-static video mov4 captures a much more complex scene, where the human
presence and movement is closer to real-life applications than the previous videos. Here,
the STFT was employed for ENF estimation. The STFT yielded an MCC of 0.9837, which
outperformed the MUSIC, which attained 0.8700 [3]. When the ESPRIT method was
used, an MCC of 0.7605 was measured. The top performance was achieved for ν = 51.
The MCC of the proposed approach employing SLIC+STFT for various segment durations
is shown in Figure 8. MCC values of different segment durations and various bandpass
filter orders are plotted in Figure 9. The computational time required by the proposed
method employing SLIC+STFT was about 423.3 s, while the execution of the MUSIC [3]
required 487.2 s to conclude.

4.7. ENF Estimation in Non-Static Video mov5

Video mov5 is one of the most challenging recordings. It resembles a scene captured by
a security camera. Here, the STFT was employed for ENF estimation. The STFT achieved an
MCC of 0.9432, outperforming the MUSIC [3] whose MCC was measured to be 0.8441 [3].
When the ESPRIT was employed, the MCC reached 0.8959. The MCC of STFT is plotted
for various segment durations against the MUSIC [3] in Figure 10. When different values
of bandpass filter order were employed, a longer segment duration was found to yield
an increase in MCC, as can be seen in Figure 11. On the contrary, for a segment duration
longer than or equal to 40, a plateau is noticed. The top MCC was achieved for a bandpass
filter order of ν = 511. The execution of the proposed approach employing SLIC+STFT
required 523.4 s to conclude, while the computational time of the MUSIC [3] was about
602.6 s.

Figure 8. Maximum correlation coefficient of the proposed approach employing SLIC+STFT for
various segment durations against the MUSIC [3] (mov4).
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Figure 9. Maximum correlation coefficient of the proposed approach employing SLIC+STFT for
various bandpass filter orders and segment durations (mov4).

Figure 10. Maximum correlation coefficient of the proposed approach employing SLIC+STFT for
various segment durations against the MUSIC [3] (mov5).
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Figure 11. Maximum correlation coefficient of the proposed approach employing SLIC+STFT for
various bandpass filter orders and segment durations (mov5).

4.8. ENF Estimation in Non-Static Video mov6

Similarly to video mov5, mov6 constitutes a challenging real-world indoor recording.
This recording resembles a scene captured by a hidden camera under special conditions,
which could hinder ENF estimation accuracy. Nevertheless, the proposed approach em-
ploying STFT resulted in an MCC of 0.9309, outperforming the MUSIC [3] whose MCC was
measured to be 0.9115. The MCC of SLIC+STFT is plotted for various segment durations
against the MUSIC [3] in Figure 12. The proposed approach performs better than the MU-
SIC [3] for a segment duration of about 85 s. For shorter segment durations, the MUSIC [3]
demonstrates a stable performance, outperforming the proposed SLIC+STFT. For different
values of bandpass filter order, it is worth mentioning that by increasing segment duration,
an increase in MCC is observed for all cases, as can be seen in Figure 13. The top MCC was
achieved for a bandpass filter order of ν = 111. The execution of the proposed approach
was 572.5 s. The execution of the MUSIC [3] method required 639.5 s to conclude.

4.9. Assessment of MCC Differences

In order to assess whether the improvements in MCC of the proposed approach,
employing SLIC and either STFT or ESPRIT against the MUSIC [3] is statistically significant,
and hypothesis testing was applied to all six recordings. The null hypothesis, H0: c1 = c2,
indicates that MCCs are equal and the alternative one, H1: c1 6= c2 indicates the opposite.

For each video recording, the MCCs of the proposed approach and the MUSIC [3]
undergo Fisher’s z transformation [51]:

z = 0.5 ln
1 + c
1− c

. (10)

The test statistic is given by:

qF =
√

K− 3 (z1 − z2) (11)

where K denotes the number of ENF samples. The test statistic qF is distributed as Gaussian
with zero mean value and unit variance, for large K.
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Figure 12. Maximum correlation coefficient of the proposed approach employing SLIC+STFT for
various segment durations against the MUSIC [3] (mov6).

Figure 13. Maximum correlation coefficient of the proposed approach employing SLIC+STFT for
various bandpass filter orders and segment durations (mov6).

It is checked whether the test statistic qF falls within the region of acceptance for
a significance level of 5%. If it does so, the null hypothesis H0 is accepted and, thus,
the differences between the MCC’s are not statistically significant. On the other hand,
if qF falls outside the region of acceptance (i.e., |qF| > 1.965), the alternative hypothesis
H1 is accepted, indicating that MCC differences are statistically significant. Statistical
tests constitute an important contribution of the paper, offering a mechanism for making
quantitative decisions, which can lead to accurate ENF estimation in practical forensic
applications. The top MCC value of the proposed approach employing SLIC and either
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STFT or ESPRIT and that of the MUSIC [3] for each recording and the filter order employed
is summarized in Table 3.

Table 3. Maximum correlation coefficient of the proposed approach employing either STFT or ESPRIT
and the MUSIC [3] for all recordings. The filter order employed is also quoted.

mov MCC (here) MCC [3] Bandpass Filter Order ν ENF Samples K

Mov1 0.9926 0.9658 111 702
Mov2 0.9704 0.9466 81 639
Mov3 0.9877 0.9191 51 647
Mov4 0.9837 0.8700 51 623
Mov5 0.9432 0.8441 511 729
Mov6 0.9309 0.9115 111 741

In all cases in Table 3, qF was calculated and found to be outside the region of accep-
tance for significance level of 5%. Consequently, there is sufficient evidence to warrant the
rejection of the null hypothesis. Therefore, the differences between the MCCs are statisti-
cally significant and the proposed approach yields statistically significant improvements in
ENF estimation accuracy against the MUSIC [3].

5. Conclusions, Limitations, and Future Research

ENF estimation in static and non-static videos is a non-trivial task especially for
complex environments comprising different objects, textures, and moving people. A novel
automated approach has been proposed for ENF estimation in static and non-static videos
recorded with CCD sensors. It is based on the SLIC algorithm for the generation of
regions that share similar characteristics, especially luminance, where ENF variations
can be precisely revealed. It has been demonstrated that the proposed approach, which
applies either STFT or ESPRIT to a time-series created after SLIC, performs better than
the MUSIC [3] in ENF estimation with respect to the maximum correlation coefficient.
Moreover, the impact of two factors, namely, the segment duration and the bandpass
filter order in ENF estimation accuracy, has been studied. Statistical tests have been
conducted, attesting that the improvements in maximum correlation coefficient achieved
by the proposed approach are statistically significant against the state-of-the-art approach,
which employs the MUSIC method.

In this work, we have explored multiple videos recorded by a fixed camera. A scenario
with a moving camera would possibly raise additional difficulties in finding areas of similar
characteristics, which are employed in the proposed approach. Consequently, difficulties
in accurately estimating the ENF estimate would be anticipated. In addition, although the
recordings were of escalating difficulty, there was no more than one person present in the
scene. It is difficult to predict whether the proposed approach would perform equally
well in an unconstrained environment with a moving camera and scenes with many
moving persons.

Future work will aim to extend this work by considering recordings that are captured
by the rolling shutter mechanism of CMOS cameras. We are also interested in ENF esti-
mation, when non-static cameras are employed. The latter scenario is very common in
real-life applications due to the widespread use of mobile phones. Another challenging
research direction is ENF estimation when multiple persons are recorded in the video.
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Abbreviations

f ENF signal
Hz Hertz
g reference ENF signal
ν filter order
fs sampling frequency of camera (in frames per second (fps))
fE aliased frequency
fl frequency of light source illumination
I identity matrix
γ integer number
x(t) mean intensity signal
φ̂l periodogram
D segment duration (in s)
L segment duration (in samples)
G hop size (in samples)
m order of the covariance matrix
τ predefined threshold
S segment shift (in s)
MV median intensity value
N number of superpixels
K number of estimated ENF values
Λ number of video frames
ζn mean intensity value
V overlapping segments
qF test statistic
W principal eigenvectors
CCD charge-coupled device
CMOS complementary metal oxide semiconductor
ENF electric network frequency
ESPRIT estimation by rotational invariant techniques
MCC maximum correlation coefficient
MUSIC multiple signal classification
STFT short-time Fourier transform
SLIC simple linear iterative clustering
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