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Abstract: We developed a high-throughput mapping workflow, which centers on deep learning
(DL) convolutional neural network (CNN) algorithms on high-performance distributed computing
resources, to automatically characterize ice-wedge polygons (IWPs) from sub-meter resolution
commercial satellite imagery. We applied a region-based CNN object instance segmentation algorithm,
namely the Mask R-CNN, to automatically detect and classify IWPs in North Slope of Alaska.
The central goal of our study was to systematically expound the DLCNN model interoperability across
varying tundra types (sedge, tussock sedge, and non-tussock sedge) and image scene complexities to
refine the understanding of opportunities and challenges for regional-scale mapping applications.
We corroborated quantitative error statistics along with detailed visual inspections to gauge the IWP
detection accuracies. We found promising model performances (detection accuracies: 89% to 96%
and classification accuracies: 94% to 97%) for all candidate image scenes with varying tundra types.
The mapping workflow discerned the IWPs by exhibiting low absolute mean relative error (AMRE)
values (0.17–0.23). Results further suggest the importance of increasing the variability of training
samples when practicing transfer-learning strategy to map IWPs across heterogeneous tundra cover
types. Overall, our findings demonstrate the robust performances of IWPs mapping workflow in
multiple tundra landscapes.

Keywords: permafrost; Arctic; deep learning; tundra; ice-wedge polygon; Mask R-CNN;
satellite imagery

1. Introduction

Ice wedges are common permafrost subsurface features developed by repeated frost cracking
and ice-vein growth over centuries to millennia [1–3]. These wedge-shaped ice bodies are responsible
for creating polygonized land surface patterns (ice-wedge polygons, IWPs) across the Arctic [3,4].
In recent decades, abrupt thaw of ice-rich permafrost has been documented at several locations across
the Arctic that alters the microtopography and the type of IWP [5].

Geographical coverage, remoteness, and logistical challenges constrain field-based mapping
of IWPs. Very high spatial resolution (VHSR) commercial satellite sensors provide opportunities
to observe IWPs at multiple spatial scales and temporal frequencies [6–13]. The bulk of traditional
remote sensing image classification methods fail to grapple with sheer data volumes and scene
complexities of VHSR imagery [14]. Increasing spectral heterogeneity in VHSR imagery leads to less
class variance, which makes it difficult to accurately resolve IWPs using conventional per-pixel-based
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algorithms [15]. Local-scale analysis based on high-resolution data and regional-scale analysis based
on coarse-resolution Landsat data limit our capacity to elucidate the effect of sub-meter scale IWP
degradation on regional-scale processes, such as carbon projections [16]. Therefore, there is a need and
an opportunity for advanced image analysis approaches for the accurate characterization of ice-wedge
polygonal networks [16–19].

Owing to the upsurge of faster and affordable hardware resources (GPU/CPU) and easy access to
cloud computing environments, deep learning (DL) algorithms are securing an increasing popularity
in a wide spectrum of scientific disciplines that rely on artificial intelligence (AI). The application
horizon spans from drug discovery through autonomous navigation to earth and environmental
modeling [20–24]. Deep learning (DL)-based convolutional neural network (CNN) DLCNN have
successfully outperformed other conventional machine learning techniques, such as support vector
machine (SVM) and random forest (RF) in everyday image understanding. Proven success in CV
has been an enticing factor for remote sensing community towards DLCNN [25–29]. There has been
an expeditious uptake of DLCNN in VHSR image scene understanding [30–33]. Similar to everyday
image analysis, DLCNN outperforms traditional machine learning classifiers (e.g., RF and SVM) as
well as modern paradigms like object-based image analysis [33]. Application spectrum of DLCNN
in remote sensing image to assessment pipelines is broad and multitude. It has been demonstrated
that DLCNN is applicable image processing applications such as fusion [34,35], segmentation [36,37],
and registration [38,39].

A growing body of studies investigated object detection, semantic segmentation, and semantic
object instance segmentation using the region-based CNN (RCNN) architectures, such as Fast
RCNN [40], Faster R-CNN [41], RetinaNet [42], RFCN [43], Mask R-CNN [44,45]. While object
detection performs finding and classifying objects in an image, semantic image segmentation moves
further steps ahead, identifying objects within a scene and labelling them according to known classes.
U-Net and its successor architectures [46] are also capable of performing semantic object instance
segmentation [47]. Among other comparison studies, [46] probed into two key semantic object instance
segmentation architectures, U-Net and Mask-RCNN, to exploit their performances. According to their
results, Mask-RCNN produced better recall and precision than U-Net, suggesting that it can detect
targets of interest more accurately, although Mask-RCNN struggled to predict a good segmentation
mask [46]. In considering the amount of under (over) segmentation, Mask-RCNN had much better
performances compared to U-Net [46]. Specifically, in remote sensing applications Mask R-CNN was
successfully applied to relatively small, selected areas for mapping of IWPs [7,10,11]. The original Mask
RCNN is trained based on the COCO image data set, which harbors massive amount of hand annotated
everyday images [48]. Moreover, to evaluate the automatic detection and classification of IWPs from
sub-meter resolution commercial satellite imagery, transfer learning and adoption of existing Mask
RCNN architecture (or pre-trained COCO data-based) could be the key solution in remote sensing
applications. It is noted that our candidate algorithm, its architecture, and its underlying training data
comfortably fall under the commonly found use-cases where the user is challenged by limited data
and computation resources, and perhaps technical competencies. Therefore, in this study, we used
Mask R-CNN for mapping IWPs in satellite remote sensing imagery to examine the transferability of
model for varying tundra types such as sedge, tussock sedge, and non-tussock sedge.

Translating DLCNN from computer vision applications to the remote sensing image analysis
domain undoubtedly create rich opportunities, as well as new challenges. Unlike in everyday image
understanding, in which the targets in question operate in a constrained space, remote sensing imagery
captures the nadir views of spatially continuous to discontinuous geo objects. Landscapes are complex.
The constituent geo objects exhibit complex spectral, spatial, textural, and contextual characteristics that
are aggregated across scales [49,50]. Increased resolution of commercial satellite imagery spontaneously
inherit the landscape complexity. The high-level semantics that we sought for a given target could be
influenced by the landscape complexity. The intriguing question is what the interoperability of a model
is when it is trained in one landscape and applied to another landscape to classify the same object of
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interest. One could rule out this argument when the model is trained and applied in the same landscape
or closer proximity. However, it is difficult to overlook this when thinking about regional scale mapping
applications where we come across distinct landscapes with their own heterogeneities attributed by
ecological and geophysical factors. This holds great validity in our mapping effort. We are not confined
to few square kilometers but expands across whole Arctic tundra. Although semantically we pursue
an abstracted geo object of polygon, its low-level motifs (spectral, spatial, textural characteristics)
and high-level meanings are greatly influenced by the landscape where it stands on. Arctic tundra
represents a complex and heterogeneous mosaic shaped by the earth processes, markedly influencing
vegetation, hydrology, or soil characteristics [51,52]. When investigating how particular targets of
interest or geo objects are presented in image modality across a region essentially, we require a baseline
fabric that decomposes the heterogeneous system into meaningful patches with underlain ecological
functions. In this respect, tundra cover types can stand as representative analysis units to understand
how certain geo objects, for example ice-wedge polygons, present themselves in different tundra types
and how their image representations change from tundra cover to another. In this respect, circumpolar
Arctic vegetation map (CAVM) [53] presents a unique opportunity to use baseline data layers to
aggregate ice-wedge polygons into different cohorts. Because the CAVM classification scheme not only
considers vegetation types but prudently takes into account variability of topography, geomorphology,
and climatic factors.

The importance of the Arctic tundra types associated with ice-wedge polygons dominates
within the Circum-Arctic permafrost region [54]. The broad-scale assemblages of Arctic tundra
constitute erect shrublands, graminoid tundra, mountain complexes, barrens, mineral graminoid
tundra, prostrate-shrub tundra, and wetlands [55]. Figure 1 presents a snapshot of tundra types
(details in [54]), which are considered in this study. Understanding of tundra distributions provides
essential insight into IWP mapping application. For example, lake-rich regions such as Alaska’s
North Slope demonstrated dominant sedges tundra, which contains more detailed information for
IWPs mapping for that tundra type. Alaska represents heterogeneous tundra types such as tussock
sedge, dwarf shrub, and moss tundra [55]. Moreover, the central portion of the Seward Peninsula,
and mountain complexes concentrated in the Brooks Range of northern Alaska [54]. It is noted that
ice-wedge degradation is higher in areas with warmer permafrost, like the Seward Peninsula in
Alaska [56]. In addition, Russia has mostly low-shrub tundra in the Arctic, which is a consequence of
predominantly wet soil moisture conditions that result from near-surface permafrost [54]. Canada has
the most terrain associated with abundant barren types and prostrate dwarf-shrub tundra in in the Arctic
region [54]. Therefore, it is important to consider the transient nature and spatial heterogeneity [57,58]
of tundra types for the IWP mapping application.

Pilot studies have been conducted, including our efforts [59] and related work, such as [7,10,11] to
demonstrate the adaptability of DLCNN in automated ice-wedge polygon detection and classification.
These works exercised the transfer learning strategy by adapting one of the semantic object instance
segmentation algorithm Mask R-CNN architecture that descends from the region-based CNN
family. Degree to which a given DLCNN model interoperable across a heterogeneous landscapes,
i.e., training and validation the model across tundra types, have been overlooked in literature.
Accordingly, it is unknown how the model performs over a range of tundra cover types, such as
sedge, tussock sedge, and non-tussock sedge (Figure 1b), each of which exhibit unique spectral,
textural, spatial, and contextual characteristics. Prior to any regional-scale applications, the model’s
invulnerability to landscape perturbations needs to be systematically quantified. These unanswered
questions provide the impetus for our study. We are in the process of developing a mapping application
for Arctic permafrost land environments, which enables the transformation of large volumes of
commercial satellite imagery into Arctic science ready applications. Our main goal of the current
study is to explore the DLCNN model interoperability across different tundra types and image scene
complexities in order to understand the opportunities and challenges prior to any future circumpolar
IWPs mapping applications. Migration of landscape complexities to image scenes evidently pose
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new challenges on automated image processing using DLCNN model predictions. Our experimental
design aim to encapsulate low-gradient Arctic upland tundra (sedge, tussock sedge, and non-tussock
sedge), including various features such as lakes and vegetated drained thaw lake basins. We aim to
(1) examine the transferability of the model in mapping IWPs across tundra types; (2) evaluate the
automatic detection and classification of ice-wedge polygons from sub-meter resolution commercial
satellite imagery.
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Figure 1. Geographical locations for training and independent validation sites: (a) training sites from
Russia, Canada, and Alaska, and (b) independent validation sites from Alaska. Tundra vegetation map
and the legend are adapted from [54]. Satellite imagery Copyright DigitalGlobe, Inc.

2. Study Area and Data

We conducted our study based on four summer-time multi-spectral images acquired by the
WorldView-2 satellite sensor (Figure 1b). Pansharpened multispectral images at 0.5 m were provided by
the Polar Geospatial Center as orthorectified, atmospherically corrected data products. Four candidate
image scenes and their respective features are presented in Table 1. Candidate scenes cover 1500 km2 of
coastal and upland tundra from the North Slope, Alaska (Figure 1b). The training datasets, which were
represented by different image scenes than the evaluation assessment, were established around different
tundra covers and included imagery from Alaska, Canada, and Russia (Figure 1a). Table 2 presents
different tundra types for training and validation sites. Spectral characteristics significantly vary across
the different tundra types [60]. The training sites provide a substantial landscape heterogeneity for
model classifying and detection IWPS. Moreover, dominant landcover types (heterogeneity) controls
the global image statistics [61]. Therefore, choosing image scenes from varying tundra could greatly
influence model training since the model earns the opportunity to learn different abstractions of the
targets of interest.
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Table 1. General characteristics of four candidate image scenes.

Site Sensor Acquisition Date Image Off Nadir Sun Elevation Azimuth

V1 WorldView2 07/29/2010 38.6◦ 35.8◦ 135.5◦

V2 WorldView2 07/04/2012 27.2◦ 42.2◦ 47.6◦

V3 WorldView2 07/05/2015 15.4◦ 42.4◦ 203.8◦

V4 WorldView2 09/03/2016 25.9◦ 27.8◦ 207.6◦

Table 2. Different tundra types for training and validation sites.

Dataset Study Sites Dominant Tundra

Training
Russia T1

G1-Rush/grass, forb, cryptogam tundra
G2-Graminoid, prostrate dwarf-shrub, forb tundra

P1: Prostrate dwarf-shrub, herb, lichen tundra
P2: Prostrate/Hemiprostrate dwarf-shrub

Alaska T2 G4 Tussock-sedge, dwarf-shrub, moss tundra

Canada T3
G4:Tussock-sedge, dwarf-shrub, moss tundra

G3:Non-tussock sedge, dwarf-shrub, moss tundra
W2:Sedge-wetland complexes

Validation Alaska

V1 G3:Non-tussock sedge, dwarf-shrub, moss tundra
W2:Sedge-wetland complexes

V2 G3:Non-tussock sedge, dwarf-shrub, moss tundra
W2:Sedge-wetland complexes

V3 W2:Sedge-wetland complexes

V4 G4:Tussock-sedge, dwarf-shrub, moss tundra

3. Mapping Application for Permafrost Land Environment

Accurate characterization of IWPs from VHSR imagery directly depend on the segmentation
(i.e., isolation of targets from the surrounding) and classification (i.e., assigning the correct label to
the targets) processes [62,63]. Semantic object instance segmentation methods are designed to afford
target isolation and labeling to thematic classes. Ideally, a mapping application for permafrost land
environment should consist of candidate DLCNN models tailored to extract different permafrost
features of interest from remote sensing imagery. Among the suite of target features, microtopography,
thaw features, capillaries, and plant functionality exhibit high priority. Given the diversity of target
features and their heterogeneous characteristics coupled with semantic complexities, multiple model
architectures better serve the purpose. In our mapping application, one pipeline targets on mapping
ice-wedge polygons in which we used Mask RCNN algorithm. The pipeline is extensible and tailored
to work with remote sensing imagery using high-performance computing resources. This allows
scalability to larger spatial extents.

3.1. Mapping Workflow, Training and Validation Experiment

We center the current mapping workflow using Mask R-CNN, which uses the multi-level features
from the training sample for detection, delineation, and classification of targets of interest. Similar to
the other member of RCNN family, in a generic sense, MRCNN is a two-stage detector. Its architecture
comprises of sub-networks: (1) generates Region Proposal Network (RPN) (i.e., candidate object
bounding boxes); and (2) predicts the class, bounding box, and binary mask for each region of interest
(ROI). The Mask R-CNN uses Residual Learning network, ResNet (101 layers deep), a convolutional
neural network [44] for feature extraction. The pretrained network can classify images into multiple
object categories which helps to converging deeper networks. In the deeper network the additional
layers better approximate the mapping which reduces the error by a significant margin. Our workflow
is modular. It consists of several key stages as depicted in Figure 2. In stage 1, the main input to
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the workflow is multispectral satellite imagery with three bands, with radiometric depth of 16 bit.
Image scenes from the Polar Geospatial Center are typically provided with the dimension of 20 km
(40,000 pixel) × 20 km (40,000 pixel) at 0.5 m pixel resolution. To achieve the optimal combination of
spectral bands from input multispectral imagery which contain more than three bands (for instance,
WV02 imagery has 8 spectral bands: coastal blue, blue, green, yellow, red, coastal red, NIR1 and NIR2),
we used three statistical measure: variances, probability distribution function (PDF), and cumulative
distribution function (CDF) (details in [59]). Specifically, a systematic experiment was designed to
understand the impact of choosing the optimal three-band combinations in the use of multispectral
datasets on DLCNN model prediction [59]. As the first step in the pipeline, the most effective
combination of bands is obtained by estimating variances where the best three channels approximately
present similar spread [59,64,65]. As three bands produce approximately similar reflectance values
from PDF, we consider those three bands for the proposed model [66–68]. We also examined the shape
of the cumulative density function (CDF) and observed the magnitude of multispectral bands [59,69].
CDF explains the distribution of the reflectance values among multiple spectral bands and, for the
workflow, we chose the considerably less deviated three bands. Finally, for each spectral band of
the image scene, the best combination of three bands was obtained by estimating three statistical
measures: variances, PDF and CDF. In stage-2, the input image scene was portioned into tiles of
200 × 200 pixels. A typical satellite image scene produces ~65,000 tiles (this depends on the input scene
size). Tiles are then streamed to the trained model for inferencing. The model estimates detection
(IWPs prediction) when input tile contains ice-wedge polygons. The predicted categorical raster is
vectorized as a shapefile. In stage-3, all the individual shapefiles (corresponding to each tile) will be
post-processed by omitting duplicates along tile borders and merged together to create a single shapefile
corresponding to the extent of the input satellite image scene.
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Figure 2. Simplified schematic of the automated ice-wedge polygon mapping workflow (left) and the
general architecture of the Mask R-CNN algorithm (right).

For model training purposes, we created annotated data (defining and labelling regions of
interest) using an online web tool “VGG Image Annotator” from satellite imagery comprising
heterogeneous tundra types. We randomly selected 262 cropped subsets (tiles of 200 pixels by 200 pixels)
(~15,000 polygons) from different tundra types (tussock, non-tussock, and sedge) considering the
spectral, and spatial variability. Each file had 200 × 200 pixels. Datasets were annotated for two
classes: Low-centered (LC) polygons (8962 objects) and high-centered (HC) polygons (6038 objects).
It is also notable that IWPs were delineated along their edges (i.e., if troughs are present, then along the
trough-sides, if no troughs are present, then along the rim mid-line). Finally, the annotated tiles were
randomly divided into a training dataset, validation dataset, and test dataset based on the 8:1:1 split rule.
We trained the DLCNN with a mini-batch size of two image tiles, 350 steps per epoch, learning rate
of 0.001, learning momentum of 0.9, and weight decay of 0.0001 [7,12,13,59]. After scanning the
image, the Mask R-CNN generates Region Proposal Network (RPN), and subsequently, the DLCNN
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predicted the class, bounding box, and binary mask for each region of interest (ROI) to obtain
our mask prediction (the predicted mask is pixel-based). For each ROI, segmentation mask was
predicted using a small Faster R-CNN. Finally, Mask R-CNN resized the predicted mask back to the
original dimensions of input image scene. Training was implemented using NVIDIA V100 GPUs
(PSC–Pittsburgh Supercomputing Center, Pittsburgh, PA, USA) on XSEDE supercomputing resources.
We trained the DLCNN with 100 epochs. To optimize Mask R-CNN, we examined different losses such
as (a) Smooth-L1 loss, defines box regression on object detection systems, which is less sensitive to
outliers, than other regression loss; (b) Mask R-CNN bounding box loss indicates the difference between
predicted bounding box correction and true bounding box; (c) Mask R-CNN classifier loss estimates
difference of class labels between prediction and ground truth; (d) mask binary cross-entropy loss
measures (probability value between 0 and 1) the performance of a classification model by observing
predicted class and actual class; (e) RPN bounding box loss identifies the regression loss of bounding
boxes only when there is object; and (f) RPN anchor classifier loss indicates the difference between the
predicted (RPN) and actual (closest ground truth box to the anchor box) regression.

3.2. Accuracy Estimates

To evaluate the DLCNN performances, various error metrics were performed in the validation
experiment. The mean intersection over union (mIoU) (in %) between predicted and ground truth is
presented below:

mIoU =
AO

AU
(1)

Here, AO indicates the area of overlap between the predicted segmentation and the ground truth,
where AU is the area of union between the predicted segmentation and the ground truth. A mIoU
score > 0.5 is considered a “good” prediction which indicates successful delineation [45,70].

Absolute mean relative error (AMRE) is the mean of the relative percentage error, calculated by
the normalized average:

AMRE =
1
n

n∑
i=1

∣∣∣∣∣∣∣
(

ŷi − yi

yi

)∣∣∣∣∣∣∣ (2)

For the quantitative assessments, for each subset the number of predicted polygons ŷ, the number
of actual polygons (ground-truth polygons) yi and n is the number of subsets (details in [71,72]).

An accurate prediction of ice-wedge polygon is represented by F1 score, where a score of
1 specifies perfect prediction. Correctness signifies how many of predicted positives were truly
positive; completeness determines what percentage of actual positives were detected. An accurate
prediction is represented by all metric values closing to 1. The Statistical measures used in the study
are shown below.

Correctness =
TP

TP + FP
(3)

Completeness =
TP

TP + FN
(4)

F1 Score =
2∗Correctness ∗Completeness

Completeness + Completeness
(5)

Please note that true positive (TP) is the number of polygons correctly identified, false positive
(FP) is the number of polygons identified by model, but not true, and false negative (FN) is
undetected polygons.

4. Model Evaluation Results and Discussions

We optimized the DLCNN during the training process with 100 epochs to get the full learning
curve of the model. Learning curves are widely used diagnostic tool in machine learning for algorithms
that learn from a training dataset incrementally. Overall model learning performance over experience
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or time are presented by a learning curve as shown in Figure 3. Results show the changes in
learning performance for different epochs over time, where an epoch is defined as the number of
times an algorithm visits the data set (e.g., an epoch is one backward and one forward pass for all
the training). The validation loss values reached their lowest at 2nd epoch (Figure 3). Therefore,
we choose the Mask R-CNN model with the lowest validation loss for our experiments (i.e., the 2nd
epoch). It is noted that the sample sizes are limited but sufficient to optimize the model for limited
number of epochs (2nd). Specifically, from the results of the Smooth-L1 loss (target detection loss),
the validation loss values reached their lowest magnitude at 2nd epoch, but the training loss values
substantially decreased (Figure 3a). Similarly, Figure 3b–f, in considering other losses (Mask R-CNN
bounding box loss; Mask R-CNN classifier loss; Mask binary cross-entropy loss; RPN bounding box
loss; RPN classifier loss), showed that around the 2nd epoch, the validation loss value reached its
lowest value, where Mask R-CNN was optimized. In our use case, we practiced transfer learning
of existing Mask RCNN architecture to optimize the model at low number (e.g., 2nd) of epoch to
evaluate the automatic detection and classification of ice-wedge polygons from sub-meter resolution
commercial satellite imagery.

We statistically evaluated the performances of the DLCNN in detecting and classifying IWPs.
For the quantitative assessments, from each image scene, we randomly selected 40 subsets to manually
delineate polygons as a reference (ground-truth polygons). The mIoU values varied between 0.85 to
0.91 (Table 3), which indicted that predicted polygons that agree with the ground-truth polygons.

Close-up views of the original imagery, ground truth, and model classification results show that
our predicted IWPs closely matched ground-truth IWPs (Figure 4). We used three quantitative error
statistics (correctness, completeness, and F1 score) to show the performances of the framework (Table 4).
Candidate scenes V1, V2, V3, and V4 produced high model detection accuracies for the F1 score,
ranging from 0.89 to 0.96 (Figure 5, Table 4). Although all the image scenes are geographically close to
each other, they still have different tundra variations in the microtopography. Predominance of tussock
sedge tundra and the high spatial resolution of imagery information provide landscape-scale variation
within the original CAVM map throughout northern Alaska [54,55]. Scene V4, covering tussock-sedge
achieves mIoU 0.85 (Table 3), still having a chance to improve model prediction by increasing more
training data from that tundra region. Specifically, V1, V2, and V3 represents non-tussock sedge and
sedge tundra types of Alaska’s North Slope. DLCNN performances for Image scenes V2–V3 (F1 score:
0.92–0.94) were consistent, which means the training samples were sufficient to predict IWPs for
non-tussock sedge and sedge tundra regions (Table 4). This result helped to understand the feasibility
and reliability of the remote sensing information extraction for different tundra regions. In terms of
elevation, most of the Arctic is <500 m elevation, with the lowest elevations (<100 m) dominated by
graminoid-erect dwarf-shrub tundra. In our training datasets, we used three tundra types where
elevation varies up to 500 m. Our validation image scenes V(1–4) are found within this elevation
range and exhibited relatively consistent performances across the selected validated tundra regions.
In future, more training sample from the complex terrain with the highest elevations could increase
the greatest variability of the model.
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Table 3. Summary statistics of mean intersection over union (mIoU) for candidate image scenes.

Validation Sites mIoU

V1 0.91
V2 0.87
V3 0.86
V4 0.85
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Table 4. Accuracy assessment of detection for candidate image scenes.

Validation Sites Number of
Reference Polygons Correctness Completeness F1 Score

V1 582 0.99 89% 0.96
V2 567 1 85% 0.94
V3 579 1 83% 0.92
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Inc. Satellite image scenes are obtained from different tundra regions: (a) non-tussock sedge tundra;
(b) non-tussock sedge tundra; (c) sedge tundra; (d) tussock sedge tundra.
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In a similar fashion, scenes V1-4 scored high values for completeness (81–89%). In all four cases,
the correctness metric scored 1, allowing less freedom for false alarms. There are few recent studies
considering 0.5 × 0.5 m resolution image where F1 scores were 55% [10], and 72% [11], which are
substantially lower than the results presented here (>89%). Moreover, classification accuracies for the
F1 score varied from 0.94 to 0.97 for candidate scenes, indicating a robust performance of the DLCNN
algorithm across different tundra types in northern Alaska (Table 5). Remote sensing image data
with more than three bands have not yet been able to be trained in deep learning training networks.
Specifically, deep learning (DL)-based past researchers are designed to accept standard RGB bands as
they confront with everyday images [73–75]. Moreover, in terms of using multispectral perspective,
the Arctic tundra vegetation communities have separable view in Arctic mapping application [76,77].
The tundra types such as wet sedge meadow, tussock tundra, etc., showed certain diagnostic reflectance
which were significantly different for the other tundra types [76]. On the other hand, our mapping
workflow optimized multispectral band combination from satellite imagery [59], which led to a more
robust image classification model than a traditional object-detection model. Moreover, results showed
significantly low systematic errors (AMRE values from 0.17 to 0.23) for all candidate scenes (Table 6).
Overall, both quantitative and qualitative evaluations support the possible interoperability of the IWPs
mapping algorithm across different tundra assemblages in northern Alaska.

Table 5. Accuracy assessment of classification for candidate image scenes.

Validation Sites Number of
Reference Polygons Correctness Completeness F1 Score

V1 582 0.98 99% 0.97
V2 567 0.99 96% 0.95
V3 579 0.98 97% 0.96
V4 573 0.99 95% 0.94

Table 6. Absolute mean relative error (AMRE ) for candidate scenes.

Validation Sites AMRE

V1 0.17
V2 0.18
V3 0.21
V4 0.23

In this exploratory study, we primarily investigated the interoperability of deep learning model
predictions across heterogeneous tundra landscapes. Arctic tundra vegetation exhibits a significantly
higher degree of heterogeneity over small spatial scales [52]. Further research is needed to better
understand how trained models behave across other tundra vegetation types and regions. Such study
would also benefit from incorporating terrain units, soil types, hydro-climatic regimes, and permafrost
characteristics. Furthermore, summer temperature variations can cause major changes to vegetation
structure via by pose spectral/textural changes in the acquired imagery. Thus, the seasonality could
be an important factor deciding the appearance of ice wedge polygon on the satellite imagery
because changes to spectral and textural characteristics can alter the overall semantics of the target.
The model can therefore be biased if it is only trained on imagery acquired in a particular time
window. Operator biasness in hand-annotated data production can also negatively influence model
performances. Tasking multiple operators to produce sizeable amount of quality-controlled training
datasets can help improving the variability training samples and eventually leveraging the model
performances. In future research, we aim to systematically probe further into model interoperability
considering multi-faceted factors. Moreover, Arctic tundra landscapes cover spatially isolated ponds,
lakes, marshes, river, and stream corridor wetlands, which representing highly heterogeneous features,
varying in soil moisture, vegetation composition, elevation, surficial geology, ground ice content,
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soil thermal regimes and surface hydrology [51,52]. Fine-scale differences in microtopography, limit the
ability to comprehend local scale controls on regional to global scale patterns which, is an important
factor in characterizing IWPs in Arctic varying tundra areas [62].

5. Conclusions

Here we presented a deep learning CNN-based high-performance mapping application for
permafrost environments to automatically characterize ice-wedge polygons from VHSR commercial
satellite imagery across three common tundra vegetation types. The DL model exhibited promising
performances (high detection accuracies: 89% to 96% and high classification accuracies: 94% to
97%) across the heterogeneous tundra regions. Consideration of contextual information (e.g., edges,
vegetation, shape, area, and the consistency of feature distributions) increased the reliability of the
model classification and helped generalizing the DL model across tundra vegetation types. Complex
topography plays a vital role in controlling the spatial variation in image scenes. In this exploratory
study, we used varying tundra types (sedge, tussock sedge, and non-tussock sedge) and image scene
complexities to refine the understanding of opportunities and challenges for regional-scale mapping
applications. However, Arctic tundra includes additional vegetation types. Therefore, the model can
be biased when it is applied to other tundra vegetation types such as prostrate dwarf-shrub, herb,
lichen tundra; rush/grass, forb, cryptogam tundra; graminoid, prostrate dwarf-shrub, forb tundra, etc.
In the future, this experiment can be extended considering more diverse tundra landscapes, such as
graminoid and shrub dominated vegetation cover types, to systemically gauge the improvement of the
DL model prediction accuracies.

Effort to further refine model prediction accuracies could include (a) increasing the variability of
training samples with additional annotated IWPs from a larger set of tundra vegetation types, and (b)
exploring more sophisticated image pre-processing steps such as differing data fusion (pansharpening)
approaches. Such model improvements may be able to produce more pronounced IWPs edge
information and, therefore, improving the DL model prediction accuracies.
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