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Abstract: This paper presents an investigation into the feasibility of using deep learning methods
for developing arbitrary full spatial resolution regression analysis of B-mode ultrasound images of
human skeletal muscle. In this study, we focus on full spatial analysis of muscle fibre orientation, since
there is an existing body of work with which to compare results. Previous attempts to automatically
estimate fibre orientation from ultrasound are not adequate, often requiring manual region selection,
feature engineering, providing low-resolution estimations (one angle per muscle) and deep muscles
are often not attempted. We build upon our previous work in which automatic segmentation was
used with plain convolutional neural network (CNN) and deep residual convolutional network
(ResNet) architectures, to predict a low-resolution map of fibre orientation in extracted muscle
regions. Here, we use deconvolutions and max-unpooling (DCNN) to regularise and improve
predicted fibre orientation maps for the entire image, including deep muscles, removing the need
for automatic segmentation and we compare our results with the CNN and ResNet, as well as a
previously established feature engineering method, on the same task. Dynamic ultrasound images
sequences of the calf muscles were acquired (25 Hz) from 8 healthy volunteers (4 male, ages: 25–36,
median 30). A combination of expert annotation and interpolation/extrapolation provided labels of
regional fibre orientation for each image. Neural networks (CNN, ResNet, DCNN) were then trained
both with and without dropout using leave one out cross-validation. Our results demonstrated robust
estimation of full spatial fibre orientation within approximately 6◦ error, which was an improvement
on previous methods.

Keywords: ultrasound; B-mode; skeletal muscle; fascicle orientation; pennation angle; fibre
orientation; fibre tract; fascicle tract; convolutional neural network; deconvolutional neural network;
residual neural network; deep learning

1. Introduction

In this paper, we compare four different methods, feature engineering, standard convolutional
neural networks (networks consisting only of convolutional, pooling and fully connected layers,
hereafter referred to as CNN), residual convolutional neural networks (networks consisting only of
convolutional, pooling, identity residual connections and fully connected layers, hereafter referred to as
ResNet) and deconvolutional neural networks (CNN as an image encoder with a decoder consisting of
deconvolutional and max-unpooling layers, hereafter referred to as DCNN), for estimating full spatial
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resolution muscle fibre orientation in multiple deep muscle layers, directly from B-mode ultrasound
images. We provide proof of principal that deep learning methods are a robust, generalized and
feasible method for arbitrary full spatial resolution regression analysis, given ground truth labels,
within the domain of skeletal muscle ultrasound analysis. Relevant applications of this method include
predicting strain maps, motion maps, twitch localisation or muscle/feature segmentation. In recent
years, ultrasound has become a valuable and ubiquitous clinical and research tool for understanding
the changes which take place within muscle in ageing, disease, atrophy and exercise. Ultrasound
has been proposed [1,2] as a non-invasive alternative to intramuscular electromyography (iEMG) for
measuring twitch frequency, useful for early the diagnosis of motor neuron disease (MND). Ultrasound
has also recently demonstrated application to rehabilitative biofeedback [3]. Other computational
techniques have been developed for muscle-ultrasound analysis which would allow estimation of
changes in muscle length during contraction [4] and changes in fibre orientation and length [5–9].
Regional muscle fibre orientation and length change when muscle is under active (generated internally
through contraction) and/or passive (generated externally through joint movements or external
pressure) strain [10,11]. Muscle fibre orientation is one of the main identifying features of muscle
state [12].

Previous attempts to automatically estimate fibre orientation directly from B-mode ultrasound
images are inadequate, typically requiring manual region identification, a priori feature engineering,
and/or typically providing low resolution estimates (i.e., one angle for an entire muscle region).
All previous methods depend on some parameterization of features such as Gabor wavelets [5,6],
and/or edge detectors and vessel enhancement filters [5–9,13–15]. In all cases, parameters are
empirically chosen and/or are based on assumptions about how the descriptive features will present
within an image. In the studies we are aware of, parameters are chosen presumptuously or empirically
rather than tuned with a multiple-fold cross-validation set. Since the authors unanimously write
that results are sensitive to parameter changes, the assumption is that real world performance
may not be as optimistic as reported. Further, to our knowledge, nobody has attempted the deep
(more challenging) muscles.

Zhou and colleagues [16] developed a method based on the Revoting Hough Transform (RVHT),
which provides an estimate of the overall fibre orientation in a single muscle, the gastrocnemius in
the calf. Based upon the incorrect assumption that the fibre paths are straight lines, they use the
RVHT to detect an empirically predetermined number of lines within a manually defined region of
interest and then take the median orientation of all detected lines as the overall orientation of the
fibres. The approach of Zhou and colleagues is fundamentally limited to detecting straight lines,
whereas muscle fibres do not always present that way. When observing muscle fibres using ultrasound,
there are many other features which can appear as straight lines (blood vessels, noise/dropout,
artefacts/reflections, skin/fat layers, connective tissues, etc.). These fundamental facts are a strong
limiting factor to the potential of methods such as the RVHT and the Radon Transform [8].

Rana and colleagues [6] introduced a method which potentially allowed estimation of local
orientation, although after suggesting this, the mean of local orientations is used to produce another
method which provides an estimate of the overall fibre orientation. Local orientations were identified
by convolving a bank of Gabor Wavelet filters with a processed version of the image. They compare
their proposed method with manual annotations from 10 experts and the Radon Transform, which like
the Hough Transform (or RVHT) is a method which can be used for detecting straight lines in images.
Both the Radon Transform and Wavelet methods require a pre-processing step described as vessel
enhancement filtering, which enhances anisotropic features within the image. The vessel enhancement
method is parametric, where parameters were chosen empirically with no cross-validation or
evaluation of results over varying parameters. Their results showed that the Radon Transform was
not significantly different to the expert annotations, whereas the Wavelet method was significantly
different. Other than significance values, the only accessible results they report are mean differences
(1.41◦) between the Wavelet method and the expert annotations of real images and mean differences
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between both the Radon and Wavelet method applied to synthetic images with known orientations
(<0.06◦). Although the Wavelet method performed comparatively poorly, the authors rightly suggest
that this approach has potential to allow tracking of fibre paths throughout the muscle, whereas Radon
and Hough Transform methods do not.

Namburete and colleagues [7] expanded upon the methods of Rana and colleagues [6], developing
the hypothesis that regional fibre orientation can be tracked using local orientated Gabor Wavelets
and vessel enhancement filters, for the first time going beyond linear approximations to the overall
orientation. The proposed extension is to convolve the local orientations with a median filter, which
effectively smooths the local orientations. The fibre trajectories are then tracked between the muscle
boundaries on a continuous coordinate system with linear (following the dominant orientation in a
local 15 × 15-pixel region centred on the current fibre track) steps of 15 pixels. Finally, curvature is
quantified using the Frenet-Serret curvature formula [17]. Namburete’s method differs significantly
from all preceding methods because it provides an estimation of local fibre orientation, rather than
a more global estimate. However, the authors do not provide an estimate of the error for example
when comparing to expert annotations; instead they evaluate errors on synthetic images with known
orientations, which are trivial. Further, they do not apply this method to the deeper muscles, which
are even more challenging.

Several important problems have been identified as unaddressed from a review of previous
methods for estimating full regional fibre orientation in multiple layers of muscle; most commonly,
the lack of error evaluation on real data, estimating overall fibre orientation and not local orientation,
limited application to superficial muscles only and presumptuous justification for chosen parameters.
We propose to address these problems by introducing advanced machine learning methods and
cross-validation against expert annotation of real data. In recent years the popularity of machine
learning (in particular neural networks) has surged since a number of successive algorithmic,
methodological and computational hardware developments were introduced [18–22]. The application
of machine learning to estimating local fibre orientations has thus far not been considered. We extend
our preliminary investigations into deep learning [23] by introducing and comparing deconvolution
networks (DCNN) as a way of minimizing parameters in the final regression layer for learning
full spatial orientation maps, without the need for segmentation such as [24]. In recent years, the
development of deconvolutional neural networks (DCNN) and variants of DCNN (FCN, U-Net)
allows robust regression (heatmaps [25–27]) or classification (semantic segmentation [28,29]) of pixel
level labels in full resolution images, without any feature engineering or pre-processing (i.e., all
parameters are learned from data and cross-validated against held-out validation and test sets). It is
common knowledge that standard CNN architectures lose precise position information through the
max-pooling operation layers. We propose the DCNN architecture as proposed in [28,30], which uses
max-unpooling layers to recover the spatial information lost during max-pooling.

The next section describes training of three neural network architectures: CNN as a baseline deep
learning technique, ResNet to add complexity and allow possibility of position encoding and DCNN to
explicitly recover precise position information to reconstruct the fibre orientation maps. For reference
to existing literature, we implement a version of the wavelet method described by Namburete and
colleagues [7], since no data are presented on the accuracy of their method on real ultrasound images.
All networks were trained with leave one out cross-validation, with and without dropout (50%).
For the wavelet method, we tuned some of the parameters to optimize results for each specific muscle
segment. We note here that an alternative approach to the methods of Namburete would be to apply
wavelets in the frequency domain, but it is not within the scope of this paper to develop that method.
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2. Materials and Methods

2.1. Deep Learning Software

All neural network software was developed from scratch by the authors using C/C++ and CUDA-C
(Nvidia Corporation, Santa Clara, CA, USA). No libraries other than the standard CUDA libraries (runtime
version 8.0 cuda.h, cuda_runtime.h, curand.h, curand_kernel.h, cuda_occupancy.h and device_functions.h)
and the C++ 11 standard library were used. All 48 neural networks were trained on an Intel Xeon CPU
E5-2697 v3 (2.60 GHz), 64GB (2133 MHz), Nvidia with a single GTX 1080 Ti GPU.

2.2. Data Acquisition

These experiments were approved by the Research Ethics Committee of the Faculty of Science
and Engineering, Manchester Metropolitan University (MMU). Participants gave (written) informed
consent to these experiments, which conformed to the standards set by the latest revision of the
Declaration of Helsinki. Experiments were performed at the Cognitive Motor Function laboratory, in
the School of Healthcare Science, Healthcare Science Research Institute, MMU, Manchester, UK.

Ultrasound image data were recorded at 25 Hz (AlokaSSD-5000 PHD, 7.5 MHz) from the calf
muscles (medial gastrocnemius and soleus) of 8 healthy volunteers (4 male, ages: 25–36, median 30)
during dynamic maximum isometric voluntary contractions. Image settings were constant across
participants. Images represented a 6 × 5 cm (horizontal × vertical axes) cross-section of the calf
muscles. Volunteers lay prone on a physio bed with their right ankle strapped to an immobilised pedal.
Volunteers were asked to push their toes down against the pedal as hard as they could. A dynamometer
(Cybex) recorded the torque at 100 Hz at the ankle during the contraction. Matlab (Matlab, R2013a,
The MathWorks Inc., Natick, MA, USA) was used to acquire ultrasound frames and a hardware trigger
was used to initiate recording at the start of each trial.

2.3. Generating Ground Truth

Following data collection, we extracted all frames beginning one frame before contraction
started and ending with the frame when contraction peaked, where initial and peak contraction
were identified manually. This resulted in a total of 504 images containing spatiotemporal variations in
both fibre orientation and muscle thickness. Two experts were asked to manually identify fibre
paths in all muscles/compartments in all images by marking polylines (connected straight line
segments—typically 20–30 per muscle/compartment). The same experts were asked to identify
the boundaries of the medial gastrocnemius (superficial muscle) and the boundaries and internal
compartments (where visible) of the Soleus (deep muscle) by marking polylines along the boundaries
and visible intramuscular compartments.

To create labels for each pixel, first a blank image (matrix of zeros with equal dimensions to the
ultrasound image) was created. Then, the angles along each of the annotated fibre lines were calculated
and for each pixel under the lines the calculated angle was stored. The result was an image of mostly
zeroes and a few angled lines, where the value of the non-zero pixels represents the local angle of
the line intersecting each pixel. Then, within each muscle/compartment (defined by the experts),
nearest neighbour interpolation was used to fill the gaps between lines, followed by nearest neighbour
extrapolation to fill the muscle/compartment. Between muscles/compartments, nearest neighbour
interpolation was also used to fill the gaps. All other pixels (outside muscle, e.g., skin) were set to zero.
(see Figure 1) Following, additional data were created to introduce variation in the data/labels and
help prevent over-fitting, by randomly (uniform) rotating each image and corresponding labels/angles
between −5◦ and 5◦, thus doubling the size dataset to 1008.

2.4. Wavelet Filter Bank Method

The wavelet method was implemented faithful to the original paper [7]. A bank of 180 Gabor
wavelet filters was generated spanning 0◦–179◦ in 1◦ increments using,
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g(x, y) = e(
(x−k−1)2(y−k−1)2

−dk ) cos
(

2π((x− k− 1) cos(α)− (y− k− 1) sin(α))
f

)
(1)

where k is the half-width of the kernel size (k = 20 pixels = 2.2717 mm), d is a damping term (d = 51.243),
α is the orientation and f is the spatial frequency (f = 7). Initially, all parameters were set as originally
described in [7] and after a first analysis, some parameters (f and k) were varied (f = 9, f = 11, f = 13,
k = f × 3 − 1) to give some scope to the potential of this method on real data. Vessel enhancement was
performed using a Matlab version of the Frangi multiscale vessel enhancement filter [31] which can be
found here [32]. Following [7], filtering was performed at 3 sigma scales parameter in the code), 2, 3
and 4. Following a first analysis, a second analysis was done at sigma scales, 4, 6 and 8, for all variants
of the Gabor wavelet filters described above.

To analyse an image, the image was filtered with the vessel enhancement filter and then convolved
with the entire wavelet filter bank. At each spatial location in the image, we take the α corresponding
to the filter with the highest convolution in that location. The result is a map of local orientations
(Figure 4). Following [7], the image was then convolved with a 35 × 35 median filter resulting in the
final map of local fibre orientations.
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Figure 1. Image annotation. (a) shows the raw ultrasound image and 3 muscles/compartments
(Grey model (GM), Sol 1 and Sol 2), (b) shows expert annotated line traces of visible fibre paths, (c) shows
nearest neighbour region filling of annotated fibre paths within annotated muscles/compartments,
(d) shows line traces over the filled regions.

2.5. Deconvolution Neural Network Method

Our primary concern when deciding on a DCNN architecture (number of layer and units per
layer) was having a complex enough model to learn the training set. The DCNN implemented 16
convolutional filters in the input layer, with 4 additional convolutional layers, each with double the
number of filters in the preceding convolutional layer. Our secondary concern was training time,
since we planned to execute an 8-fold cross-validation. Therefore, both input images and labels
were down-sampled (bilinear interpolation) to 128 × 128 pixels. Between convolutional layers, the
spatial dimensions were down-sampled (max-pooling) by a factor of 2. A dense fully connected
layer of 1024 nodes was fully connected to an initial up-sampling (2 × 2 max-un-pooling) layer,
followed by a deconvolution layer. An additional 4 up-sampling with deconvolutional layers following,
completes the network architecture, with the final layer being a full 128 × 128 resolution regression
map. Every layer consisted of rectified linear units (ReLU), with the exception of the final (output)
layer, which consisted of linear units (see Figure 2).
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Figure 2. Network schemas. (a) Top: Convolutional Neural Network (CNN) with 5 convolutional
layers (Conv.), 5 max-pooling layers (Pool.) and 2 fully connected layers (FC.). Bottom: Residual
Neural Network (ResNet) with 25 convolutional layers (Conv.), 5 max-pooling layers (Pool.) and
2 fully connected layers (FC.), where residual (identity) connections are shown (dashed blue lines).
(b) Deconvolutional Neural Network (DCNN) with 5 convolutional layers (Conv.), 5 max-pooling layers
(Pool.), 5 deconvolutional layers (DeConv.), 5 max-un-pooling layers (UnPool.) and 2 fully connected
layers (FC.), where dashed blue lines indicate argmax link between un-pooling and pooling layers.
Network size/complexity and runtime (forward pass, average over 1000 runs) is indicated below
respective schematics. In all graphics, blue, green and red arrows/numbers respectively represent
horizontal (pixels), vertical (pixels) and feature (nodes) dimensions per layer.

2.6. Convolutional and Residual Neural Network Methods

When deciding on a CNN/ResNet architecture we opted for the same convolutional architecture
as the DCNN, with the exception that the ResNet had a factor of 5 additional convolutional layers,
ensuring that our primary concern was met by performing empirical tests on small fractions of training
data. Following our previous work [23], for the ResNet, we multiplied the number of convolutional
layers in between max-pooling layers by 5, where every other layer we added identity residual
connections. Every other aspect of the CNN and ResNet architecture remained the same as the DCNN
with the obvious exception of the output layer, which was a dense fully connected layer of linear
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regression nodes immediately following the 1024 fully connected nodes, rather than deconvolution
and up-sampling layers (see Figure 2).

2.7. Training and Cross-Validation

All networks were trained by minimizing mean square error (MSE) between the labels and
the output layer using online stochastic gradient descent (batch size of 1 sample). To optimize and
test generalization (estimated real-world performance), leave one person out cross-validation was
performed on 2 DCNNs, 2 ResNets and 2 CNNs with different dropout parameter settings (0%, 50%),
where dropout was enabled in the fully connected layers only. The weights of the neural networks
were initialized using Xavier initialization [33]. To train the CNN, ResNet and DCNN we used learning
rates of 5 × 10−6, 2.5 × 10−6 and 2.5 × 10−2, respectively. Weight gradient momentum of 9.5 × 10−1

was applied to all networks, which were trained for 100 full batch iterations using stochastic online
gradient descent (minibatch = 1). All learning parameters were chosen empirically on a small fraction
of the training data. The neural networks were trained 8 distinct times (one for each person), each time
reinitializing the networks and leaving a different person out for testing and randomly splitting the
remaining data (7 people) into validation and training sets (50% split). Prior to training, the pixels of
the input images were normalized over the training (otherwise they were not processed in any way
before analysis) set to zero mean and unit variance and pixels of the output images were divided by
a constant (45) so that most of the pixels (angles) fell between −1 and +1. Validation and test errors
were observed periodically and the test error observed at the lowest validation error (early stopping
method) gave results for the validation set and the test set (estimated real-world generalization error).
Test results for all held-out participants were combined to reveal the performance of the optimal CNN,
ResNet and DCNN.

3. Results

Following model optimization of the wavelet and DCNN methods, both methods were compared
against the ground truth labels using a range of error measures, thus making the work accessible and
comparable to others. In Sections 3.1 and 3.1 results are presented respectively for the wavelet method
and the DCNN method. With respect to data ranges, within the GM muscle, the maximum range
of angles within a single muscle region was 34.84◦, whereas the maximum range of angles over all
participants was 76.58◦. Within the Sol muscle (compartment 1), the maximum range of angles within
a single muscle region was 35.02◦, whereas the maximum range of angles over all participants was
64.92◦. Within the Sol muscle (compartment 2), the maximum range of angles within a single muscle
region was 65.15◦, whereas the maximum range of angles over all participants was 79.05◦.

3.1. Wavelet Method

The wavelet method was evaluated using the optimal parameters (within the range of parameters
investigated) for each muscle/compartment, separately. To find the optimal parameters within
each muscle, the local orientation over each pixel identified by the wavelet method was compared
to each pixel of the ground truth by root mean square error (RMSE) (see Figure 3). Within the
parameters we investigated, for the GM muscle, smaller wavelet filters resulted in smaller RMSE for
the higher-resolution Frangi filter (res = [4,6,8]), conversely larger wavelet filters result in smaller RMSE
for the lower-resolution Frangi filter. Within the parameters we investigated, the first compartment
of the Sol muscle yields best results with the higher-resolution Frangi filter and larger wavelet filters.
Conversely, within the parameters we investigated, the second compartment of the Sol muscle yields
best results for smaller wavelet filters and lower-resolution Frangi filter. The models with the lowest
RMSE were compared to ground truth using mean difference (MD) and mean absolute error (MAE), to
be compared with the DCNN method (Section 3.2).
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Figure 3. Wavelet parameter tuning. This graphic depicts how the error changes with respect to the
parameters of the Frangi filter (res) and the Gabor wavelet filters (k).

For the optimal models within each muscle/compartment, the deviations of predicted local fibre
orientations from ground truth were much too high to be useful in any real context, particularly
in the Sol (compartment 1) muscle, which reports an optimal RMSE of over 26◦ (see Figure 3).
Discrepancies were much lower in the GM and Sol (compartment 2) muscles at 11.3◦ and 7.1◦,
respectively. Visual comparisons were also made by comparing the wavelet analysis, presented
as a heat-map, to the ground truth, also presented as a heat-map (see Figure 4). Visual comparison
revealed quite sporadic agreement between wavelet predictions and ground truth. Visual comparison
also revealed that any agreement between wavelet predictions and ground truth was not only heavily
dependent on the presence of well-defined muscle fibre tracts, but also on the ability of the Frangi filter
to extract those features (Figure 4).
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Figure 4. Representative wavelet visual result. (a) shows the raw image, (b) shows the vessel-enhanced
image (contrast-enhanced for clarity), (c) shows the ground truth, (d) shows the result of Gabor wavelet
convolution with (b,e) shows the result of a (35 × 35) median filter applied to (d,f) shows line traces
of (e). It is clear, when comparing (e) to (c), that the heatmaps partial match within the GM region,
but almost not at all in the Sol region. The line trace visually confirms that the fibre traces are roughly
aligned with the visible fibres in the raw image in the GM muscle and the second compartment of
the Sol muscle only. The heatmap (d,e) does not consistently represent the segmentation of muscle
compartments shown by the ground truth.
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3.2. DCNN Method

The deep learning methods were evaluated using the optimal models as identified by
cross-validation (see Figure 5). The output heat-map from the optimal neural networks were compared
to the ground truth using mean difference (MD) and mean absolute error (MAE), to be compared
with the wavelet method (see Table 1). Visual comparisons were also made by comparing the neural
networks’ predicted heat-maps to the ground truth heat-maps (see Figure 6). The most immediate
result of visual comparisons was the ability of the DCNN to “colour-code” the correct regions; the GM
and Sol (compartment 1) muscles typically present with opposing fibre orientations, with negative
angles in the Sol muscle and positive angles in the GM muscle. In almost all images the DCNN was
able to identify the Sol and GM muscles by predicting correct signs of the angles for each compartment.
This was broadly true for entire muscle regions, even where there were no visibly identifiable fibres
(see Figure 6). The CNN and ResNet models showed more difficulty in identifying regions and features
of this drawback are visible in the graphics presented in Figure 6; horizontal striping patterns can
be seen in the heatmaps, indicating the networks learned templates for each muscle position, which
implies that if it has not seen an example muscle of a certain shape/thickness before, it will not
generalize to it—whereas the DCNN has a lot of built in position invariance due to deconvolution and
up-sampling via the max pooling argmax.
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each architecture. Notice the ResNet without dropout enabled suffers from severe over-fitting.

Table 1. Table of results per muscle/compartment. This table shows results computed by comparing
predictions of each method, over all pixels (128 × 128 = 16,384), to the ground truth.

Muscle Error Measure Namburete, et al. [7] CNN [23] ResNet [23] DCNN
(Proposed)

GM
MD 1 7.57◦ ± 8.37◦ 6.67◦ ± 10.21◦ 6.75◦ ± 11.06◦ 3.27◦ ± 10.10◦

MAE 2 8.23◦ ± 7.72◦ 8.08◦ ± 9.13◦ 8.68◦ ± 9.61◦ 6.87◦ ± 8.09◦

RMSE 3 11.29◦ 12.19◦ 12.96◦ 10.62◦

Sol 1
MD 1 −22.84◦ ± 14.01◦ −10.18◦ ± 9.37◦ −11.28◦ ± 9.63◦ −5.67◦ ± 10.59◦

MAE 2 23.09◦ ± 13.61◦ 11.19◦ ± 8.14◦ 12.06◦ ± 8.63◦ 9.01◦ ± 7.94◦

RMSE 3 26.80◦ 13.84◦ 14.83◦ 12.01◦

Sol 2
MD 1 1.61◦ ± 6.92◦ 6.07◦ ± 8.76◦ 6.08◦ ± 7.87◦ 6.17◦ ± 9.57◦

MAE 2 5.03◦ ± 5.01◦ 8.76◦ ± 8.55◦ 7.86◦ ± 6.09◦ 8.94◦ ± 7.05◦

RMSE 3 7.11◦ 10.66◦ 9.95◦ 11.39◦

1 Mean difference = 1
n ∑ xi − yi . 2 Mean absolute error = 1

n ∑|xi − yi |. 3 Root mean square error =
√

1
n ∑(xi − yi)

2.
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respectively, ground.
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Further to quantitative (Table 1) and visual (Figure 6) analysis, we present additional time-series
data for a representative test participant (Figure 7). The DCNN (and the other three method) estimates
regional fibre orientation independently for each frame. Figure 7 shows estimates of sequential
frames for a representative test participant. The temporal variation in fibre orientation represents the
changes during muscle contraction very well in GM, but less well for the Sol 1 and 2 compartments.
The continuity of the fibre angle between frames demonstrates the potential usefulness of this method
to estimate time-varying behaviour, in real-time, without the accumulation of error (drift) that results
from inter-frame tracking methods.J. Imaging 2018, 4, x FOR PEER REVIEW  11 of 15 
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Figure 7. DCNN fibre orientation time-series. Left: shows fibre traces predicted by the DCNN at time
points corresponding to a maximum voluntary contraction beginning at 0 s and ending at 2.2 s, where
the time point is indicated below each graphic. Notice the sharp increase in angles of the fibres in the
GM muscle as the contraction develops from top to bottom graphic (0.6–1.8 s). Right: shows, for a
representative participant, average fibre angles, predicted by the DCNN over a maximum voluntary
contraction, for each muscle (solid blue line), plus and minus 1 standard deviation (dashed blue line)
and average fibre angles of the ground truth for the same contraction (solid green lines), plus and
minus 1 standard deviation (dashed green lines). For GM, agreement is high until the latter part of the
contraction, whereas for Sol (1 and 2), estimation appears to have failed, although compartment 1 does
show an increased standard deviation which tracks the increase in angle, which may indicate curvature
in the model and not in the labels. We note that this approach is superior to feature tracking [34]
because there is no possibility of tracking drift with the proposed method. Please see supplementary
material for a video of the fibre line traces in this figure.

4. Discussion

In this paper, we presented an investigation into the feasibility of using deep learning methods
for developing arbitrary full spatial resolution regression analysis of B-mode ultrasound images of
human skeletal muscle. Four different methods were compared, feature engineering, convolutional
neural networks (CNN), residual convolutional neural networks (ResNet) and deconvolutional neural
networks (DCNN), for estimating full spatial resolution muscle fibre orientation in multiple deep
muscle layers, directly from B-mode ultrasound images. The efficacy of this work has shown that the
deep learning methods are feasible and particular deep learning methods, DCNNs, work best due to
the spatial organization of the output regression map, which intelligently reduces the number of free
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parameters, preventing over-fitting. The previous established approach, wavelets, lacked accuracy
and is limited in application, due to an inherent inability to ignore spurious fibre structures and the
requirement for accurate segmentation to apply different wavelet frequencies within different regions.

Analysis of each deep learning method revealed the strength of the approach and moreover,
the strength of the DCNN approach. Both CNN and ResNets outperformed the wavelet approach
(see Table 1) in GM and Sol 1 muscles. However, the DCNN outperformed the CNN and ResNet
markedly. Our interpretation is that the CNN/ResNet methods learned templates of the fibre
orientation maps based on muscle dimensions in the training set, resulting in comparatively (to DCNN)
poor localization of the muscle regions. Artefacts of this can be seen in Figure 6, where the heatmaps
of CNN/ResNet present with horizontal striping patterns, which are very likely different muscle
boundary templates which have been combined to make the new orientation map. The DCNN showed
the remarkable ability localize muscle regions and roughly match the colour intensity of the heatmap,
which resulted in accurate and visibly pleasing fibre traces (see Figures 6 and 7). Figure 6 shows
examples of CNN/ResNet methods performing better than DCNN in specific regions (e.g., rows 3–4 in
the Sol 1 region), which can also be explained with the templates argument; i.e., where the test image
did not match the templates well, performance was weaker and where the test image matched the
templates well, performance was stronger.

In contrast to the deep learning methods, Figure 1 shows a representative output from
the wavelet method, which appeared to perform well on the GM muscle and not on the other
2 muscles/compartments. In the Sol 1 muscle, where fibres are visible, some the wavelet analysis
produces a very localized response which is roughly correct, but unfortunately this type of performance
was common over the data set, resulting in very poor results in Table 1. However, the wavelet method
did show comparable performance to the DCNN in the GM muscle, which is certainly because of
the texturally well-defined fibre structures in this region. Thee deep muscles in this muscle group
often present differently, due to differences in architecture and other arguably more minor reasons
like attenuation of the ultrasound beams, reflections, image artefacts and signal dropout. For this
reason, results of all four methods are adversely affected in the deeper muscles. In the deepest
compartment, defying the logical argument we just presented, the wavelet method produced notably
the best performance. It is worth noting that the angles in that muscle region, annotated by the expert,
were very commonly 0◦, or some positive or negative number close to 0◦. The wavelet method used
local neighbourhood (35 × 35) median averaging of angles in a range of (–90:90). Therefore, our
interpretation is that if we take the median of a set of random positive and negative angles, we would
“guess” fibre orientations, close to the ground truth. Although, this could be a genuine result, the other
issues with the wavelet approach are more devastating, even when compared to the CNN/ResNet
approaches and particularly when compared to the DCNN.

The results presented in Table 1 for the deep learning methods represent a truly generalized and
thoroughly tested expectation of real-world performance. Test results were acquired by leave one
participant out testing for all 8 participants (8-fold cross-validation; see Figure 5), which is the harshest
possible test of performance and generalization for this approach, requiring intensive training of 48
neural networks, which took less than a week on the latest GPU compute technology (GTX 1080 Ti).
Depending upon the problem, handcrafting features such as Gabor wavelets can be much more time
consuming and must be tailored to solve specific problems. What is more, the results we present in
Table 1 on the wavelet method, represent the optimal performance given accurate segmentation, since
different wavelet frequencies and image filters were applied to different regions of the image—this
would obviously not be possible without accurate and presumably automatic segmentation.

The implications of the efficacy of DCNNs for regression analysis with respect to skeletal muscle
ultrasound, is in the application to other, high-impact research problems. The ability to produce a full
resolution map of tissue strain, for example, would very likely and very positively impact the way
musculoskeletal healthcare was delivered. Currently, elastography is the only non-invasive method for
estimating strain within specific skeletal muscles [35] and it has serious theoretical flaws; elastography
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currently has a maximum temporal resolution of 1 Hz and due to the anisotropy of skeletal muscle,
the theory is only empirically validated for skeletal muscle when the ultrasound probe is parallel to
the fibres [36]. DCNNs can be used to estimate full resolution motion maps [26]. Such technology
would allow localization of muscle twitches, which has applications in the diagnosis and monitoring of
motor neurone disease [1,2]. Analysis of local strain would also provide a non-invasive technology for
diagnosis, targeting and monitoring treatment of conditions such as dystonia (a neurological condition
causing painful muscle cramping/spasming). For example, diagnosis of cervical dystonia is currently
done by needle electromyography (EMG), which is highly invasive, limiting/preventing treatment
and diagnosis of deeper muscles (near the spine in the back and neck). We note that these applications
are beyond the scope of the wavelet approach, whereas the DCNN method opens this entire domain
for investigation, since we demonstrate feasibility in the application, even when constrained by small
data sets. Our DCNN implementation can process an image (copy image to GPU, feedforward through
the network and copy predicted fibre orientation map from GPU) at approximately 165 images per
second, which is applicable to real-time operation within a clinic, lab or hospital.

5. Conclusions

The novel contribution of this paper is in the application of neural networks to skeletal muscle
ultrasound for full spatial regression analysis of muscle fibre orientation. We provided the first
comprehensive analysis of an existing and a novel computational method for estimating full regional
fibre orientation from ultrasound images of human skeletal muscle. We have proposed a novel
application of deep learning to a long-standing and challenging problem and demonstrated state of the
art results. We present analyses in a form which is comparable to any future developments and we also
publish our ultrasound and ground truth data to support this end (see Supplementary Material for
Matlab data files). The application of DCNNs to this problem has opened new potential to hi-resolution
analysis of skeletal muscle, from prediction of strain and motion maps to segmentation of muscles
and other structures of interest. This paper provides further evidence that deep learning methods can
surpass state of the art performance, even when there is not an abundance of labelled data available,
just by organizing the architecture (deconvolutions) of the network. With additional data, we propose
that this project could easily be extended successfully and this preliminary muscle analysis step could
very likely form part of a skeletal muscle analysis system which accurately predicts the passive and
active muscle forces non-invasively directly from single ultrasound images and sequences. Such a
contribution could enable early diagnoses of diseases such as MND and would enable personalized
musculoskeletal medical diagnosis, monitoring, treatment targeting and care, for disease such as
stroke, back pain, neck pain, dystonia and myositis.

Supplementary Materials: The following are available online at www.mdpi.com/2313-433X/4/2/29/s1,
Video S1: The fibre line traces in Figure 7.
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