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Abstract: In medical applications, the accuracy and robustness of imaging methods are of crucial
importance to ensure optimal patient care. While photoacoustic imaging (PAI) is an emerging modality
with promising clinical applicability, state-of-the-art approaches to quantitative photoacoustic imaging
(qPAI), which aim to solve the ill-posed inverse problem of recovering optical absorption from the
measurements obtained, currently cannot comply with these high standards. This can be attributed to
the fact that existing methods often rely on several simplifying a priori assumptions of the underlying
physical tissue properties or cannot deal with realistic noise levels. In this manuscript, we address this
issue with a new method for estimating an indicator of the uncertainty of an estimated optical property.
Specifically, our method uses a deep learning model to compute error estimates for optical parameter
estimations of a qPAI algorithm. Functional tissue parameters, such as blood oxygen saturation,
are usually derived by averaging over entire signal intensity-based regions of interest (ROIs). Therefore,
we propose to reduce the systematic error of the ROI samples by additionally discarding those pixels
for which our method estimates a high error and thus a low confidence. In silico experiments show an
improvement in the accuracy of optical absorption quantification when applying our method to refine
the ROI, and it might thus become a valuable tool for increasing the robustness of qPAI methods.

Keywords: confidence learning; uncertainty estimation; quantitative photoacoustic imaging;
error analysis; deep learning

1. Introduction

Photoacoustic imaging (PAI) has been shown to have various medical applications and to
potentially benefit patient care [1–3]. It is a non-invasive modality that offers the ability to measure
optical tissue properties, especially optical absorption µa, both locally resolved and centimeters deep in
tissue. Knowledge of these properties allows for deriving functional tissue parameters, such as blood
oxygenation SO2, which is a biomarker for tumors and other diseases [4]. The photoacoustic (PA) signal
is a measure of the pressure waves arising from the initial pressure distribution p0, which depends
mainly on µa, the Grüneisen coefficient Γ, and the light fluence φ, which is shaped by the optical
properties of the imaged tissue [5]. Because of this dependence, the measured p0 is only a qualitative
indicator of the underlying µa, because even if the initial pressure distribution could be recovered
perfectly, estimation of the light fluence is an ill-posed inverse problem that has not conclusively been
solved [6].

In order to derive quantitative information from initial pressure p0 reconstructions of
photoacoustic images, one has to account for the light fluence and solve the optical inverse problem.
Most methods model the distribution of optical absorption coefficients by iteratively updating the
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distribution after computing the solution of a forward model (cf., e.g., [7–14]) with inclusion of the
acoustic inverse problem [15,16]. Alternatively, in multispectral photoacoustic imaging applications,
the functional parameters are approximated directly by using a variety of spectral unmixing techniques
(cf., e.g., [17–19]). Recently, machine learning-based methods for quantitative PAI (qPAI) have been
proposed. These encompass end-to-end deep learning on 2D images [20] or the estimation of voxel
point estimates with Context Encoding qPAI (CE-qPAI) [21], which incorporates the 3D p0 context
around each voxel into a single feature vector that is used to learn the fluence at that particular
voxel. Some of the listed approaches to qPAI have been shown to work in ideal in silico conditions
or on specific datasets. At the same time, they have proven difficult to use in clinical applications,
which can be attributed to a lack of robustness caused by a priori assumptions that are made regarding,
e.g., illumination, probe design, calibration factors, or scattering properties [22]. Developing tools to
estimate systematic errors and gain information on the quantification of uncertainties in PAI could
thus be of great benefit and could be utilized to improve quantification accuracy.

Uncertainty quantification and compensation is an essential research objective in computer sciences
and has been studied extensively in various fields, including image-guided navigation (cf., e.g., [23,24]),
multi-modal image registration (cf., e.g., [25,26]), and lesion detection [27]. Current approaches to obtaining
confidence intervals for neural network estimates include, e.g., dropout sampling (cf., e.g., [28–31]),
probabilistic inference (cf., e.g., [32–34]), sampling from latent variables (cf., e.g., [35–37]), or using
ensembles of estimators (cf., e.g., [38,39]). The exploration of such uncertainty quantification methods in
the field of PAI, however, has only just started (cf., e.g., [40–43]).

In a recent publication [44], we showed a method for uncertainty quantification for the CE-qPAI
method. A key result was that the practice of evaluating PA images over a purely input noise-based
(aleatoric) region of interest (ROI) can be improved when also taking into account model-based
(epistemic) uncertainty. To achieve this, we combined both sources of uncertainty into a joint
uncertainty metric and used this to create an ROI mask on which to compute the statistics. A limitation
to that approach could be seen in the fact that we used an uncertainty model specially tailored toward
the CE-qPAI method. To overcome this bottleneck, we expand on our prior work in this contribution
and present a method that yields confidence estimates by observing the performance of an arbitrary
qPAI algorithm and uses the estimates to refine an ROI that was defined based on aleatoric uncertainty.

For validation in the context of qPAI, we applied this methodology to different PA signal
quantification algorithms to investigate whether the approach is applicable in a general manner.
We hypothesize that an estimated error metric is indicative of the actual absorption quantification
error and that we can consequently improve on µa estimations by evaluating on an ROI that is further
narrowed down with a confidence threshold (CT).

2. Materials and Methods

This section gives an overview of the confidence estimation approach, the experiments, and the
used dataset and briefly introduces the different qPAI methods that are being used.

Method for Confidence Estimation. Our approach to confidence estimation can be applied to
any qPAI method designed to convert an input image I (p0 or raw time-series data) into an image
of optical absorption Iµa . In order to not restrict the qPAI method to a certain class (e.g., a deep
learning-based method), we made the design decision to base the confidence quantification method on
an external observing method. For this, we use a neural network, which is presented tuples of input
image I and absorption quantification error eµa in the training phase. When applying the method to a
previously unseen image I, the following steps are performed (cf. Figure 1).
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Figure 1. Visualization of the proposed method for confidence estimation using an observing neural
network as an error model. The estimator generates an output for a given input and the error model is
used to obtain an estimate of the quantification error from the same input data. The region of interest
(ROI), which is based on the aleatoric uncertainty Ialeatoric extracted from the input data, can then be
refined using the error estimates Iepistemic of the error model as a confidence threshold (CT).

1. Quantification of aleatoric uncertainty: I is converted into an image Ialeatoric reflecting the
aleatoric uncertainty. For this purpose, we use the contrast-to-noise-ratio (CNR), as defined
by Welvaert and Rosseel [45], as CNR = (S− avg(b))/std(b), with S being the pixel signal
intensity, and avg(b) and std(b) being the mean and standard deviation of all background pixels
in the dataset. Using this metric, we predefine our ROI to comprise all pixels with CNR > 5.

2. Quantification of epistemic confidence: I is converted into an image Iepistemic reflecting the
epistemic confidence. For this purpose, we use the external model to estimate the quantification
error eµa of the qPAI algorithm.

3. Output generation: A threshold over Ialeatoric yields a binary image with an ROI representing
confident pixels in Iµa according to the input signal intensity. We then proceed to narrow down
the ROI by applying a confidence threshold (CT) which removes the n% least confident pixels
according to Iepistemic.

Deep Learning Model. As our external observing network, we used an adapted version of a
standard U-Net [46] implemented in PyTorch [47]. The model uses 2× 2 max pooling for downscaling,
2× 2 transpose convolutions for upscaling, and all convolution layers have a kernel size of 3× 3
and a padding of 1× 1. We modified the skip connections to incorporate a total of three convolution
layers and thus generate an asymmetric U-Net capable of dealing with different input and output
sizes (cf. Figure 2). This is necessary to enable the network to directly output reconstructed initial
pressure or optical absorption distributions when receiving raw time-series data as input, as the data
have different sizes on the y-axis. Specifically, the second of these convolutions was modified to have
a kernel size of 3× 20, a stride of 1× 20, and a padding of 1× 9, effectively scaling down the input
along the y-axis by a factor of 20. To be more robust to overfitting, we added dropout layers with a
dropout rate of 25% to each convolutional layer of the network. Note that a recent study [48] suggests
that the U-net architecture is particularly well-suited for medical imaging applications because of its
ability to generate data representations on many abstraction levels.
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Figure 2. Visualization of the deep learning model used in the experiments: a standard U-Net structure
with slight modifications to the skip connections. The (x, y, c) numbers shown represent the x and y
dimensions of the layers, as well as the number of channels c. Specifically, in this figure, they show the
values for a 128 × 128 input and 128 × 128 output. The center consists of an additional convolution
and a skip convolution layer to enable different input and output sizes.

Quantitative PAI Methods. We applied our approach to confidence estimation to three different
qPAI methods; a naïve quantification method, as well as two different deep learning-based approaches
(cf. Figure 3). The three methods are detailed in the following paragraphs.

Naïve Fluence Correction: As a naïve quantitative PAI (qPAI) reference method that does not use
a deep learning model to reconstruct a quantitative absorption estimate µ̂a, we performed fluence
compensation similar to, e.g., [49,50]. To achieve this, we used a simple Monte Carlo fluence simulation
φh based on the same hardware setup as used in the dataset, without any vascular structures inside the
volume but instead with a homogeneous absorption coefficient of 0.1 cm−1 and a reduced scattering
coefficient of 15 cm−1. To quantify optical absorption with this method, we corrected the simulated p0

images with φh by calculating µ̂a = p0/φh.
Fluence Correction: Fluence correction refers to a two-stage algorithm, where the initial pressure is

corrected by an estimation of the underlying light fluence. The quantification model for this method
uses two deep neural networks, N1 and N2, with adapted U-Net architectures, as described above
(cf. Figure 2). N1 yields an estimation of the underlying fluence φ̂ from the input data S: N1(S) = φ̂,
and N2 is used to obtain the initial pressure distribution from the input data p̂0: N2(S) = p̂0 with
the aim of also reducing the noise of S. When using PA raw time-series data as the input, it has to
be considered that the decoder and encoder sections of N2 are asymmetric and the described U-Net
adaptation has to be used. The optical absorption coefficients are then estimated from the results of
N1 and N2 by computing µ̂a = N2(S)/N1(S) = p̂0/φ̂ (for a visual representation of the method see
Figure 3a).

Direct Absorption Estimation: Recently, a deep learning method for end-to-end estimation of
absorption and derived functional parameters from p0 distributions was proposed [20]. In a similar
fashion, we also use a deep learning model N with a modified U-Net architecture (cf. Figure 2) to
directly estimate µa from the input signal S: N(S) = µ̂a (for a visual representation of the method see
Figure 3b). This time, µa estimation is done without the intermediate step of fluence correction, which
might be more sensitive to errors due to error propagation or the presence of artifacts and noise.



J. Imaging 2018, 4, 147 5 of 15

Figure 3. Visualization of the two methods for absorption quantification with subsequent confidence
estimation. (a) A quantification approach based on fluence estimation. In our implementation,
the denoised initial pressure p̂0 and the fluence φ̂ distributions are estimated using deep learning
models. These are used to calculate the underlying absorption µ̂a. An error model then estimates
the quantification error and, in combination with an aleatoric uncertainty metric, a region of interest
is defined. (b) An approach in which one model is used to directly estimate µ̂a from the input data.
Ialeatoric is calculated on the basis of the input data and Iepistemic is estimated with a second model.

Validation Data. We simulated an in silico dataset containing 3600 training samples,
400 validation samples, as well as 150 calibration and test samples which were used in all experiments.
Each data sample consists of the ground truth optical tissue parameters, the corresponding light
fluence, and the initial pressure distribution simulated with the mcxyz framework [51], which is a
Monte Carlo simulation of photon propagation where we assume a symmetric illumination geometry
with two laser outputs. The data sample also comprises raw time-series data simulated using the
k-Wave [52] toolkit with the first-order 2D k-space method, assuming a 128-element linear array
ultrasound transducer with a central frequency of 7.5 MHz, a bandwidth of 60%, and a sample rate of
1.5 × 10−8 s. The illumination and ultrasound geometry are depicted in Figure 4. Each tissue volume
sample comprises 1–10 tubular vessel structures, whose absorption coefficients µa range from 2 to
10 cm−1 in vessel structures and are assumed constant with 0.1 cm−1 in the background. We chose a
constant reduced scattering coefficient of 15 cm−1 in both background and vessel structures. Additional
details on the simulation parameters can also be found in our previous work [53]. The raw time-series
data was noised after k-space simulation with an additive Gaussian noise model of recorded noise of
our system [54]. For the experiments where we directly use p0, we noise the initial pressure distribution
with a Gaussian additive noise model, as also described in [7]. In our case, the noise model comprised
an additive component with (5± 5)% of the mean signal and a multiplicative component with a
standard deviation of 20% to simulate imperfect reconstructions of p0. The data used in this study is
available in a Zenodo repository [55].
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Figure 4. Depiction of the illumination geometry and the transducer design which is based on our
Fraunhofer DiPhAS photoacoustic imaging (PAI) system [54]. (a) The ultrasound transducer design
with the position of the laser output and the transducer elements, as well as the imaging plane; (b)
one-half of the symmetric transducer design, where the laser outputs are in parallel left and right to the
transducer elements over a length of 2.45 cm.

Experimental Design. We performed five in silico experiments to validate our approach to
confidence estimation in qPAI—one experiment with naïve fluence correction applied to p0 data, as well
as our different configurations for quantification with deep learning. Both methods shown in Figure 3
are applied to initial pressure p0, as well as raw time-series data. We used the Trixi [56] framework
to perform the experiments. All qPAI models were trained on the training set and the progress was
supervised with the validation set. We also used the validation set for hyperparameter optimization of
the number of training epochs and batch sizes. We trained for 50 epochs, showing the network 104

randomly drawn and augmented samples from the training set; each epoch had a learning rate of
10−4, used an L1 loss function, and augmented every sample with a white Gaussian multiplicative
noise model and horizontal mirroring to prevent the model from overfitting. Afterward, we estimated
the optical absorption µ̂a of the validation set, calculated the relative errors eµa = |µ̂a − µa|/µa, and
trained the external observing neural networks on the errors of the validation set with the same
hyperparameters, supervising the progression on the calibration set. For better convergence, we used
the weights of the p0 estimation model as a starting point for the eµa estimation deep learning models.
All results presented in this paper were computed on the test set.

3. Results

We report the relative absorption quantification error eµa at various different confidence thresholds
(CT). To this end, we evaluated only the top n percent most confident estimates by excluding all
estimates below a certain CT. We performed this evaluation over all ROI image samples of the
respective dataset and examined the relative changes in eµa compared with the evaluation over all
ROI pixels. This was done in five different in silico experiments, corresponding to the qPAI methods
when applied to initial pressure, as well as raw time-series input data. Our findings are summarized
in Figure 5.
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Figure 5. Quantification error as a function of the confidence threshold (CT) for five different
quantification methods. The line shows the median relative absorption estimation error when
only evaluating with the most confident estimates regarding CT, and the transparent background
shows the corresponding interquartile range. Naïve: Fluence correction with a homogeneous fluence
estimate; Fluence raw/p0: Deep learning-based quantification of the fluence applied to p0 and raw
time-series input data and subsequent estimation of µa; Direct raw/p0: End-to-end deep learning-based
quantification of µa applied to p0 and raw time-series input data.

Figure 5 shows the absorption quantification error eµa for all five experiments for confidence
thresholds CT ranging from 10 to 100%. In all cases, the error decreases when excluding more
pixels with a higher estimated error. When only considering the top 50% most confident estimates,
our method yields a decrease in the error eµa of up to approx. 30% (increasing to up to about a 50%
improvement when evaluating only the top 10% of the most confident estimates). Figure 6 shows violin
plots visualizing the changes in the distribution of eµa when applying different confidence thresholds
CT. The results reveal a meandering of the distribution toward lower error values. Note that the results
are only given for the ROI. When computing the statistics over the entire image (thus decreasing the
difficulty of the problem due to the homogeneous background), the median quantification error drops
to about 0.1% (direct estimation), 5–10% (fluence correction), and 20% (naïve approach).

Figure 7 shows representative images of the experiment corresponding to the end-to-end direct µa

quantification method applied to p0 data. It shows samples of the test set comprising the best, median,
and worst result when applying a 50% CT to narrow down the ROI. The results show a maximum
increase of nearly 80% in accuracy in the best case while achieving a median improvement of about
29% and worsening the quantification results by 28% in the worst case from the test set. Analogous
illustrations for the other experiments can be found in Appendices A–D.
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Figure 6. Visualization of the changes in the distribution of the absorption quantification error eµa

when applying different confidence thresholds CT = {100%, 50%, 10%}. The plot shows results for all
five conducted experiments. The white line denotes the median, and the black box corresponds to the
interquartile range. Outliers of eµa with a value greater than 100% have been omitted from this plot.

Figure 7. Sample images of the end-to-end direct µa quantification method applied to p0 data, showing
the best, the worst, and the median performance of our method when considering only the 50% most
confident quantification estimations. All images show the (a) ground truth absorption coefficients
(b) reconstructed absorption, (c) error estimate from external model, (d) the actual quantification error.

4. Discussion

In this work, we present a method which uses estimated confidences in the context of
photoacoustic signal quantification to increase the accuracy of the quantification algorithms. In theory,
the proposed method is independent of the underlying qPAI method, as it uses a deep learning
model to observe the errors resulting from the quantification method in order to provide confidence
estimates. While the application of our method to other state-of-the-art qPAI methods is the subject
of future work, we aimed to show the general applicability of our method by also incorporating a
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naïve fluence compensation method into the experiments. Our results suggest that using a method to
estimate confidence information to refine a region of interest for subsequent computations might be a
valuable tool for increasing the robustness of qPAI methods and could be easily integrated in future
qPAI research.

We hypothesized that our confidence metric is indicative of eµa . In the experiments, we showed
that a deep learning model is able to learn a representation of the errors of the quantification method
leading to error improvements of 10–50% in region-of-interest structures and yielding up to 5-fold
improvements in background structures. Furthermore, Figure 5 shows that the absorption estimation
error does not decrease monotonously, especially for the qPAI methods that yield more accurate results.
One reason for this might be that the confidence estimates are not correlated to the quantification
error and that low confidences might still correspond to low errors. One has to point out the worse
performance of the quantification methods when applied directly to raw time-series data. One reason
for this might be that the addition of the acoustic inverse problem and the inclusion of a realistic noise
model greatly increased the complexity of the problem and reduced the amount of information in the
data due to, e.g., limited-view artifacts. At the same time, we did not increase the number of training
samples or change the methodology to account for this.

The dataset simulated for the experiments was specifically designed such that out-of-plane fluence
effects cannot occur, as the in silico phantoms contain only straight tubular vessel structures that run
orthogonal to the imaging plane. Additionally, other a priori assumptions of the parameter space
were made, such as a constant background absorption, an overall constant scattering coefficient, and a
fixed illumination geometry. Due to the homogeneous nature of the background structure, the errors
observed in our study are highly specialized to our dataset. This is especially apparent with the direct
estimation method, as here, eµa is never greater than 0.2%. As such, we focus on reporting the errors in
the ROI, as only reporting the results of the entire images would be misleading. In order for the method
to generalize to more complex or in vitro datasets and yield similar µa and confidence estimation
results, more elaborate and diverse datasets would need to be simulated. Nevertheless, the experiments
demonstrate that applying an ROI threshold based on the estimation of the quantification error can
lead to an increase in accuracy for a given dataset regardless of the underlying qPAI method.

From a qPAI perspective, end-to-end deep learning-based inversion of PA data is feasible in
specific contexts and for specific in silico datasets, as shown previously [20] and in this work. However,
PA signal quantification cannot be regarded as solved in a general manner. One of the main reasons is
the large gap between simulated in silico data and in vivo recordings. In order for deep learning to
tackle this problem, either highly sophisticated unsupervised domain adaptation methods have to be
developed, or a large number of labeled correspondences between the simulation domain and real
recorded images need to be provided, which is not currently feasible due to the lack of methodology
to reliably measure ground truth optical properties in in vivo settings. However, with the promising
progress in PA image reconstruction from limited-view geometries with deep learning techniques
(cf., e.g., [57,58]), it might be possible to start bridging the gap and to improve on the current methods
for qPAI.
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Abbreviations

The following abbreviations are used in this manuscript:

CNR Contrast-To-Noise-Ratio
PA Photoacoustic
PAI Photoacoustic Imaging
qPAI quantitative PAI
ROI Region of Interest
CT Confidence Threshold

Appendix A. Results for the Naïve Fluence Compensation Method

Figure A1. Sample images showing the best, the worst, and the median performance of our method
when considering only the 50% most confident quantification estimations. All images show the
(a) ground truth absorption coefficients (b) reconstructed absorption, (c) error estimate from external
model, (d) the actual quantification error.



J. Imaging 2018, 4, 147 11 of 15

Appendix B. Results for Fluence Correction on p0 Data

Figure A2. Sample images showing the best, the worst, and the median performance of our method
when considering only the 50% most confident quantification estimations. All images show the
(a) ground truth absorption coefficients (b) reconstructed absorption, (c) error estimate from external
model, (d) the actual quantification error.

Appendix C. Results for Fluence Correction on Raw PA Time Series Data

Figure A3. Sample images showing the best, the worst, and the median performance of our method
when considering only the 50% most confident quantification estimations. All images show the
(a) ground truth absorption coefficients (b) reconstructed absorption, (c) error estimate from external
model, (d) the actual quantification error.
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Appendix D. Results for Direct µa Estimation on Raw PA Time Series Data

Figure A4. Sample images showing the best, the worst, and the median performance of our method
when considering only the 50% most confident quantification estimations. All images show the
(a) ground truth absorption coefficients (b) reconstructed absorption, (c) error estimate from external
model, (d) the actual quantification error.
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