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Abstract: Image reconstruction in multispectral computed tomography (MSCT) requires solving
a challenging nonlinear inverse problem, commonly tackled via iterative optimization algorithms.
Existing methods necessitate computing the derivative of the forward map and potentially its
regularized inverse. In this work, we present a simple yet highly effective algorithm for MSCT
image reconstruction, utilizing iterative update mechanisms that leverage the full forward model
in the forward step and a derivative-free adjoint problem. Our approach demonstrates both fast
convergence and superior performance compared to existing algorithms, making it an interesting
candidate for future work. We also discuss further generalizations of our method and its combination
with additional regularization and other data discrepancy terms.

Keywords: inverse problems; coupled physics problems; multispectral CT; derivative-free iteratzions;
inverse problems

1. Introduction

Classical computed tomography (CT) is based on the inversion of the linear Radon
transform, where a scalar-valued attenuation map µ : X → R of the patient is recovered
from observation of its Radon transformRµ : L → R derived from projection data. Here
and below X ⊆ Rd is the image domain in d = 2, 3 dimensions, and L is the set of
integration lines. While sufficient in many applications, the linear problem ignores the
polychromatic nature of the X-rays and the energy-dependent absorption characteristics of
real-world objects. The sample is more accurately represented by a family of attenuation
maps µ(e) : X → R dependent on the photon energy e ∈ (0, ∞). Recovering a single µ
from projection data using a single energy bin results in a mixture of density maps from
different energies resulting in severe nonuniqueness. Additionally, the nonlinearity results
in beam hardening artifacts that may be partially accounted for by iterative algorithms or
analytic modeling [1–6]. In order to overcome such weaknesses, the idea of multispectral
CT (MSCT) is to measure projection data for different energy bands, which are then used
to reconstruct multiple attenuation maps. The reconstruction problem, however, becomes
nonlinear and much more challenging than pure Radon inversion [7–13]. In this work, we
develop a simple and efficient strategy for tackling the nonlinearity.

1.1. Multispectral CT

Specifically, in this work, we use the material decomposition paradigm in MSCT. In
the material decomposition approach, it is assumed that the energy-dependent attenuation
maps µ(e) can be written as µ(e, x) = ∑M

m=1 µm(e) fm(x), where f1, f2, . . . , fM : X → R are
the densities of M separate materials (with fm(x) ∈ [0, 1]) to be recovered and µm(e) are
known and tabled absorption characteristic of the m-th material. The aim is to recover the
material densities from data collected for several energy bands. This does not only allow
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to improve image quality, but also offers a broad range of applications, as it reconstructs
multiple images encoding different characteristics of specific regions, which enables a
deeper understanding of the object under examination. Recent significant advancements
in the manufacturing of energy-sensitive sensors [14,15] has considerably increased the
interest in and applicability of MSCT.

Assuming B spectral measurements Y1, . . . , YB, the material decomposition problem
in MSCT can be written as the problem of recovering f1, . . . , fM based on the modeling
equation (Yb)

B
b=1 = Φ

(
(R fm)M

m=1
)
. Here,R fm is the Radon transform applied to the m-th

material density map fm, and Φ is a nonlinear map. Classical CT would correspond to the
unrealistic case where the application of the pointwise logarithm in the modeling equation
results in a linear inverse problem. In MSCT, one accounts for the full nonlinear problem
for the unknown density maps fm.

1.2. Two-Step and One-Step Algorithms

Various algorithms have been developed for solving the reconstruction problem in
MSCT. They can be broadly classified into two categories: two-step methods and one-
step algorithms. The idea of earlier two-step methods is to perform Radon inversion and
material decomposition in two separate steps. Material decomposition can be performed
either in the projection domain L (before Radon inversion) or in the image domain X (after
Radon inversion). Both methods have their specific advantages and disadvantages. The
image-domain decomposition approach allows incorporating prior information about the
objects that is naturally contained in the image domain X . However, the nonlinear nature
of the problem leads to approximate linear models that introduce severe reconstruction
artifacts. The projection-domain decomposition approach, on the other hand, allows
working with the correct nonlinear model. However, the prior structure in the Radon
domain is not directly available. See the works [12,13,16–18] and references therein for
proposed two-step approaches.

One-step methods reconstruct the material densities f1, . . . , fM through iterative min-
imization techniques and thus overcome the drawbacks of both two-step methods. For
some one-step algorithms, we refer to [7,8,11,19–24]. Despite their superior performance,
such one-step iterative algorithms are computationally expensive. Existing methods re-
quire many iterative steps due to poor conditioning of the problem with computationally
expensive iterative steps. The algorithms proposed in this paper are specific one-step
algorithms that address these two drawbacks of existing one-step methods. The structure
of our proposed algorithm is shown in Figure 1.

1.3. Our Contributions

The following list summarizes the main contributions of this paper:

• We present a novel derivative-free algorithm designed to combine the advantages of
one-step and two-step approaches. To achieve this, we introduce a simple and compu-
tationally efficient iterative update that incorporates appropriate preconditioning.

• Image reconstruction is performed in the image domain, which naturally allows for the
inclusion of an image smoothness prior. Our method can be combined with additional
regularization. However, in order to show the method in its pure form, we will not
include such a modification.

• Our methods integrate benefits of two-step approaches by separating iterative updates
into two parts. Moreover, the main ingredient that makes the algorithm efficient
is the use of the full nonlinear forward model but linearization around zero for
the adjoint problem. In addition to avoiding computation and evaluation of the
derivative of the forward map, this also allows for including simple but efficient
channel preconditioning.
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Figure 1. Flowchart of the structure of the algorithms proposed in this work. Specifically, we
introduce CP-full and CP-fast, which differ in the specific form of the update ∆X (see Section 3.3).
Details on the recalibration step are given in Remark 1.

2. Mathematical Modelling of MSCT

We assume that the object to be imaged lies in some domain X ⊆ R2 and consists of a
combination of M different materials with densities fm : X → R with m = 1, . . . , M. Each
material has a separate mass attenuation coefficient µm : [0, ∞)→ [0, ∞), which is a known
function of the X-ray energy e. The total energy dependent (linear) X-ray attenuation
coefficient is then given by:

µ(x, e) =
M

∑
m=1

µm(e) fm(x) for (x, e) ∈ X ×R . (1)

Assuming that the material specific attenuation functions µm(e) are known, the goal is to
recover densities fm from indirect x-ray measurements using different energy bins.
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2.1. Continuous Model

We start with continuous modeling, where the quantities involved are functions on
continuous domains that will be discretized later. Suppose that X-ray energy with a known
incident spectral density I0(e) is sent along a line ℓ ∈ L from the source position to the de-
tector position. While propagating along ℓ, the X-rays are attenuated according to µ(x, e) de-
fined in (1). This results in an outgoing spectral density I1(e) = I0(e) exp(−

∫
ℓ µ(x, e)dℓ(x))

at the detector. The energy-sensitive detector with the spectral profile ŝ(e) records the
integral

∫ ∞
0 ŝ(e)I1(e)de. Denoting the product of the incident spectral density of the source

and the spectral sensitivity of the detector by s(e) ≜ I0(e)ŝ(e), referred to as the effective
spectrum, the recorded data are given by:

Y(s, ℓ) =
∫ ∞

0
s(e) exp

(
−
∫

ℓ
µ(x, e)dℓ(x))

)
de

=
∫ ∞

0
s(e) exp

(
−

M

∑
m=1

µm(e)
∫

ℓ
fm dℓ(x)

)
de . (2)

The data in Equation (2) represent a single measurement in MSCT. The goal of material
decomposition in MSCT is to determine the density distributions fm from multispectral
X-ray measurements obtained by varying the line ℓ and the effective spectra s.

For simplicity of presentation, we consider parallel beam mode, where any line ℓ = ℓ(θ, r)
is parametrized by its normal vector θ and its distance r from the origin. In this case,∫
ℓ fm dℓ(x) = R fm(θ, x) is given by the classical Radon transform of fm. Assuming further

a total number of B different effective spectra and writing f = (f1, . . . , fM), we obtain the
continuous MSCT forward model:

Y =

[∫ ∞

0
sb(e) exp

(
−

M

∑
m=1

µm(e)R(fm)
)

de
]

b=1,...B
. (3)

Equation (3) gives the complete continuous forward model in material decomposition
in multispectral CT. The unknown f consists of M functions f1, . . . , fM defined on the
image domain X and the data of B functions Y1, . . . , YB defined on the projection domain
L = S1 × R. The methods that we describe, however, would also work with a three-
dimensional image domain and a general projection domain L of lines in R3.

2.2. Discretization

In order to avoid technical details and to concentrate on the main ideas, we derive
the algorithm for the discrete forward model throughout this paper. For that purpose,
we represent the material densities via a discrete column vector X1, . . . , XM ∈ RNx and
the Radon transform via a matrix A ∈ RNy×Nx , where Nx is the number of discretization
points in the image domain and Ny is the number of lines used in the projection domain.
Furthermore, we discretize the effective energy spectra by vectors S1, . . . , SB ∈ RE and the
known material attenuations by vectors µ1, . . . , µM ∈ RE, where E is number of discretiza-
tion points of the energy variable. The discretization of (3) yields the following discrete
image reconstruction problem.

Problem 1 (Discrete MSCT image reconstruction problem). Recover the unknown
X ∈ RNx×M from data Y = F(X) + δ ∈ RNy×B where:

F(X) ≜ (S · expE×Ny
(−M · (AX)⊺))⊺ (4)

Here and below, we use the convention that the boldface notation expE×Ny
indicates that the scalar

function exp is applied pointwise to a vector in RE×Ny . Furthermore, in (4):

• The columns of X = [X1, . . . , XM] are the discrete material images;
• A ∈ RNy×Nx is the discretized Radon transform;
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• The columns of M = [M1, . . . , MM] ∈ RE×M are the discretized material attenuations;
• The columns of S⊺ = [S⊺

1 , . . . , S⊺
B] ∈ RE×B the discretized effective spectra;

• The columns of Y = [Y1, . . . , YB] are the observed spectral data.

Note that we included the transpose operations in (4) such that all involved linear
operations can be written as matrix multiplications from left. Alternatively, we can also
write F(X) = expNy×E(−AXM⊺)S⊺, reflecting the fact that the discrete Radon transform

A operates on the columns and the matrices M and S on the rows of X ∈ RNy×M. At some
places, we will denote operation of M on X from the right by M ⋄ X ≜ X ·M⊺ such that
we have F(X) = S ⋄ expNy×E(−M ⋄AX). The structure of the discrete forward model is
illustrated in Figure 2.

Figure 2. Illustration of the forward model in MSCT for m = 3 materials, B = 5 energy bins, and
using E = 150 values for energy discretization. First, the Radon transform is applied separately to
each of the given material densities X1, X2, and X3, resulting in three material sinograms, which
can be seen as a three-channel sinogram. Next, the matrix M is applied to each pixel, resulting in
150 energy sinograms. To each of these sinograms, x 7→ exp(−x) is applied pointwise, resulting
in 150 virtual energy data maps. By applying the matrix S pixel by pixel, one obtains the final
data consisting of data maps. The continuous forward model can be visualized in a similar way
by replacing the material images with continuous counterparts and the 150 energy channels with a
function-valued channel.

Remark 1 (Recalibration). With ⟨Sb, 1⟩ = ∑E
e=1 Sb,e we obtain:

F(0)⊺ = S · expE×Ny
(0) = S · 1E×Ny =



⟨1, S1⟩ · · · ⟨1, S1⟩

...
...

⟨1, SB⟩ · · · ⟨1, SB⟩


 . (5)

Thus, with ⊙ denoting pointwise multiplication (also known as Hadamard product) and ⊘ the
pointwise division, we get:

F(X)⊺ ⊘ F(0)⊺ =




1/⟨1, S1⟩ · · · 1/⟨1, S1⟩
...

...
1/⟨Sb, 1⟩ · · · 1/⟨Sb, 1⟩


⊙ (S · expE×Ny

(−M · (AX)⊺))

=




S1/⟨1, S1⟩
...

SB/⟨1, SB⟩


 · expE×Ny

(−M · (AX)⊺) .

(6)
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This means that the recalibrated forward model F(X)⊺ ⊘ F(0)⊺ is the same as the original forward
model with normalized effective spectra Sb/⟨Sb, 1⟩. The matrix with normalized spectra can be
written as S⊘ (S · 1E×E).

In this work we, use rescaled data, to which we apply the pointwise logarithm logNy×B
and the corresponding least squares (LSQ) functional.

Definition 1 (Forward model and LSQ functional). We define the logarithmic forward model
and the LSQ functional by:

H : RNx×M → RNy×B : Y 7→ logNy×B(F(X)⊘ F(0)) (7)

D : RNx×M → R : X 7→
∥∥∥H(X)−YH

∥∥∥
2

2
/2 . (8)

where F(X) = expNy×E(−AXM⊺)S⊺ is defined in (4), Y ∈ RNy×B are the given data,
YH = logNy×B(Y⊘ F(0)) the modified data, and logNy×B(·) the pointwise logarithm.

Using the notations of Definition 1, material decomposition in MSCT amounts to the
near solution of H(X) = YH or the near minimization of D.

Remark 2 (Noise modelling). In the statistical context, LSQ minimization derives from max-
imum likelihood estimation using a Gaussian noise model on YH. From a statistical perspective,
maximum likelihood estimation for Poisson noise on Y might be more reasonable, resulting in
L(X) = ⟨F(X), 1⟩ − ⟨log(F(X)), Y⟩ → minX . As the focus in this paper is the derivation of an
efficient reconstruction algorithm rather than statistical optimality, we work with D. However, we
expect that our strategy can also be applied to L instead of D.

Remark 3 (Regularization). Due to the ill-conditioning of H(X) = YH, the reconstruction
problem has to be regularized [25,26]. In the context of LSQ minimization, a natural approach is
variational regularization, where one considers

∥∥H(X)−YH
∥∥2

2/2 + αR(X) instead of D with a
regularization functionalR(X). Recently, in [27], the plug-and-play method has been identified as
a regularization technique where the regularization is incorporated by a denoiser. Another class is
given by iterative regularization [28], where regularization comes from early stopping. All these
regularization methods require the gradient of D, which we compute below.

3. Algorithm Development

In this section, we derive the proposed algorithms for MSCT based on channel precon-
ditioning (CP). The first one (CP-full) integrates channel preconditioning into a gradient
scheme. In the second algorithm (CP-fast), the derivative of the forward map is replaced
by the derivative at zero. Both methods greatly reduce the number of iterations compared
to standard gradient methods and the numerical cost per iteration compared to Newton
type methods. Before presenting our algorithms, we start by computing derivatives and
gradients and recall existing gradient and Newton type methods.

3.1. Derivatives Computation

Standard algorithms for minimizing (8) require the derivative of the forward map
and the gradient of the LSQ functional that we compute next. Recall the original and
logarithmic MSCT forward operator F, H : RNx×M → RNy×B and the LSQ functional D
defined by (4), (7), and (8). We equip RNx×M and RNy×B with the Hilbert space structure in-
duced by the standard inner product ⟨ξ1, ξ2⟩ = ∑i,j ξ1[i, j]ξ2[i, j]. Furthermore, we use
H′[X] : RNx×M → RNy×B to denote the derivative of H at location X ∈ RNx×M and
D′[X] : RNx×M → R and ∇D[X] ∈ RNx×M to denote the derivative and the gradient
of D at X, respectively.
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Remark 4 (Gradients, inner products, and preconditioning). By the definition of gradi-
ents, we have ⟨∇D[X], ξ⟩ = (D′[X])∗(ξ), where (·)∗ denotes the adjoint of a linear operator.
Furthermore, by the chain rule, ∇D[X] = (H′[X])·(H(X)− YH). Gradients and adjoints de-
pend on the chosen inner product. For example, the inner product ⟨ξ1, U−1ξ2⟩ on the image
space with a positive-definite matrix U yields the modified gradient U · ∇D[X]. Choosing U
such that U · ∇D[X] has improved condition significantly improves gradient based methods for
minimizing D.

Remark 5 (Some calculus rules). For the following computation we use some elementary calculus
rules listed next. Let G1, G2 : RNx → RNy be vector valued functions and ϕ : R → R a scalar
function with derivative ψ : R→ R. Then, for X, ξ ∈ RNx , we have:

(G1 ⊙G2)
′[X](ξ) = (G′1[X](ξ))⊙ (G2(X)) + (G1(X))⊙ (G′[X](ξ)) (9)

ϕ′N [X](ξ) = ψN(X)⊙ ξ . (10)

As usual, we define the vector value functions ϕN , ψN : RNx → RNx by pointwise application
ϕN(X) = (ϕ(Xi))i and ψN(X) = (ψ(Xi))i.

We have the following explicit expressions for derivatives, adjoints, and gradients.

Theorem 1 (Derivatives computation). Let F, H : RNx×M → RNy×B and D be defined
by (4), (7) and (8). The derivative of F and H, as well as the adjoint and the gradient of D are
given by:

F′[X](ξ)⊺ = −S ·
(
QX ⊙ (M(Aξ)⊺) (11)

H′[X](ξ)⊺ = −F(X)−T ⊙ (S · (QX ⊙ (M(Aξ)⊺))) (12)

F′[X]∗(η) = −A⊺ · (M⊺ · (QX ⊙ (S⊺η⊺)))⊺ (13)

H′[X]∗(η) = −A⊺ · (M⊺ · (QX ⊙ (S⊺(F(X)−T ⊙ η⊺))))⊺ (14)

∇D[X] = −A⊺ · (M⊺ · (QX ⊙ (S⊺(F(X)−T ⊙ (H(X)−YH)⊺))))⊺ , (15)

where QX ≜ expE×Ny
(−M(AX)⊺) denotes virtual spectrally resolved data.

Proof. The proof is given in the Appendix A.

For CP-fast, the derivative of H at zero plays a central role.

Remark 6 (Derivative at zero). Let us consider the derivative at the zero image X = 0. In this
case, we have Q0 := expE×Ny

(−M(A0)⊺) = 1E×Ny , and therefore,
H′[0](ξ)⊺ = −(SM(Aξ)⊺) ⊘ F(0)⊺ and H′[0]∗(η) = −A⊺(η ⊘ F(0)) · S ·M. Using that
F(0)⊺ = S · 1E×Ny , we get:

H′[0](ξ)⊺ = −U(Aξ)⊺ (16)

H′[0]∗(η) = −A⊺η⊺U (17)

U ≜ (SM)⊘ (S · 1E×M) . (18)

The derivative H′[0](ξ) = −AξU⊺ may also be seen as the linearization of H around
zero. It has been used previously in MSCT and can be simply derived by first order Taylor se-
ries approximation [12]. In fact, with F(0)ℓ,b = ⟨Sb, 1E×1⟩, we find:
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log

(
⟨Sb, exp(−M(Aξ)⊺ℓ )⟩

⟨Sb, 1E×1⟩

)
≃ log

(
⟨Sb, (1−M(Aξ)⊺ℓ )⟩

⟨Sb, 1E×1⟩

)

= log

(
1− ⟨Sb, M(Aξ)⊺ℓ ⟩

⟨Sb, 1E×1⟩

)
≃ −

〈
Sb

⟨Sb, 1E×1⟩
, M(Aξ)⊺ℓ

〉
. (19)

The final expression in (19) in matrix notation is (16) and (18). For dual energy CT (the case
where M = B = 2), the use of the inverse of U has been proposed in [29]. We emphasize that
while we utilize the linearization H′[0](ξ) = −AξU⊺ as an auxiliary tool, we actually solve
the full nonlinear problem. However, the linearized LSQ problem ∥AξU⊺ −YH∥2

2/2→ minξ is
also of interest in its own. Theoretically proven convergent algorithms for such problems can be
found in [30,31].

The derivatives in Theorem 1 have a clear composite structure that we exploit in our
algorithms. This is discussed next.

Remark 7 (Composite structure of derivatives). Consider X ∈ (RM)Nx as a signal of size Nx
with M channels (each channel is a material) and data YH ∈ (RB)Ny of size Ny with B channels
(each channel represents an energy bin). Then, we can write H(X) = Φ(AX), where the following
nonlinear function:

Φ(Z) = logNy×B(expNy×E(−ZM⊺) · S⊺) (20)

operates on the multichannel sinogram Z = AX along the (horizontal) channel dimension and
S = S⊘ (S · 1E×Ny) are the normalized effective spectra. Application of the chain rule and some
computations results in:

H′[X](ξ) = Φ′[AX](Aξ) (21)

Φ′[Z](ζ) = −(expNy×E(−ZM⊺)⊙ (ζ ·M⊺)) · S⊺)⊘ (expNy×E(−ZM⊺)S⊺) (22)

Φ′[Z]∗(η) = −(expNy×E(−ZM⊺)⊙ ((η ⊘ (expNy×E(−ZM⊺)S⊺)) · S)) ·M . (23)

from which we recover (12) and (14). Furthermore, for the zero material sinogram Z = 0, we get
Φ′[0](ζ) = −ζU⊺ and Φ′[0]∗(η) = −ηU with U = (S ·M)⊘ (S · 1Ny×M) as in Remark 6.
Equations (21)–(23) factorize the derivative Φ′[Z] and its adjoint into two separate parts: a high-
dimensional ill-posed but linear part A operating in the pixel dimension and small size well-posed
but nonlinear part operating in the channel dimension. Our algorithms will target this structure for
fast and effective iterative updates.

3.2. Gradient and Newton—One-Step Algorithms

It is helpful to start with gradient based method for minimizing the LSQ functional (8).
Our first method, CP-full, can be seen as a modified version of a hybrid between the
standard gradient iteration (or Landweber’s method) and the Gauss–Newton method. Our
second method, CP-fast, involves a simplification based on linearization around zero.

Gradient-based one-step algorithms for solving the MSCT problem HX = YH using the
LSQ functionalD(X) start with the optimality condition∇D[X] = H′[X]∗(H(X)−YH) = 0
and fixed point equations derived from it. Applying a nonstationary positive-definite
preconditioner Qk and a step size ωk > 0 results in:

Xk+1 = Xk −ωk ·QkH′[Xk]
∗(H(Xk)−YH) . (24)

Explicit expressions for H and H′[Xk]
∗ are given by (7) and (14). Particular choices for

the preconditioner and the step size yield various iterative solution methods. including
Landweber’s iteration, the steepest descent method, Gauss–Newton iteration, Newton-CG
iterations, or Quasi-Newton methods. To motivate our algorithm, it is most educational to
discuss the Landweber and the Gauss–Newton iteration.
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Landweber method: In the context of inverse problems, the standard gradient method
with a constant step size ω is known as the (nonlinear) Landwe-
ber iteration Xk+1 = Xk − ω ·H′[Xk]

∗(H(Xk) − YH), which is
(24) for the case where Qk is the identity and ωk = ω. Landwe-
ber’s iteration is stable, robust, and easy to implement. It is
even applicable in ill-posed cases, where, with an appropriate
stopping criterion, it serves as a regularization method [32]. On
the other hand, it is also known to be slow in the sense that
many iterative steps are required. In our case, this is due to the
ill-conditioning of the forward operator.

Gauss–Newton method: Several potential accelerations of Landweber’s method exist,
and preconditioning seems one of the most natural ones. In the
context of nonlinear least squares, the Gauss–Newton method
and its variants are well-established and effective. In this case,
one chooses the preconditioner Qk = (H′[Xk]

∗H′[Xk])
−1 in (24),

which results in:

Xk+1 = Xk −ωk · (H′[Xk]
∗H′[Xk])

−1H′[Xk]
∗(H(Xk)−YH) . (25)

The Gauss–Newton method (25) has the potential to significantly
reduce the required number of iterations. On the other hand,
each one of these iterations is numerically costly, as it requires
inversion of the nonstationary normal operator H′[Xk]

∗H′[Xk].
Moreover, due to ill conditioning, the inversion needs to be
regularized [28,33,34]. The algorithms proposed in this paper
use simplifications that do not need to be regularized and avoid
the costly inversion of the normal operator.

3.3. Proposed Algorithms

Now we move on to the proposed iterative algorithms for MSCT. We start with CP-full,
which is a gradient-based algorithm with channel preconditioning. We then derive CP-fast,
which is a derivative-free iterative algorithm using a stationary adjoint problem.

CP-full: The first proposed algorithm is an instance of (24). Instead of no precondition-
ing, as in Landweber’s method, or the costly preconditioning
Qk = (H′[Xk]

∗H′[Xk])
−1, as in the Gauss–Newton method, we propose pre-

conditioning with the channel mixing term Φ only. That is, we exploit the fac-
torization H(X) = Φ(AX) and propose the choice Qk = (Φ′[AXk]

∗Φ′[AXk])
−1

for the preconditioner. This results in the following CP-full iteration:

Xk+1 = Xk −ωk ·A⊺ · (Φ′[AXk]
∗(Φ′[AXk])

−1Φ′[AXk]
∗(H(Xk)−YH) . (26)

While efficiently addressing the nonlinearity via a Gauss–Newton-type precon-
ditioner in the channel dimension, it is computationally much less costly than
the full Gauss–Newton update. Instead of inverting H′[Xk]

∗H′[Xk], which
in matrix form has size (Nx M)× (Nx M) in the Gauss–Newton method, it re-
quires inversion of the smaller M×M matrices Φ′[AXk]

∗Φ′[AXk] only, which
can be done separately for each pixel in the projection domain. Assuming
M, B = O(1) and Ny = O(Nx), this dramatically reduces the cost of precondi-
tioning from O(N3

x) to O(Nx) per iterative update.
CP-fast: In the derivative-free version, we go one step further and completely avoid the

derivative H′[Xk]. For that purpose, we replace the derivative Φ′[AXk] in (26)
by the derivative at zero. According to Remark 6, we have Φ′[0](ζ) = −ζU⊺

with U = (S ·M)⊘ (S · 1E×M). Now, with U‡ = (U⊺U)−1U⊺ denoting the
pseudoinverse of U, we arrive at the iterative update:

Xk+1 = Xk −ωk ·A⊺ · (H(Xk)−YH) · (U‡)⊺ . (27)
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We refer to (27) as the derivative-free fast channel-preconditioned (cp-fast)
iteration. It only involves the derivative at zero, which can be computed
once before the actual iteration. In this sense, it is actually derivative-free and
fast. It can be interpreted as using the full nonlinear model for the forward
problem, the linearization at zero for the adjoint problem, and including
channel preconditioning.

Both iterations (26) and (27) are of fixed-point type and we, therefore, expect conver-
gence for sufficiently small step sizes. Theoretically, proving convergence seems possible,
but this is beyond the scope of this paper. As (26) is of gradient type, it seems easier to
derive convergence for CP-full, while for the derivative free version CP-fast, such a proof
seems challenging. Note further that for the results presented below, we integrated a
positivity constraint by alternating iterative updates with the orthogonal projection onto
the cone of nonnegative images.

4. Numerical Simulations

We compared our algorithms CP-full and CP-fast to existing iterative one-step algo-
rithms in MSCT. Our evaluation builds on [11], which compares five such algorithms and
provides open source code (https://github.com/SimonRit/OneStepSpectralCT, accessed
on 13 July 2022.) that is used for our results. We compare CP-full and CP-fast with the best
performing one of [11], and further with a two-step method.

4.1. Comparison Methods

The work [11] compares the following iterative one-step algorithms for MSCT in terms
of memory usage and convergence speed to reach a fixed image quality threshold:

• Ref. [19] derives a nonlinear CG method for a weighted LSQ term;
• Refs. [20,22] derive surrogate approaches for Poisson maximum likelihood;
• Ref. [21] extends [22] by including Nesterov’s momentum acceleration;
• Ref. [23] generalizes the Chambolle–Pock algorithm [35] to nonconvex functionals.

Specifically, ref. [11] found the algorithm of [21] (referred to as Mechlem2018) to be
significantly faster than the other four methods, and thus, we use it for comparison.

In addition, we compare with the algorithm [17] (referred to as Niu2014) as a prime
example of an image domain two-step method. They use a penalized weighted least
squares estimation technique applied to an empirical linear model. Note that more recently,
data-driven methods based on neural networks and deep learning have also been proposed.
Such methods are beyond the scope of this manuscript and we refer the interested reader
to the review articles [10,36].

4.2. Numerical Implementation

For the presented results, we build on the Matlab code of [11], which we extend with
our algorithms. In particular, we work with M = 3 base materials (water, iodine, and
gadolinium) and B = 5 energy bins. The energy variable is discretized using E = 150
uniform nodes between 0 and 150 keV. The attenuation functions and energy spectra
used are shown in Figure 3. We use Nx = 256× 256 image pixels and Ny = 262450 line
integrals for the Radon transform. In particular the code https://github.com/SimonRit/
OneStepSpectralCT (accessed on 13 July 2022) creates matrices:

• M ∈ R150×3 for the base materials;
• S ∈ R5×150 for the effective energy spectra;
• A ∈ RNy×Nx for the Radon transform.

After row normalizing S = S⊘ (S · 1E×Ny), we have H(X) = log(exp(−A · X ·M⊺) ·
S⊺) for the MSCT forward model. Furthermore, noisy data Y are created with a different
realistic forward model and Poisson noise added.

https://github.com/SimonRit/OneStepSpectralCT
https://github.com/SimonRit/OneStepSpectralCT
https://github.com/SimonRit/OneStepSpectralCT
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Besides M, S, A, H, and Y, we require implementations of U‡ = (U∗U)−1U∗ for
CP-fast and U‡

k = (Φ′[AXk]
∗Φ′[AXk])

−1Φ′[AXk]
∗ for CP-full. Computing U‡ is trivial and

can be done in advance; U‡
k are computed in each step of CP-fast using (22) and (23).
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Figure 3. Physical parameters determining the forward model. (Top left): Attenuation functions.
(Top right): Incident spectrum. (Bottom left): Spectral response of the detectors. (Bottom right):
Effective spectra. The figures are based on code (modified) and data from [11].

4.3. Results

Reconstruction results using the proposed algorithms CP-fast (top row) and CP-
full (second row) and the two comparison methods Mechlem2018 [21] (row three) and
Niu2014 [17] (bottom row) can be seen in Figure 4. The phantom shown in the top row
is made out of iodine (left), gadolinium (middle), and water (right). In all cases, we use
noisy data and plot the iteration with minimal ℓ2-reconstruction error ∥Xk − X⋆∥2/∥X⋆∥2,
where X⋆ is the ground truth. All calculations are performed on the same standard laptop,
where one iteration of CP-full takes around six seconds, one iteration of CP-fast takes
around one second, and one iteration of Mechlem2018 [21] about four seconds. These
times are comparable to Niu2014 [17], which takes around 5 to 8 s when using 500 and
1000 CG iterations. Figure 5 shows the evolution of the relative ℓ2-reconstruction error
for various one-step methods. Note that for CP-fast, the minimum error in Iodine and
Gadolinium is reached at approximately the same number of iterations, which shows
efficient preconditioning and is important in application. Furthermore, we do not enforce
that the sum over the three density images is one, and in the example, it indeed does not
hold. The proposed algorithms turned out to be more stable than Mechlem2018 [21] and
produce better results. In particular, CP-full gives the best results, while CP-fast is fastest.
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Additional results for a different phantom are shown in Figures 6 and 7. The concen-
tration of iodine, gadolinium, and water has been computed as in [11].

Figure 4. Ground truth phantom (top row) and reconstructions using CP-fast (second row), CP-full
(third row), Mechlem2018 [21] (fourth row), and the two-step algorithm Niu2014 [17] (bottom).

Figure 5. Relative reconstruction error using the proposed CP-fast (top), proposed CP-full (middle),
and Mechlem2018 [21] (bottom) as a function of the iteration index.
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Figure 6. Reconstructed slices of the second phantom: Ground truth phantom (top row) and
reconstructions using CP-fast (second row), CP-full (third row), Mechlem2018 [21] (fourth row), and
the two-step algorithm by Niu2014 [17] (bottom row).

Figure 7. Concentration of iodine (left), gadolinium (middle), and water (right) for the phantom
shown in Figure 6 during the iteration
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5. Conclusions and Outlook

Image reconstruction in MSCT requires the solution of a nonlinear ill-posed problem.
Iterative one-step methods are known to be accurate for this purpose. In this work, we pro-
pose two generic algorithms named CP-full (channel-preconditioned full gradient iteration)
and CP-fast (channel-preconditioned fast iteration). Both algorithms use preconditioning
in the channel dimen•sion only, which considerably accelerates the updates compared to
Newton-type methods that require solving numerically costly linear inverse problems at
each iteration. CP-fast replaces the derivative in the channel nonlinearity with linearization
at zero, making it even more efficient. Both algorithms turn out to be fast and robust.

There are several future directions emerging from our work. First, proving the conver-
gence of the two algorithms and demonstrating their regularization properties is important.
Second, we will combine them with more realistic noise priors, such as Poisson noise, result-
ing in the maximum likelihood estimation (MLE) functional. Additionally, we will integrate
explicit image priors, use plug-and-play strategies, and incorporate learned components.
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T.P. and L.N; formal analysis, M.H. and L.N.; writing—original draft preparation, M.H., L.N. and T.P.;
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authors have read and agreed to the published version of the manuscript.
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Appendix A. Proof of Theorem 1

Proof. By (4) and (10), we have:

F′[X](ξ)⊺ = S · (exp′E×Ny
)[−M(AX)⊺](−M(Aξ)⊺)

= −S · (expE×Ny
(−M(AX)⊺)⊙ (M(Aξ)⊺))

= −S ·
(
QX ⊙ (−M(Aξ)⊺)

)
.

This is (11). Now, using the (7), (9), (10) we have:

H′[X](ξ)⊺ = (log′Ny×B)[F(X)⊺ ⊘ F(0)T ]
(
F′[X](ξ)⊺ ⊘ F(0)T)

= (F′[X](ξ)⊺ ⊘ F(0)T)⊘ (F(X)⊺ ⊘ F(0)⊺)

= F′[X](ξ)⊺ ⊘ F(X)T

= −F(X)−T ⊙
(
S ·
(
QX ⊙ (M(Aξ)⊺)

))
.

This is (12). Next, we turn over to the computation of the adjoints. We will only demonstrate
this for (14), as (13) is verified in a similar manner. By elementary manipulations:

⟨H′[X](ξ), η⟩ =
〈
F(X)−T ⊙ (S · (QX ⊙ (−M · (Aξ)⊺))), η⊺〉

= ⟨(Aξ)⊺,−M⊺(QX ⊙ (S⊺ · (F(X)−T ⊙ η⊺)))⟩
=
〈
Aξ,−(M⊺(QX ⊙ (S⊺ · (F(X)−T ⊙ η⊺))))⊺

〉

=
〈
ξ,−A⊺ · (M⊺ · (QX ⊙ (S⊺(F(X)−T ⊙ η⊺))))⊺

〉
,

which is (14). Finally, with ∇D[X] = (H′[X])∗(H(X)−YH) and (14), we obtain (15).
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