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Abstract: A wireless capsule endoscope (WCE) is a medical device designed for the examination of
the human gastrointestinal (GI) tract. Three-dimensional models based on WCE images can assist in
diagnostics by effectively detecting pathology. These 3D models provide gastroenterologists with
improved visualization, particularly in areas of specific interest. However, the constraints of WCE,
such as lack of controllability, and requiring expensive equipment for operation, which is often
unavailable, pose significant challenges when it comes to conducting comprehensive experiments
aimed at evaluating the quality of 3D reconstruction from WCE images. In this paper, we employ
a single-image-based 3D reconstruction method on an artificial colon captured with an endoscope
that behaves like WCE. The shape from shading (SFS) algorithm can reconstruct the 3D shape
using a single image. Therefore, it has been employed to reconstruct the 3D shapes of the colon
images. The camera of the endoscope has also been subjected to comprehensive geometric and
radiometric calibration. Experiments are conducted on well-defined primitive objects to assess the
method’s robustness and accuracy. This evaluation involves comparing the reconstructed 3D shapes
of primitives with ground truth data, quantified through measurements of root-mean-square error
and maximum error. Afterward, the same methodology is applied to recover the geometry of the
colon. The results demonstrate that our approach is capable of reconstructing the geometry of the colon
captured with a camera with an unknown imaging pipeline and significant noise in the images. The
same procedure is applied on WCE images for the purpose of 3D reconstruction. Preliminary results are
subsequently generated to illustrate the applicability of our method for reconstructing 3D models from
WCE images.

Keywords: 3D reconstruction; image enhancement; endoscopy; medical imaging

1. Introduction

Wireless capsule endoscopy (WCE) was pioneered by Given Imaging in the year
2000 [1]. It offers numerous advantages over traditional endoscopic procedures. It is less
invasive, requires no sedation, and offers a painless and comfortable experience for patients.
It is used to visually inspect the entire gastrointestinal (GI) tract, from the esophagus to the
large intestine, using a small swallowable capsule equipped with a miniature camera. It
is used to diagnose inflammatory bowel disease, GI bleeding, and polyps [2]. Despite its
many advantages, WCE images also entail several challenges. These include issues related
to uneven and low illumination, low resolution, and noise [3]. Moreover, the lack of control
over the capsule’s movement within the GI tract restricts the thorough examination of areas
of particular interest.

Three-dimensionally (3D)-reconstructed models of WCE images can be effective for
conducting a comprehensive analysis of specific areas of interest. By employing 3D re-
construction algorithms, it becomes feasible to transform the 2D images captured by the
capsule camera into a 3D representation of the GI tract. Three-dimensional models along
with their images can allow gastroenterologists to visualize internal organs from differ-
ent angles and perspectives, aiding in the identification of abnormalities and facilitating
more precise planning for interventions and surgeries. Results in [4] have shown that
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gastroenterologists find 3D models useful to an extent that they sometimes prefer them
over original images.

Within the realm of computer vision, 3D reconstruction poses an intriguing challenge,
which requires the utilization of different techniques to image data [5]. Vision-based depth
estimation techniques can be classified into different categories. A range of techniques for
monocular image-based depth estimation have been developed, including texture gradient
analysis [6], image focus analysis [7], and photometric methods [8]. Other approaches
leverage multiple images, relying on camera motion or variations in relative camera posi-
tions [9]. The integration of 3D reconstruction techniques finds extensive applications across
diverse fields, spanning cultural heritage, robotics, medical diagnostics, video surveillance,
and more [10,11].

In numerous real-world applications, capturing multiple images of a scene or ob-
ject from various angles can be challenging. Consequently, single-image-based methods
prove effective and suitable in such situations. This is particularly evident in the case of
WCE, where the capsule relies on the natural peristaltic contractions to traverse through
the human GI tract. Given its low frame rate, it happens that the scene within the GI
tract is captured only once. In such circumstances, single-image-based 3D reconstruction
techniques are the only viable option.

Shape from shading (SFS) is a method that requires only one image for 3D reconstruc-
tion, and therefore, it is a potential candidate for WCE application. Horn and Brooks [12]
were among the first to recover the 3D shape of the surface using the SFS method. They
obtained surface gradients through an iterative approach relying on a nonlinear first-order
partial differential equation (PDE), establishing a relationship between 3D shape and in-
tensity variations within an image. By applying integrability constraints, Frankot and
Chellappa [13] demonstrated superior accuracy and efficiency in estimating the depth
variable compared with the approach by Horn and Brooks. Kimmel and Sathian [14]
employed the numerical scheme based on the fast marching method to recover depth,
yielding a numerically consistent, computationally optimal, and practically fast algorithm
for the classical SFS problem. Tankus et al. [15] remodeled the SFS method under the frame-
work of perspective projection, expanding its range of potential applications. Similarly,
Wu et al. [16] also solved the SFS problem under perspective projection without assuming
the light source at the camera center, with a specific focus on medical endoscopy.

The method proposed by Wu et al. [16] closely aligns with the WCE setting, featur-
ing a near-light model with multiple light sources positioned around the camera center.
Consequently, we selected their method as a starting point for further experimentation.
The methodology follows a two-step process for shape reconstruction. Initially, it involves
deriving a reflectance function by considering the relative positions of the light sources,
camera, and surface reflectance properties. Following this, the error between the reflectance
function and image irradiance is minimized by formulating an image irradiance equation
(IIE). While a typical solution to IIE involves an L2 regularizer as a smoothness constraint,
we opted for anisotropic diffusion (AD) due to its superior accuracy compared with the
L2 regularizer [17].

WCE presents considerable challenges in the domain of 3D reconstruction due to
its inherent limitations. The device lacks controllability over its light settings, requiring
expensive equipment for operation, which is often unavailable. These practical constraints
pose significant challenges when attempting to conduct extensive experiments regarding
the assessment of 3D reconstruction quality for WCE images. To address these challenges,
we successfully conducted a comprehensive investigation on the 3D reconstruction of
synthetic colon images captured with a camera in a virtual environment [4]. In the fol-
lowing experiments, we initially employ images of an artificial colon captured under a
controlled environment using an industrial endoscope for the purpose of 3D reconstruction,
before transitioning to the analysis of images obtained from WCE. The imaging system of
the endoscope behaves like that of WCE, though it introduces significantly less lens distor-
tion. Moreover, it offers higher resolution than a typical WCE image, and the light strength
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can be manually controlled. The endoscope has six rectangular-shaped light-emitting
diodes (LEDs) surrounding the camera behind a protective glass covering. The known
dimensions of the artificial colon provide a reference for assessing the correctness of the
reconstructed 3D colon model.

This article utilizes a single-image-based method to reconstruct the 3D shape of the
artificial colon. The camera is corrected for lens distortion, and the light source intensity of
the endoscope has also been measured. The camera response function (CRF) is estimated to
convert the device’s output grayscale image to image irradiance. The method proposed by
Andersen et al. [18] is employed, which uses a single image of a ColorChecker to compute
the CRF of a camera with an unknown imaging pipeline. Wu et al. [16] assume an ideal
multiple-point light model in their PSFS approach. Given that the endoscope is equipped
with six light sources, it should closely align with the characteristics of the ideal six-point
light model. However, the endoscope light sources produce a different pattern due to their
rectangular shape and the presence of a glass covering, which can lead to scattering and
interference effects. Therefore, corrections are applied to the captured image to account for
this deviation. Thereafter, the near-light perspective SFS (PSFS) algorithm that integrates
AD as a smoothness constraint is applied to reconstruct the 3D shapes of the endoscopic
images. The PSFS algorithm utilizes grayscale images. Therefore, the albedo is simply
a reflection factor between 0 and 1. Initially, well-defined primitive objects are tested to
assess the method’s robustness and accuracy. Afterward, the same methodology is applied
to recover the geometry of the colon. The known dimensions of the artificial colon also
provide a reference for assessing the correctness of the reconstructed 3D colon model. In the
end, we present preliminary results of 3D reconstruction using PillCam images, illustrating
the potential applicability of our method across various endoscopic devices. The core
contributions of the paper are as follows:

• We present a comprehensive pipeline for step-by-step 3D reconstruction using an AD-
based PSFS algorithm, as demonstrated in Figure 1. This pipeline is generic and applica-
ble to any endoscopic device, provided that we have access to the required image data
for 3D reconstruction, as well as data for geometric and radiometric calibration.

• We utilized JPG images and opted for an endoscope where access to RAW image
data was unavailable, reflecting real-world scenarios where RAW data may not be
accessible. This choice underscores the practical applicability of our approach, as in
many real-world applications, access to RAW data is limited.

• We validated the AD-based PSFS method in real-world scenarios by conducting 3D
reconstruction on simple primitives and comparing the results with ground truth—a
practice seldom addressed in the literature. This rigorous validation process enhances
the credibility and reliability of our approach.

• We present simple methods for estimating the spatial irradiance and light source
intensity of the endoscope, designed for scenarios where relying on multiple images for
radiometric calibration is not feasible. Further details on these methods are provided
in Section 2.4 of the article.

The rest of the article is organized as follows: Section 2 provides an overview of various
methodologies for 3D reconstruction, encompassing the PSFS model with anisotropic
diffusion, geometric and radiometric calibration of the endoscope, albedo measurement,
image rescaling, and denoising. Section 3 details the entire experimental setup, beginning
with the creation of ground truth models, followed by image capture, and concluding
with the reconstruction of 3D surfaces for primitives and an artificial colon. Additionally,
preliminary results for WCE images are presented. Lastly, Section 4 concludes the article.
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Figure 1. Comprehensive pipeline for 3D reconstruction using PSFS algorithm.

2. Methods Overview

This section covers various methods involved in 3D reconstruction using the PSFS
method with an output image from an endoscope. We begin by introducing the PSFS
method with AD (Section 2.1). Following that, we discuss the different calibration and
preprocessing steps necessary before inputting the image into the PSFS algorithm. Initially,
geometric calibration of the endoscope is conducted by capturing images of a checkerboard
to correct distortion and determine camera intrinsic parameters, such as focal length
(Section 2.2). Subsequently, the captured endoscopic image intended for 3D reconstruction
undergoes radiometric calibration, involving the computation of CRF and spatial irradiance
(Section 2.4). The radiometrically corrected image is then rescaled (Section 2.5) and denoised
(Section 2.6). The comprehensive pipeline of the 3D reconstruction algorithm using the
PSFS method is illustrated in Figure 1.

2.1. PSFS Model

In this section, we cover the PSFS method, where six-point light sources are placed
around a camera and the camera is directed towards the negative z-axis, as shown in
Figure 2. Under perspective projection, the relationship between image coordinates (x̃, ỹ)
and the camera coordinates (x, y, z) is given as follows:

x = x̃
z
f

y = ỹ
z
f

, (1)

where f denotes the camera’s focal length. Assuming a diffuse surface, the reflected light
from the point P can be determined using Lambert’s cosine law and inverse square fall-off
law from multiple light sources as follows [16]:

R(x̃, ỹ, z, p, q) = Ioρ
6

∑
i=1

(
n(x̃, ỹ, z, p, q) · li(x̃, ỹ, z)

ri(x̃, ỹ, z)2

)
, (2)

where Io represents the intensity of the light source(s), ρ denotes the albedo of the surface,
and p and q are the surface gradient components along the x and y directions, respectively.
Furthermore, ri(x̃, ỹ, z)2 accounts for the inverse square fall-off distance from each point
light source, li is a unit vector aligned along the ith light ray, and n refers to the surface unit
normal, which is computed as follows [12]:

n =
[− ∂z

∂x ,− ∂z
∂y , 1]√

( ∂z
∂x )

2 + ( ∂z
∂y )

2 + 1
. (3)
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Figure 2. PSFS model with light source at the camera center O. (x, y, z) represents the camera coordinate
system, which is centered at O. The z-axis is the optical axis, pointing towards the image plane.

Given the distance from the camera center to a light source, we can explicitly write the
light source vector from the point P as follows:

l̄i =

[
τ cos θi − x̃

z
f

, τ sin θi − ỹ
z
f

,−z
]

, (4)

where τ is the distance from the camera center to a light source, θi = 2πi/6 for i ∈ [1, 6].
The unit vector li can be expressed as li = l̄i/ ∥ l̄i ∥.

According to Horn and Brooks [12], IIE can be written as follows:

R(x̃, ỹ, z, p, q) = I(x̃, ỹ), (5)

where I(x̃, ỹ) is the image irradiance. Equation (5) is solved to determine the optimal depth
value z by minimizing the difference between I(x̃, ỹ) and R(x̃, ỹ, z, p, q). The optimization
equation is established for z, while the values of p and q are updated through the gradients
of the modified z [17]. The error E(z) is minimized as follows:

E(z) = λei(z) + (1 − λ)es(z), (6)

where ei and es represent irradiance error and smoothness constraint, respectively. λ is a
weighting factor and controls the scaling between ei and es. ei(z) can be computed over the
image domain Ω ⊂ R2 as follows:

ei(z) =
∫

Ω
(I(x̃, ỹ)− R(x̃, ỹ, z, p, q))2dΩ. (7)

es(z) is typically a L2 regularizer. However, we have employed AD as a smoothness
constraint because it not only enhances the accuracy of the depth map by suppressing noise
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but also demonstrates effectiveness in preserving structural details of the reconstructed
scene, outperforming the L2 regularizer [17,19].

AD is introduced as a smoothness constraint by first calculating a 2 × 2 structure
tensor (Si,j) based on the gradient of the depth z [20]. Si,j is given as [20] as follows:

Si,j =
∂z
∂xi

∂z
∂yj . (8)

Subsequently, we compute the corresponding eigenvalues (λ+, λ−) and eigenvectors
(θ+, θ−) following a similar approach to [21]. Utilizing (λ+, λ−) and (θ+, θ−), the diffusion
tensor D is then derived as follows:

D =
∂ψ

∂λ+
θ+θT

+ +
∂ψ

∂λ−
θ−θT

−. (9)

In terms of (λ+, λ−), Lagrangian density ψ can be written as follows [22]:

es(z) =
∫

Ω
ψ(λ+, λ−)dΩ. (10)

Equations (7) and (10) are combined in Equation (6) and can be formulated as follows:

E(z) =
∫

Ω
(λ(I − R)2 + (1 − λ)ψ(λ+, λ−))dΩ. (11)

The solution to Equation (11) is given by Euler–Lagrange PDE:

λ(I − R)
∂R
∂z

+ (1 − λ)∇ · (D∇z) = 0, (12)

which we numerically solve by gradient descent:

∂z
∂t

= ∇ · (D∇z) +
λ

1 − λ
(I − R)

∂R
∂z

. (13)

Similar to [17], I(x̃, ỹ) is utilized to derive the structure tensor. Through this single-step
computation of the structure tensor, the process becomes efficient, making the computation
task simpler and more linear.

2.2. Geometric Calibration

Geometric calibration is needed to estimate the camera’s intrinsic parameters as well as
its lens distortion. It has been observed that the endoscope exhibits minimal lens distortion
towards its periphery. However, the necessity arises to rectify this distortion for the sake of
precise depth estimation, as the SFS algorithm assumes a pinhole model.

For geometric calibration, we employed a standard checkerboard measuring 10× 10 cm,
with each individual square on the board measuring 4 mm. The images are taken at
a 10 cm distance from the tip of the camera at different angles. The MATLAB camera
calibration toolbox is used for the geometric calibration of the endoscope [23]. The intrinsic
parameters are computed using Heikkila’s method [24] with two extra distortion coefficients
corresponding to tangential distortion.

The MATLAB camera calibration toolbox basically requires between 10 and 20 images
of the checkerboard from different viewing angles. A total of 15 images of the checkerboard
are used in our case. An image of the checkerboard is shown in Figure 3a. The camera
model is set to standard, and radial distortion is set to 2 coefficients as it is observed that the
endoscope camera has little distortions towards the periphery. Figure 3b shows a sample
image of the colon corrected for lens distortion.
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(a) (b)

Figure 3. Geometric calibration: (a) checkerboard and (b) geometric calibration.

It is important to mention here that the procedure is repeated three times with three dif-
ferent sets of checkerboard images to confirm the consistency in the results. The estimated
focal length is around 2.4 ± 0.1 mm for all three sets, and there is no skew observed.

2.3. Albedo Measurement

Albedo is the fraction of incident light that a surface reflects. It has a value between
0 and 1, where 0 corresponds to all the incident light being absorbed by the surface and
1 corresponds to a body that reflects all incident light. The primitives have diffused white
surfaces. Therefore, the albedo is assumed to be ρ = 1 for all the primitive objects.

The artificial colon consists of a soft rubber material with a nearly uniform pinkish
color. Therefore, it is necessary to measure the albedo of the surface. The albedo of the
colon is measured by taking the image of the colon and a diffuse spectralon tile placed side
by side. Both the spectralon and the colon are kept at an equal distance from the camera,
and an image is taken outside so that both surfaces have a uniform distribution of light, as
shown in Figure 4a. The albedo of the surface is measured by taking the ratio between the
colon and the spectralon pixel value at any given location. The estimated albedo value of
the artificial colon is ρ = 0.60.

(a) (b)

(c) (d)

Figure 4. Radiance intensity and albedo measurement: (a) albedo, (b) nonisotropic light, (c) uniform
light, and (d) radiance power.



J. Imaging 2024, 10, 82 8 of 18

2.4. Radiometric Calibration

Radiometric calibration has been performed to measure the light intensity, CRF, and
spatial distribution of the light intensity on the image. The PSFS algorithm assumes a
pinhole model with ideal multiple-point light sources. Therefore, it is crucial to convert
from a grayscale image to image irradiance via CRF and correct for the anisotropy of the
light source [16], as discussed in Section 2.4.2. Sections 2.4.2 and 2.4.3 provide detailed
discussions on the CRF estimation and anisotropy correction, respectively. Measuring light
source intensity is also important, as it is a crucial parameter for computing the reflection
function given in Equation (2).

2.4.1. Light Source Intensity Measurement

The light intensity of the endoscope is measured by using a CS2000 spectroradiome-
ter [25]. An integrating sphere (IS) must be used to measure intensity because of the
nonisotropic behavior of the light source. The IS is a hollow spherical cavity with its interior
coated with diffused white reflective material. The aim of the integrating sphere is to pro-
vide a stable and uniform illumination condition. An endoscope is placed inside the IS, and
radiance power P is measured over the visible spectrum. After measuring the solid angle
ω of the endoscope light, Io is calculated as follows: Io = P/(4π)× ω. The nonuniformity
of the light source, the uniformity of the endoscope light inside the IS, and spectra of the
light are shown in Figure 4b–d, respectively.

2.4.2. Camera Response Function

CRF is essential to convert the device’s output grayscale image to image irradiance [16]:

I(x̃, ỹ) =
r−1[υ(x̃, ỹ)]

M(x̃, ỹ)
, (14)

where I(x̃, ỹ) is the image irradiance, υ(x̃, ỹ) is the grayscale image, and r(·) is the CRF.
M(x̃, ỹ) incorporates the deviation from the ideal point-light source assumed by PSFS.

The endoscope used in this work has an unknown imaging processing chain, and there
are no means of controlling the exposure time. This decision was intentional, reflecting
the common limitation among WCE devices available in the market, which generally do
not offer any control over the exposure time. By selecting an endoscope that mimics the
behavior of typical WCE devices, our approach demonstrates applicability to a broader
range of endoscopic devices.

Through experimental observations with the endoscope, it has been observed that the
camera performs automatic exposure adjustments. During the image capture process of
the SG ColorChecker [26], we have further noted the camera’s automatic color adjustment
and white balancing mechanisms in operation. It is worth noting that this is similar to the
functionality of a standard WCE. These complicating factors have compelled us to abstain
from methods that utilize multiple images for the estimation of the CRF.

The method by Andersen et al. [18] is applied to measure the CRF. The method requires
only a single image of a ColorChecker to estimate volumetric, spatial, and per-channel
nonlinearities. These nonlinearities involve compensating for both physical scene and
camera properties through a series of successive signal transformations, bridging the gap
between the estimated linear and recorded responses. The estimation process relies on a
novel principle of additivity, computed using the spectral reflectances of the colored patches
on the ColorChecker. The SG ColorChecker [26] is used to estimate the CRF. An image of
the ColorChecker from endoscope and camera response curves is shown in Figure 5.
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(a) SG ColorChecker (b) CRF R-channel

(c) CRF G-channel (d) glsCRF B-channel

Figure 5. Results of camera response function. (a) Image of SG chart captured with an endoscope and
used for estimating the CRF and the light distribution. (b) CRF in red channel. The red dotted line
represents the data point. The red line represents the nonlinear fit. The horizontal axis represents the
normalized image intensity, and the vertical axis represents the normalized image irradiance, the same
in (c,d). (c) The green dotted red line represents the data point. The green line represents the nonlinear
fit. (d) The blue dotted line represents the data point. The blue line represents the nonlinear fit.

2.4.3. Spatial Irradiance

The reflection model mentioned in the PSFS method is based on six-point light sources
and demands an ideal six-point light distribution in the image to correctly determine the
3D geometry. The endoscope light deviates from an ideal six-point light distribution model
due to the rectangular shape of the light sources and the scattering and interference effect
caused by the glass on top of the endoscope lens. An inclination in the light sources has
been detected, and also, due to the presence of six noncentral light sources, we observe
a deviation where the maximum intensity does not align precisely with the image center.
Therefore, it is important to quantify these additional effects and compensate for them
so that the resulting reflection model satisfies the conditions of six-point light sources.
According to [16],

M̃(x̃, ỹ) = M(x̃, ỹ) ·
6

∑
i=1

n · li

r2
i

, (15)

where the second term on the right side in Equation (15) represents the light distribution
from the six-point light sources.

An image of a white diffuse paper, considered as M̃(x̃, ỹ) in our context, was cap-
tured and is displayed in Figure 6a. It is noticeable from the image that the endoscopic
lighting deviates from the ideal six-point light configuration, exhibiting an oval pattern
with an offset from the image center. The ideal six-point light distribution model is con-
structed by physically measuring the distance from the diffused paper to the tip of the
endoscope, as shown in Figure 6b. Finally, M(x̃, ỹ) is recovered using Equation (15) and
then compensated for in the image. M(x̃, ỹ) is shown in Figure 6c.
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(a) (b) (c)

Figure 6. Correction of light distribution. The point where horizontal and vertical lines intersect
denotes the image center: (a) M̃(x̃, ỹ), (b) ∑6

i=1
n·li
r2

i
, and (c) M(x̃, ỹ) = M̃(x̃, ỹ)/ ∑6

i=1
n·li
r2

i
.

2.5. Unit Conversion

The parameters computed thus far are in physical units, leading to the estimation of R
in physical coordinates. To establish a consistency between I(x̃, ỹ) and R, as outlined in
Equation (13), I(x̃, ỹ) is transformed from pixel units to physical units. This conversion is
achieved as follows:

Ip(x̃, ỹ) =
I(x̃, ỹ)− min I(x̃, ỹ)

max I(x̃, ỹ)− min I(x̃, ỹ)
×

(
Ioρ

cos θ

r2

)
, (16)

where Ip(x̃, ỹ) denotes the physical value of the image irradiance. θ is the angle between the
surface normal and the light ray at the point on the surface where illumination is maximized.
r is the distance from the light source to the point on the surface where illumination is
maximized. In the case of the primitives, the points are measured, whereas, in the case of
the colon, the estimation of the parameters r and θ relies on factors such as the field of view
(FOV) of the camera, the total length of the colon, and the position of the camera within
the colon.

2.6. Image Denoising

In endoscope images, significant noise is observed, mainly due to JPEG compression
artifacts. These artifacts include blocky patterns and color distortions. A noisy image when
fed into the SFS algorithms can destabilize the differential equations due to inaccuracies
and ambiguities in shading information, which can lead to inaccuracies in the estimation of
surface normals and object shape.

In order to reduce the noise, the method by Xu et al. is utilized [27]. The method
essentially separates the visual information related to the surface texture of an object from
its underlying structural components within an image. We employ this method to remove
noise from the image while retaining its structural details. The method is based on the relative
total variation scheme, which captures the essential difference between texture and structure
by utilizing their different properties. Later, they employed an optimization method that
leverages novel variation measures, including inherent variation and relative total variation,
to identify significant structures while disregarding the underlying texture patterns.

2.7. Assessment Criteria

The reconstructed 3D shapes of the different primitives are compared with ground
truth models by measuring relative root-mean-square error (rRMSE) and relative max-depth
error (rMDE). These metrics are chosen to quantify depth errors with respect to a reference
depth, making the results easily interpretable. rRMSE quantifies the overall geometric
deformation present in the reconstructed 3D model, while rMDE highlights the maximum
deviation observed between the 3D-reconstructed model and the ground truth.
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rRMSE allows for the evaluation of geometric distortion in the 3D-reconstructed model.
A perfect 3D reconstruction is indicated by an error value of 0, whereas a highly distorted
3D reconstruction corresponds to a value of 1. rRMSE is computed as follows:

rRMSE =
1

dmax

√
1
n

n

∑
i=1

| D̂i − Di |2, (17)

where D, dmax, D̂, and n represent ground truth depth, maximum ground truth depth
point, depth of the recovered 3D shape, and total number of depth points considered for
error estimation, respectively.

rMDE indicates the relative maximum deviation between the estimated depth values
produced by a 3D reconstruction algorithm and the ground truth depth values. A low rMDE
suggests that the majority of depth estimates are close to their ground truth counterparts,
indicating high accuracy in the 3D reconstruction. Conversely, a high rMDE implies signifi-
cant discrepancies between the estimated and ground truth depth values, indicating poorer
accuracy in some places in the reconstruction. rMDE is computed as follows:

rMDE =
1

dmax
max | D̂i − Di | . (18)

3. Experiments and Results
3.1. Ground Truth Models

The primary goal of performing depth estimation on simple primitives is to gauge the
accuracy and effectiveness of the PSFS method on endoscopic images. This evaluation was
conducted in the context of a camera system that contains an unknown imaging pipeline,
and where the captured images exhibit significant noise. This approach, involving the
reconstruction of fundamental geometric shapes and their subsequent comparison with
ground truth models, will prove effective in achieving the desired evaluation.

The experiments are conducted on geometric primitives with known dimensions,
including a sphere, a cube, and a pyramid. These primitives have a diffuse surface with
an albedo ρ ≈ 1. Given that these primitives have well-defined geometry and known
dimensions, ground truth models of these three primitives are generated in MATLAB to
compare them with reconstructed surfaces.

3.2. Image Acquisition

The PSFS algorithm is subjected to comprehensive testing using a variety of images,
including synthetic colon images and different geometric primitives of known dimensions.
The images of the primitives are captured by placing a diffuse paper beneath them to
ensure a uniform albedo throughout the scene. A series of images capturing these different
primitives are presented in Figure 7.

(a) (b) (c)

Figure 7. Images of primitives captured with an endoscope: (a) sphere, (b) cube, and (c) pyramid.

Additionally, the images of the synthetic colon are acquired to assess the method’s
applicability for potential 3D reconstruction applications within the context of WCE. A syn-
thetic colon [28] is an artificial phantom of a colon without deformation and has a smooth
wall with a diameter and length of 0.028 m and 0.3 m, respectively. Therefore, a deformed
support [29] is used to hold this colon and produce deformations similar to a real colon.
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The colon is placed in its support, and one of the ends is closed with a clip. The endoscope
is inserted from the other end, and a series of images of the deformed colon are captured, as
shown in Figure 8. The endoscope used in the experiment is an Oiiwak WiFi endoscope [30],
which is an industrial endoscope that wirelessly transmits the acquired images or videos to
an android device via a software named MoView. Images of the colon, deformed support,
endoscope, and setup for capturing images of the artificial colon are shown in Figure 9.

(a) (b) (c)

Figure 8. Images of artificial colon captured with an endoscope: (a) ROI-1, (b) ROI-2, and (c) ROI-3.

Oiiwak endoscope

Colon support

Artificial colon

Captured image

Figure 9. Setup and equipment used for image acquisition of synthetic colon.

3.3. 3D Reconstruction

In the first step, the image captured with the endoscope is corrected for lens distortions.
Subsequently, the image undergoes correction by utilizing the CRF and addressing the
anisotropy of the six-point light using Equation (14). The image is then converted to
physical units using Equation (16). Thereafter, the image is denoised and then input into
the PSFS algorithm. A reflectance map is derived using Equation (2) with a flat surface as
initial depth z. Subsequently, the z’s are updated using Equation (13), where the gradients p
and q are computed as ∂z

∂x̃ and ∂z
∂ỹ , respectively. Notably, the parameter λ assumes different

values in distinct cases and is determined empirically within our experimental setup.
In the case of primitives, the images are cropped to 500 × 500 pixels because we

are interested in recovering the shape of the primitives rather than the whole image.
The ground truth models of the primitives are shown in Figure 10, whereas the recovered
shape of all the primitives is shown in Figure 11. The reconstructed primitives are compared
with ground truth models by computing rRMSE and rMDE using Equations (17) and (18),
respectively. We achieve rRMSE at around 0.04 and rMDE at around 0.10 with respect to
ground truth for different primitives, as shown in Table 1.
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(a) (b) (c)

Figure 10. Ground truth models of primitives. The axis represents the values in meters: (a) sphere,
(b) cube, and (c) pyramid.

(a) (b) (c)

Figure 11. Recovered 3D primitives. The axis represents the values in meters: (a) sphere, (b) cube,
and (c) pyramid.

Table 1 indicates that the sphere exhibits higher errors compared with the pyramid
and the cube. This disparity can be attributed to the presence of an inclination in one of
the endoscope’s light sources. This manufacturing error poses a significant challenge in
accurately modeling the light distribution within our PSFS model. As the sphere covers a
larger part of the captured view, in comparison with the other shapes evaluated, the impact
of the inclination becomes more pronounced. Consequently, these factors collectively
contribute to greater errors in the case of the sphere model.

Table 1. Quantitative evaluation for primitives.

Primitives Cube Sphere Pyramid

rRMSE 0.0377 0.0465 0.0386

rMDE 0.0828 0.1282 0.0956

Full-sized images are used for the reconstruction of the colon model. Color correction
is applied to the colon images since their original hue is somewhat pinkish, which appears
purplish due to the bluish nature of the endoscope’s lighting. The colon color depicted
in Figure 4a serves as the reference color. The difference in hue between the original and
the endoscope-captured image of the colon is identified using a chromaticity diagram.
Subsequently, the color of the synthetic colon was adjusted to align with its original shade.

The endoscope is equipped with LEDs, which behave similar to point light sources.
This behavior causes dim illumination in deeper regions of the captured images due to the
inverse square fall-off law. To address this problem, we have adopted the approach pro-
posed in [4] to enhance contrast, especially in images capturing larger depths. The method
involves illuminating the deeper regions by transitioning the lighting in the image from
point light to directional light. This transformation is achieved by utilizing surface nor-
mals derived from reconstructed 3D models. Following color correction and contrast
enhancement on the images of the artificial colon, a notable noise is observed due to the
inherent noise in the original images. To address this issue, the enhanced images are further
denoised. The enhanced images are converted into their luma and chroma components,
with a focus on addressing significant noise present in the luma component. Subsequently,
the luma of all the images is subjected to denoising using anisotropic diffusion. The dif-
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fusion tensor is derived like in Equation (9), after applying a Gaussian filter to the luma
component of the enhanced images, ensuring the preservation of edges in the resulting
denoised images. The final geometrically corrected enhanced images of the colon are
presented in Figure 12, and the subsequent 3D models, wrapped with enhanced images,
are illustrated in Figure 13.

(a) (b) (c)

Figure 12. Color-corrected and directionally lit colon images: (a) ROI-1, (b) ROI-2, and (c) ROI-3.

(a) (b) (c)

Figure 13. Recovered 3D colon models. The axis represents the values in meters: (a) ROI-1, (b) ROI-2,
and (c) ROI-3.

3.4. Discussion

The PSFS algorithm demonstrates robustness in handling noisy endoscope-captured
images. Initially, the method is tested on simple primitives to assess accuracy by comparing
the reconstructions with ground truth models. The results in Table 1 indicate a notable level
of accuracy, which, in turn, served as an indicator of the method’s potential for accurately
reconstructing the 3D geometry of the colon.

While reconstructing 3D shapes, the number of iterations in the PSFS algorithm
varies across experiments. We terminate the process when successive iterations show
no significant change in irradiance error ei(z) according to Equation (7). Throughout
the experimentation with the PSFS algorithm, ei(z) is continuously reduced, indicating,
as referenced in [17], an improvement in the quality of depth estimation.

The known dimensions of the artificial colon played a crucial role in assessing the
accuracy of the reconstructed 3D colon model during laboratory experimentation. As pre-
viously stated, the artificial colon has a diameter of 0.028 m, a value closely matched by
all the reconstructed colon models shown in Figure 13. Another significant advantage of
employing the endoscope is the extensive laboratory experiments that are challenging to
replicate with a WCE in a controlled environment, mainly due to the unavailability of high-
cost equipment required for WCE operation. However, after successfully reconstructing
the colon shapes using an endoscope that closely mimics the behavior of WCE, confidence
is established in the feasibility of applying the same procedure to reconstruct 3D shapes
from WCE images.

3.5. Preliminary Results of WCE

After experimenting with an endoscope, we subsequently test images of the GI system
captured with WCE. These images were acquired during clinical trials involving the exami-
nations of ten patients. The pilot study was conducted in collaboration between Innlandet
Hospital Trust and NTNU, Gjøvik, Norway, in 2021, under the consultation of the professor
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and gastroenterologist Øistein Hovde. The capsule modality used in the examinations was
PillCam COLON 2.

Three distinct images from the colon region of the GI tract are selected, as illustrated
in Figure 14. We choose images without any artifacts or deficiencies to demonstrate the
applicability of our method on PillCam images. We apply a similar procedure as used with
the endoscope, with a notable difference in radiometric calibration due to unavailability
of the SG ColorChecker images captured with PillCam. The geometric calibration is
performed using images of a checkerboard acquired during the pilot study. For physical
unit conversion, r and θ are empirically estimated by leveraging the optical properties
of WCE, such as effective visibility distance, as provided in the PillCam information
manual [31]. Due to the absence of radiometric results, certain assumptions are made for the
CRF and the spatial irradiance. It is assumed that the four light sources of PillCam COLON
2 are similar to an ideal four-point light distribution model. The conversion of image
intensity values to image irradiance utilizes standard sRGB curves. The mucosal texture
of the GI tract is removed using the method proposed by Xu et al. [27] to approximate a
uniform albedo throughout the scene. Finally, the PSFS method is employed to reconstruct
3D shapes of the PillCam images.

Figure 14. Images of the human colon captured with PillCam COLON 2.

Image are cropped to a size of 275 × 275, as the MATLAB camera calibration toolbox
is unable to handle regions towards the periphery quite well. Cropped images utilized
for 3D reconstruction are shown in Figure 15, and the corresponding reconstructed 3D
models of all three images are shown in Figure 16. In Figure 17, the side view of all the 3D
models are shown, which clearly illustrates that our method successfully reconstructs a
significant portion of the structure, even in these preliminary results, despite the absence of
radiometric data from the PillCam camera.

(a) (b) (c)

Figure 15. Geometrically corrected cropped images utilized for 3D reconstruction: (a) PC-1, (b) PC-2,
and (c) PC-3.
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(a) (b) (c)

Figure 16. Top view of the recovered 3D human GI regions. The axis represents the values in meters:
(a) PC-1, (b) PC-2, and (c) PC-3.

(a) (b) (c)

Figure 17. Side view of the recovered 3D human GI regions. The axis represents the values in meters:
(a) PC-1, (b) PC-2, and (c) PC-3.

The 3D reconstruction results can be further enhanced by conducting radiometric
calibration on PillCam, as it is an important parameter to convert the device’s output
grayscale image to image irradiance, as per Equation (14). The geometric calibration
can be further improved by utilizing other methods that deal with fish-eye lenses [32].
Nevertheless, these preliminary results are quite convincing, demonstrating the capability
of our method to handle images with significant lens distortion, even in the absence of
radiometric calibration results and albedo values. Further investigation is encouraged
to enhance the accuracy of 3D models, as they are recognized as valuable tools during
diagnostic assessment in gastroenterology, as highlighted in [4].

4. Conclusions

This article investigates the possibility of reconstructing endoscopic images using
the PSFS algorithm employed with anisotropic diffusion. Images of simple primitives are
initially tested to evaluate the accuracy of the method on endoscopic images by comparing
the reconstructed geometries with ground truth models. Afterward, single images of the
endoscopes are used to reconstruct the colon surface. Results show that our systematic
approach can handle a camera with an unknown imaging pipeline and noisy images
and can accurately reconstruct the geometry of the colon.

Additionally, we have implemented a technique utilizing surface normals derived
from the 3D-reconstructed models to improve illumination and thereby enhance contrast
in images capturing larger depths. This is achieved by changing the illumination in such
images from point light to directional light. Various other techniques have also been
discussed for the geometric and radiometric calibration of an endoscope camera. This
calibration is essential for accurately reconstructing 3D shapes using the PSFS algorithm.
In the end, preliminary 3D reconstruction results using PillCam images are provided,
demonstrating the potential applicability of our method to different endoscopic devices.
In future works, efforts will be made to fully calibrate the PillCam COLON 2 camera to
further enhance the 3D reconstruction results.
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