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Abstract: Feature extraction plays a pivotal role in processing remote sensing datasets, especially in
the realm of fully polarimetric data. This review investigates a variety of polarimetric decomposi-
tion techniques aimed at extracting comprehensive information from polarimetric imagery. These
techniques are categorized as coherent and non-coherent methods, depending on their assumptions
about the distribution of information among polarimetric cells. The review explores well-established
and innovative approaches in polarimetric decomposition within both categories. It begins with a
thorough examination of the foundational Pauli decomposition, a key algorithm in this field. Within
the coherent category, the Cameron target decomposition is extensively explored, shedding light
on its underlying principles. Transitioning to the non-coherent domain, the review investigates the
Freeman–Durden decomposition and its extension, the Yamaguchi’s approach. Additionally, the
widely recognized eigenvector–eigenvalue decomposition introduced by Cloude and Pottier is scruti-
nized. Furthermore, each method undergoes experimental testing on the benchmark dataset of the
broader Vancouver area, offering a robust analysis of their efficacy. The primary objective of this re-
view is to systematically present well-established polarimetric decomposition algorithms, elucidating
the underlying mathematical foundations of each. The aim is to facilitate a profound understanding
of these approaches, coupled with insights into potential combinations for diverse applications.

Keywords: PolSAR; coherent decomposition; non-coherent decomposition; feature extraction; Pauli
decomposition; Cameron CTD; Freeman–Durden decomposition; Yamaguchi decomposition; H/A/a
decomposition; double scatterer model

1. Introduction

The use of remote sensing techniques in conjunction with advanced technological tools
provides ample opportunities to study entire ecosystems [1–7] through the collection of vast
amounts of data. The stage of information processing holds paramount significance [8,9]
across diverse applications leveraging satellite data. Ongoing research endeavors aim to
delve into myriad methods for extracting information from a spectrum of remote sensing
data sources. As we stand on the cusp of artificial intelligence dominance, the exploration
of machine learning techniques [10,11] and, more prominently, deep learning approaches
is gaining traction for extracting intricate polarimetric features [12,13]. This emphasis is
particularly pronounced in the domain of Polarimetric Synthetic Aperture Radar (Pol-
SAR) [14–18].

PolSAR, also known as Quad-Pol data, enhances the information about the polariza-
tion status of electromagnetic waves. More precisely, a PolSAR system functions similarly
to a conventional radar system by transmitting and receiving microwave signals. However,
it additionally incorporates the capability to capture the various polarization states of
the echoes received. By using different polarizations, it is possible to discern unique and
distinct features of targets. Some features can be observed in one polarization but not
in another. Radar systems have two common basis polarizations, horizontal linear (H)
and vertical linear (V), which allow them to transmit and receive radio waves with either
horizontal or vertical polarization. However, in polarimetric SAR, it is possible to transmit
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or receive radio waves with both polarizations, allowing for a more detailed analysis of the
backscattered signals. Therefore, full PolSAR data captures all the polarization information
available in the backscattered wave (HH, HV, VH, VV), represented in a 2 × 2 matrix form,
known as polarimetric scattering matrix S, that describes the relationship between the
incident and scattered electric fields of the waves.

S =

[
SHH SHV
SVH SVV

]
(1)

Each element of the matrix corresponds to a specific polarization component of the
scattered wave, and by analyzing the matrix, plenty of information can be provided about
the physical properties of the scattering target. Polarimetric target decompositions, a
class of algorithms, have been developed to extract diverse features from PolSAR images,
enhancing their utility in classification and target detection tasks by capturing multiple
aspects. Many of these algorithms have been proposed in the literature [15–33]. These
methods can be broadly categorized as either coherent or non-coherent decomposition
techniques [18]. Each of these methods tackles the task of interpreting the information
contained in PolSAR cells by starting with the underlying assumption about the target.
Coherent decompositions, as outlined in various studies [16–22], are grounded on the
deterministic premise that each resolution cell represents a single, predominant scattering
mechanism. Consequently, these techniques endeavor to disentangle this primary scattering
behavior and link it to an elementary scatterer characterized by a simple geometric structure.
This endeavor entails representing the backscattering matrix S, typically measured in the
HV basis as a coherent aggregation of basis matrices, with each aligning with an elementary
scattering mechanism.

S =
N

∑
k=1

akSk (2)

The scattering matrix of an elementary scattering mechanism k corresponds to Sk and ak
represents the weight of each scattering mechanism.

Conversely, non-coherent decomposition methods [23–32] have been formulated with
the premise that the target scatters across multiple adjacent PolSAR cells, influenced by
the speckle noise inherent in SAR imaging. In this case, since each resolution cell lacks a
dominant scattering mechanism, the extraction of information requires the utilization of
second-order statistics. Non-coherent targets, which exhibit inherent stochastic behavior,
can be identified using the concept of covariance and coherency matrix. To accomplish this
goal, a four-element complex vector is employed, containing the same information as the
polarimetric scattering matrix. From this vector, the covariance and coherency matrices are
then derived, as defined below:

S =

[
SHH SHV
SVH SVV

]
→

→
k =

1
2

Trace(S[Ψ]) = [k0, k1, k2, k3] (3)

where Ψ represents a comprehensive set of 2 × 2 complex basis matrices under the Her-
mitian inner product [17]. When employing the lexicographic basis, also known as the
Borgeaud basis:

Ψl =

{
2
[

1 0
0 0

]
, 2
[

0 1
0 0

]
, 2
[

0 0
1 0

]
, 2
[

0 0
0 1

]}
(4)

The corresponding vector is formatted as follows:

kl = [SHH , SHV , SVH , SVV ]
T (5)
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and the polarimetric covariance matrix [C]4 is constructed by the outer product <
→
k l

→
k

†

l >

of the scattering vector
→
k l with its conjugate transposed

→
k

†

l :

⟨[C4]⟩v =



〈
|SHH |2

〉 〈
SHHS∗

HV
〉 〈

SHHS∗
VH
〉 〈

SHHS∗
VV
〉

⟨SHVS∗
HH⟩

〈
|SHV |2

〉 〈
SHVS∗

VH
〉 〈

SHVS∗
VV
〉

⟨SVHS∗
HH⟩

〈
SVHS∗

HV
〉 〈

|SVH |2
〉 〈

SVHS∗
VV
〉

⟨SVVS∗
HH⟩

〈
SVVS∗

HV
〉 〈

SVVS∗
VH
〉 〈

|SVV |2
〉

 (6)

where ⟨ ⟩ represents a spatial ensemble averaging assuming homogeneity of the random
scattering medium.

Otherwise, by using another widely referred basis, the Pauli basis:

Ψp =

{√
2
[

1 0
0 1

]
,
√

2
[

1 0
0 −1

]
,
√

2
[

0 1
1 0

]
,
√

2
[

0 −i
i 0

]}
(7)

The vector’s form is:

kp =
1√
2
[SHH + SVV , SHH − SVV , SHV + SVH , i(SVH − SHV)]

T (8)

In a similar way the polarimetric coherency matrix is evaluated as follows:

⟨[T4]⟩v =<
→
k p

→
k

†

p > (9)

Without ensemble averaging, both matrices depict a deterministic scattering mecha-
nism [30]. By definition, these matrices are Hermitian semi-definite matrices with identical
real non-negative eigenvalues. However, their eigenvectors differ.

According to [17], non-coherent decompositions can be divided into three categories.
The first one consists of the decompositions that are based on the dichotomy of the Kennaugh
matrix [23], the second one includes the so-called model-based decompositions [20–25], and
the third one encompasses the algorithms that utilize the eigenvector analysis [26–28].

The present study aims to conduct a thorough analysis of fundamental decomposition
techniques while also acknowledging the significance of other methods and recognizing
the innovation of new ones. The structure of the review is outlined as follows: in Section 3,
coherent decomposition techniques, including Pauli [17,18] and Cameron [20–22], will be
subjected to in-depth analysis. Section 4 will focus on non-coherent techniques, specifically
the model-based three-component Freeman–Durden decomposition [24] and the Yam-
aguchi four-component approach [25]. The Entropy-based decomposition introduced by S.
R. Cloude and E. Pottier [30], serving as a cornerstone of eigenvector-based decomposition
methods, will be discussed in Section 5. Section 6 will analyze the newly established Double
Scatterer model approach [33]. A comprehensive evaluation of these techniques will be
presented, drawing on experiments conducted using the benchmark Fully Polarimetric
dataset covering the broader area of Vancouver. Subsequently, in Section 7, conclusions
will be drawn based on the findings.

2. Dataset and Preprocessing

The data product was obtained from the RADARSAT-2 satellite mission [34] in April
2008 and depicts the broader area of Vancouver (Figure 1), utilizing C-band. The image
was captured using the Fine Quad-Pol Beam mode, offering fully polarimetric imaging
with a specified resolution of 5.2 × 7.6 [Range × Azimuth] (m2) and swath widths of
approximately 25 km.
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Figure 1. Broader area of Vancouver, by Google Earth. 

Among the available products, Single Look Complex (SLC) was chosen [35]. SLC 
products represent images in the slant range by azimuth imaging plane within the satellite 
data acquisition’s image plane. Each pixel in the image is denoted by a complex (I and Q) 
magnitude value, encompassing both amplitude and phase information. Each I and Q 
value is coded at 16 bits per pixel. Therefore, for each PolSAR image, a total of 12 compo-
nents are available, including the I and Q components for each of the polarimetric acqui-
sition (HH, HV, VH, VV), as well as the calculated intensity (𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 𝐼 + 𝑄 ) for each 
channel. During the processing of SLC image products, no interpolation into ground 
range coordinates occurs. Therefore, the range coordinate is expressed in radar slant range 
instead of ground range. In other words, the spacing between pixels and the resolution is 
determined along a slant path perpendicular to the sensor’s track (Figure 2). Pixel spacings 
are measured by the radar’s range sampling rate and pulse repetition frequency (PRF). 

The selection of the specific dataset serves a dual purpose. Firstly, it is a freely avail-
able benchmark dataset widely used in research, offering valuable insights into the inher-
ent characteristics of the specific polarimetric synthetic aperture radar (POLSAR) imagery. 
Secondly, and of paramount importance, the availability of the raw format provides us 
with flexibility and robustness. This allows us to process the data in various ways and 
conduct numerous experiments, affording the freedom to test our methods without being 
constrained by a standard processing path. 

Figure 1. Broader area of Vancouver, by Google Earth.

Among the available products, Single Look Complex (SLC) was chosen [35]. SLC
products represent images in the slant range by azimuth imaging plane within the satellite
data acquisition’s image plane. Each pixel in the image is denoted by a complex (I and Q)
magnitude value, encompassing both amplitude and phase information. Each I and Q value
is coded at 16 bits per pixel. Therefore, for each PolSAR image, a total of 12 components
are available, including the I and Q components for each of the polarimetric acquisition
(HH, HV, VH, VV), as well as the calculated intensity (Intensity =

√
I2 + Q2) for each

channel. During the processing of SLC image products, no interpolation into ground
range coordinates occurs. Therefore, the range coordinate is expressed in radar slant range
instead of ground range. In other words, the spacing between pixels and the resolution is
determined along a slant path perpendicular to the sensor’s track (Figure 2). Pixel spacings
are measured by the radar’s range sampling rate and pulse repetition frequency (PRF).

The selection of the specific dataset serves a dual purpose. Firstly, it is a freely available
benchmark dataset widely used in research, offering valuable insights into the inherent
characteristics of the specific polarimetric synthetic aperture radar (POLSAR) imagery.
Secondly, and of paramount importance, the availability of the raw format provides us
with flexibility and robustness. This allows us to process the data in various ways and
conduct numerous experiments, affording the freedom to test our methods without being
constrained by a standard processing path.
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Figure 2. The broader area of Vancouver, as represented by the Intensity of the HV channel of Pol-
SAR SLC data. 

To effectively process PolSAR SLC data, it is essential to undergo radiometric cali-
bration and terrain correction processes [36]. These processes were executed using the 
Sentinel Application Platform (version 8.0, SNAP) application, which serves as a common 
architecture for all Sentinel Toolboxes. Designed for Earth observation (EO) processing 
and analysis, the SNAP architecture is versatile and supports a wide array of sensors be-
yond the Sentinel series. The SNAP user tool is made available at no cost to the Earth 
Observation Community by ESA/ESRIN [37]. 

It is noteworthy to highlight the development of a specialized toolbox named Pol-
SARpro. This toolbox, crafted by the European Space Agency (ESA), is dedicated to the 
processing and analysis of polarimetric synthetic aperture radar (PolSAR) data. POL-
SARPRO offers an extensive suite of tools encompassing calibration, visualization, and 
analysis functionalities for PolSAR data. This toolbox plays a pivotal role in facilitating 
the calibration and interpretation of polarimetric information derived from SAR observa-
tions. 

Radiometric calibration plays a crucial role in standardizing the raw digital image 
data obtained from satellites into a consistent physical scale. This procedure depends on 
documented reflectance data collected from various objects present on the surface of the 

Figure 2. The broader area of Vancouver, as represented by the Intensity of the HV channel of PolSAR
SLC data.

To effectively process PolSAR SLC data, it is essential to undergo radiometric cali-
bration and terrain correction processes [36]. These processes were executed using the
Sentinel Application Platform (version 8.0, SNAP) application, which serves as a common
architecture for all Sentinel Toolboxes. Designed for Earth observation (EO) processing and
analysis, the SNAP architecture is versatile and supports a wide array of sensors beyond the
Sentinel series. The SNAP user tool is made available at no cost to the Earth Observation
Community by ESA/ESRIN [37].

It is noteworthy to highlight the development of a specialized toolbox named Pol-
SARpro. This toolbox, crafted by the European Space Agency (ESA), is dedicated to the
processing and analysis of polarimetric synthetic aperture radar (PolSAR) data. POL-
SARPRO offers an extensive suite of tools encompassing calibration, visualization, and
analysis functionalities for PolSAR data. This toolbox plays a pivotal role in facilitating the
calibration and interpretation of polarimetric information derived from SAR observations.

Radiometric calibration plays a crucial role in standardizing the raw digital image
data obtained from satellites into a consistent physical scale. This procedure depends on
documented reflectance data collected from various objects present on the surface of the
Earth. Since the image is acquired in the radar’s slant range, distortions associated with
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side-looking geometry may arise, and the pixels may lack geographical coordinates. To
address this, the Range Doppler terrain correction operator available in SNAP was utilized.
This method is employed to geocode SAR images and produce map-projected products
(Figure 3). During this process, orbit state vector information from the metadata, radar
timing annotations, parameters for converting slant to ground range, and data from the ref-
erence digital elevation model are integrated to determine precise geolocation information.
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preprocessing, which includes calibration and terrain correction.

3. Coherent Target Decomposition
3.1. Pauli Target Decomposition

Pauli Decomposition expresses the polarimetric scattering matrix S into the complex
sum of the Pauli spin matrices. Each one is multiplied by a complex coefficient and is
associated with an elementary scattering mechanism:

S =

[
SHH SHV
SVH SVV

]
=

a√
2

Sa +
b√
2

Sb +
c√
2

Sc +
d√
2

Sd (10)

where the basis set is presented as follows:

Sa =

[
1 0
0 1

]
Sb =

[
1 0
0 −1

]
Sc =

[
0 1
1 0

]
Sd =

[
0 −j
j 0

]
(11)

and the Pauli complex coefficients are provided next:

a =
(S HH + SVV)√

2
, b =

(S HH − SVV)√
2

, c =
(S HV + SVH)√

2
, d = j

(S HV − SVH)√
2

(12)

The Pauli complex coefficients reveal the strength of the four superimposed scattering
mechanisms. These mechanisms are used to describe deterministic targets included in each
PolSAR cell. The four elementary scattering mechanisms are:

(a) The single or odd bounce scattering mechanism, also referred to as the plate, sphere,
or trihedral scattering mechanism, corresponds to the Sa component.
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(b) The diplane scattering mechanism, also referred to as dihedral scattering or, in general
cases, as double or even bounce scattering from corners with a relative orientation of
0◦, is presented by the Sb;

(c) and with a relative orientation of 45◦, corresponds to the Sc component.
(d) The Antisymmetric mechanisms are depicted via the Sd component.

By analyzing the amplitudes of these four components, the scattering mechanisms in
a PolSAR cell can be identified and evaluated.

In the context of the monostatic radar, employing a single antenna for both transmis-
sion and reception and relying on the reciprocity theorem, which states that SHV = SVH ,
the scattering matrix can be expressed as follows:

S =

[
SHH SHV
SHV Svv

]
= aSa + bSb + cSc = a

[
1 0
0 1

]
+ b
[

1 0
0 −1

]
+ c
[

0 1
1 0

]
(13)

where

a =
(S HH + SVV)√

2
, b =

(S HH − SVV)√
2

, c =
√

2SHV (14)

The span of the reduced matrix S can be easily obtained as:

SPAN = |SHH |2 + |SVV |2 + 2|SHV |2 = |a|2 + |b|2 + |c|2 (15)

The magnitude of the coefficients can provide valuable insights into each cell within
a PolSAR image. By combining the magnitudes of the coefficients |a|2, |b|2, and |c|2, the
polarimetric data of each cell can be visually represented in an RGB image. Each intensity
corresponds to a physical scattering mechanism, as mentioned earlier, and is associated
with a color image. The most frequently occurring match is the following:

|a|2 → Red, |b|2 → Blue, |c|2 → Green (16)

and is depicted in Figure 4.
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It is worth mentioning that a disadvantage of this decomposition is the lack of discrim-
ination between the scattering mechanisms and the dependency on the orientation angles
in the case of diplane/dihedral scattering mechanism. A comprehensive exploration of
Pauli mechanisms is available in reference [38], providing detailed insights into the intricate
interplay of these mechanisms. Additionally, the correlation between the degree of Linear
Polarization and the Pauli color-coded image is thoroughly examined within the same
reference, shedding light on their interconnected dynamics. At the application level, Pauli
decomposition is widely used as a fundamental and computationally simple technique
in various fields. It is often combined with other decomposition methods and machine
learning algorithms for both classification and detection tasks. For example, in a study by
O. Okwuashi et al. [39], Pauli decomposition was used in conjunction with the Gray Level
Co-occurrence Matrix (GLCM) for texture feature extraction. The extracted information
was utilized by a Deep Support Vector Machine model in land cover classification with
11 classes. The results were compared with other well-established approaches as concern
the classifiers, and the accuracy of the specific procedure was highlighted. In [40], Pauli
decomposition is employed in a land cover classification approach that is based on the
idea of Super pixels and uses Convolutional Neural Networks. Furthermore, Fan. W.
et al. [41] utilized Pauli decomposition in order to generate color-coded images and feed
Deep Convolutional Neural Networks in a ship detection task, while in [42], Pauli’s, along
with three other decomposition approaches, were employed in a ship detection study that
combines algorithms aiming to improve the probability of target detection.

3.2. Cameron Target Decomposition

Cameron’s decomposition is based on the properties of reciprocity and symmetry. The
decomposition involves two stages: the first stage is the decomposition of the scattering
matrix into reciprocal and non-reciprocal components by means of the angle θrec. The
second stage decomposes the reciprocal term into symmetric and non-symmetric com-
ponents using the angle τsym. Cameron’s CTD analysis [20–22] utilizes the Huynen [23]
hypothesis of the two fundamental properties of scatterers, reciprocity, and symmetry. A
scatterer exhibits reciprocity when the off-diagonal elements of its backscattering matrix
are equal in pairs. The principle of reciprocity extends to all monostatic SAR, as the same
antenna is used for transmission and reception. Consequently, all scatterers are perceived as
reciprocal when observed by monostatic SAR systems. Furthermore, a reciprocal scatterer
is deemed symmetric if it displays an axis of symmetry perpendicular to the radar’s line of
sight (LOS).

In accordance with Cameron’s algorithm, the backscattering matrix S is first mapped
onto a basis set, where each matrix corresponds to an elementary scatterer. The basis set
chosen is the Pauli matrices, Equation (7).

S =

[
SHH SHV
SVH Svv

]
=

a√
2

[
1 0
0 1

]
+

b√
2

[
1 0
0 1

]
+

c√
2

[
0 1
1 0

]
+

d√
2

[
0 −j
j 0

]
(17)

By converting the scattering matrix S into a vector format for computational ease and
effectiveness, the ensuing expression is obtained:

s = V(S) = αŝa + βŝb + γŝc + δŝd (18)

The hat ŝ of vector s symbolizes a unit vector (|ŝ| = 1, where |. . .| stands for
vector magnitude).

Drawing from the reciprocity theorem, which stipulates that SHV = SVH , Cameron
categorizes the target into either reciprocal or non-reciprocal, based on the projection angle
θrec within the reciprocal subspace.

θrec = cos−1||PrecS||, 0 ≤ θrec ≤
π

2
(19)
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where

Prec =


1 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 1

 (20)

If θrec ≤ 45◦, the elementary scattering mechanism is considered as reciprocal, oth-
erwise it is taken as non-reciprocal. The scattering matrix of a reciprocal scatterer is now
decomposed as:

S = Srec = αŝa + βŝb + γŝc (21)

where
α =

SHH + SVV√
2

, β =
SHH − SVV√

2
, γ =

√
2SHV (22)

Ultimately, the reciprocal scatterer is expressed as follows:

srec = α
1√
2


1
0
0
1

+ β
1√
2


1
0
0
−1

+ γ
1√
2


0
1
1
0

 (23)

The reciprocal scatterer is considered symmetric if it possesses an axis of symmetry
perpendicular to the radar Line of Sight (LOS), or if there’s a rotation angle ψc that nullifies
the projection of Srec on the antisymmetric component Sc. When such an angle is present,
the symmetric aspect of the reciprocal scatterer achieves its utmost magnitude. The rota-
tion angle ψc represents the orientation angle of the scatterer. The maximum symmetric
component of the reciprocal scatterer is described as:

Smax
sym = αSa + εSb (24)

with
ε = βcos(χ) + γsin(χ) (25)

and

tan(2χ) =
βγ* + β*γ(
|β|2 + |γ|2

) (26)

when β ̸= γ. Alternatively, if β = γ then χ = 0. The orientation angle of the scatterer can be
found as follows:

ψ = −1
4

χ, −π ≤ χ ≤ π (27)

As for the degree of symmetry, it is expressed as the degree to which S deviates from
Smax

sym , and it can be calculated as:

cos τsym =

∣∣∣∣∣∣
(

S, Smax
sym

)
||S||·

∣∣∣∣Smax
sym
∣∣∣∣
∣∣∣∣∣∣, 0 ≤ τsym ≤ π

4
(28)

The symbol ||. . .|| denotes the norm of a complex vector form, which aligns with the
associated matrix.

In the case where τsym = 0, the scattering matrix represents a perfectly symmetric
target. Conversely, if τsym = π

4 , the target that backscattered the radiation is regarded as
asymmetric. Cameron delineates symmetry by categorizing any elementary scatterer with
an angle τsym ≤ π

8 as symmetric, otherwise he considers it as asymmetric. Examples of
asymmetric scattering matrices are the left and right helix, given by the equations:
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Slh =
1
2

[
1 i
i −1

]
(29)

Srh =
1
2

[
1 −i
−i −1

]
(30)

The maximum symmetric component can be transformed into a normalized com-
plex vector Λ̂(z) with z representing the complex parameter that ultimately dictates the
scattering mechanism. The definition of the normalized complex vector Λ̂(z) is as follows:

Λ̂(z) =
1√

1 + |z|2


1
0
0
z

, z ∈ ∁, |z| ≤ 1 (31)

Table 1 provides detailed information on the complex vectors Λ(z) and their corre-
sponding values of z for symmetric elementary scattering types. The parameter z’s range
implies that the scattering matrix can be accurately depicted by a point situated on the
unit disc within the complex plane. Figure 5 visually illustrates the positions of various
elementary scattering mechanisms on the unit disk, accompanied by delineated regions
representing their association with these scattering mechanisms. A crucial observation
is that, in accordance with the values of z presented in Table 1, all elementary scatterers
are situated along the diameter of the unit disk, with the exception of the ¼ wave devices,
which specifically reside on the imaginary axis.

Table 1. Elementary scattering mechanisms according to Cameron Decomposition.

Elementary Scatterer Normalized Complex Vector Complex Parameter z

Trihedral Λ̂(1) 1

Dihedral Λ̂(−1) −1

Dipole Λ̂(0) 0

Cylinder Λ̂(+ 1
2 ) + 1

2

Narrow Diplane Λ̂(− 1
2 ) − 1

2

¼ wave devise Λ̂(±j) ±j
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To assess the scattering characteristics of an unidentified scatterer z, Cameron devised
a novel distance metric as follows:

d
(

z, zre f

)
= cos−1


max

(∣∣∣1 + zz∗re f

∣∣∣, ∣∣∣z + z∗re f

∣∣∣)√(
1 + |z|2

)(
1 +

∣∣∣zre f

∣∣∣2)
 (32)

This expression provides a measure of similarity with each of the elementary scattering
mechanisms referenced in Table 1.

In summary, Cameron’s CTD can be compactly formulated as:

s = α
[
cosθrec +

(
cosτsym ŝmax

sym + sinτsym ŝmin
sym

)
+ sinθrec ŝnonrec

]
(33)

where α is the total span of the backscattering matrix S, θrec determines the degree to which
the scatterer deviates from the reciprocal space and τsym determines the symmetry degree
of the scatterer. Ultimately, leveraging the maximum symmetric component allows for
unambiguous extraction of information regarding the scatterer’s orientation angle, degree
of symmetry, and dominant scattering mechanism.

Cameron et al. in [22] investigated the characteristics of conservative symmetric
scattering mechanisms, emphasizing the preference for a closed surface over a complex
disk. The proposed optimal configuration involves a symmetric space represented by
the unit sphere, achieved by linking conjugate pairs along the rim of the unit disk. This
conceptualization was thoroughly illustrated through a mapping procedure outlined in [22],
with its visual depiction showcased in Figure 6a,b. To elaborate, in this novel topology,
they established a direct association between each point (x,y) within the unit disk and a
circular arc, denoted as a a(x,y) on the unit sphere that encompasses the points (−1,0), (x,y)
and (1,0). Notably, for points (x,y) not situated on the rim of the disk, the arc length is less
than π. In such instances, the arc is “stretched” to attain a length equal to π, becoming part
of a great circle. The mapping is visually clarified by associating each point (x, y) with a
semi-circle, strategically positioned tangent to the sphere’s surface. The initial position (x,y)
on the unit disk determines the latitude φs and longitude θs of the corresponding point on
the unit sphere, with the spherical coordinates θs and φs given by:

θs(x, y) =

κθD = π
sin−1

(√
(1−x)2+y2

2r

)
sin−1( 1

r )
y ̸= 0

π
2 (1 − x), y = 0

(34)

φs(x, y) =



4sin−1

(
r−|yc |√

2

)
, y > 0

0, y = 0

−4sin−1
(

r−|yc |√
2

)
, y < 0

(35)

where
κ(x, y) =

π

θc
=

π

2sin−1
(

1
r

) , and y ̸= 0 (36)

and

θD(x, y) = 2 sin−1


√
(1 − x)2 + y2

2r

, and y ̸= 0 (37)
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Consequently, the updated configuration of the symmetrical scatterer unit as described
in [18], is illustrated in Figure 6b. Additionally, the spatial distance measure, denoted as
d, between a test elementary scattering mechanism z and each of the reference ones from
Table 1, is now expressed in a more intuitive form akin to Equation (32):

d
(

z, zre f

)
= sin−1

(
min

[
d−
(

z, zre f

)
, d∗

(
z, zre f

)])
(38)

with

d−
(

z, zre f

)
=

√√√√√√
∣∣∣z−zre f

∣∣∣2
(1 + |z|2)(1 +

∣∣∣zre f

∣∣∣2) (39)

d∗
(

z, zre f

)
=

√√√√√√
∣∣∣z−z∗re f

∣∣∣2 + (1 − |z|2)(1 −
∣∣∣z∗re f

∣∣∣2)
(1 + |z|2)(1 +

∣∣∣z∗re f

∣∣∣2) (40)

The broader area of Vancouver, in color representation, based on Cameron’s decompo-
sition is given in Figure 7, according to the color palette of Table 2.

As a coherent decomposition technique, Cameron’s approach has been exploited
with remarkable results in target detection tasks. Specifically, Ringrose et al. [43] use
Cameron’s method to discriminate ships from clutter based on the dominant scattering
mechanism in each PolSAR cell. Moreover, it has been proved that the utilization of the
features extracted based on Cameron’s approach by machine learning algorithms presents
significant results in both detection and classification procedures. Namely, Kouroupis and
Anastassopoulos [44] introduced a polarimetric CFAR ship detector in a Cameron-based
Markov-ruled environment. G. Koukiou and V. Anastassopoulos utilized Markov chains
to categorize different types of land cover. They employed Cameron’s decomposition
to extract relevant features for this classification [45]. Furthermore, K. Karachristos et al.
conducted a study involving the use of hidden Markov models in combination with
Cameron’s scattering technique for supervised land cover classification [46].
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eron’s scattering technique for supervised land cover classification [46]. 
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As a coherent decomposition technique, Cameron’s approach has been exploited 
with remarkable results in target detection tasks. Specifically, Ringrose et al. [43] use Cam-
eron’s method to discriminate ships from clutter based on the dominant scattering mech-
anism in each PolSAR cell. Moreover, it has been proved that the utilization of the features 
extracted based on Cameron’s approach by machine learning algorithms presents signifi-
cant results in both detection and classification procedures. Namely, Kouroupis and An-
astassopoulos [44] introduced a polarimetric CFAR ship detector in a Cameron-based 
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to categorize different types of land cover. They employed Cameron’s decomposition to 
extract relevant features for this classification [45]. Furthermore, K. Karachristos et al. con-
ducted a study involving the use of hidden Markov models in combination with Cam-
eron’s scattering technique for supervised land cover classification [46]. 
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As a coherent decomposition technique, Cameron’s approach has been exploited 
with remarkable results in target detection tasks. Specifically, Ringrose et al. [43] use Cam-
eron’s method to discriminate ships from clutter based on the dominant scattering mech-
anism in each PolSAR cell. Moreover, it has been proved that the utilization of the features 
extracted based on Cameron’s approach by machine learning algorithms presents signifi-
cant results in both detection and classification procedures. Namely, Kouroupis and An-
astassopoulos [44] introduced a polarimetric CFAR ship detector in a Cameron-based 
Markov-ruled environment. G. Koukiou and V. Anastassopoulos utilized Markov chains 
to categorize different types of land cover. They employed Cameron’s decomposition to 
extract relevant features for this classification [45]. Furthermore, K. Karachristos et al. con-
ducted a study involving the use of hidden Markov models in combination with Cam-
eron’s scattering technique for supervised land cover classification [46]. 

In conclusion, coherent target decomposition approaches have exhibited considerable
success in target detection procedures, particularly in homogeneous environments. These
methods offer a wealth of information about the backscattering behavior of targets within
polarimetric cells, presenting clear and physically interpretable insights.

However, the limitation in the number of elementary scattering mechanisms they
provide warrants a more thorough investigation. Exploring a broader array of elementary
scattering mechanisms would enhance the diversity of physical interpretations. Further-
more, a comprehensive study is needed to delve into the impact of varying data quality
across different frequency bands and environmental conditions. This analysis would shed
light on the specific circumstances under which each method proves to be more accurate,



J. Imaging 2024, 10, 75 14 of 39

contributing to a nuanced understanding of their strengths and weaknesses. The key
information is succinctly summarized in the following table (Table 3).

Table 3. Summarization of Coherent Target Decompositions.

C
oh

er
en

tT
ar

ge
tD

ec
om

po
si

ti
on

Advantages Disadvantages Application Fields

Pauli
Decomposition

Can effectively
differentiate

natural targets

Unable to identify
artificial targets Image coloring

Dependency on the
orientation angle

Not all scattering
behaviors can be

explained

Easily combine with
machine learning

algorithmsComputationally
straightforward

Cameron
Coherent

Target
Decomposition

Optimize the
utilization of data

from the maximized
symmetric component

of coherent targets

Not all scattering
behaviors can be

explained
Ship detection

Additional scattering
mechanisms for

interpreting scattering
behaviors

Greater
computational cost

than Pauli Easily combine with
machine learning

algorithms
Not appropriate for
intricate situations

involving
asymmetric targets

4. Model-Based Decomposition

One of the most commonly employed categories of polarimetric decomposition tech-
niques for PolSAR data are the model-based methods. These methods are built upon the
underlying physical scattering models of microwaves. In these algorithms, the covariance
or coherency matrix is decomposed into multiple components that correspond to various
physical scattering mechanisms. The model-based decomposition methods were initially
introduced through the three-component scattering model for SAR data presented by A.
Freeman and S. L. Durden [24].

4.1. Freeman–Durden Decomposition

The Freeman–Durden decomposition examines the polarization covariance matrix,
requiring no ground truth measurements, and divides it into three distinct components:

(a) The canopy scatter from a cloud of randomly oriented dipoles or volume.
(b) The even or double bounce scatter from a pair of orthogonal surfaces with different

dielectric constants and
(c) The Bragg scatter from a moderately rough surface.

This composite scattering model is used to describe the polarimetric backscatter from
naturally occurring scatterers [24]. Concerning the first component of canopy scatter-
ing, it is assumed to be the radar echo from a cloud of randomly oriented, very thin,
cylinder-like scatterers. According to the authors [24], the canopy scattering can be repre-
sented by the following scattering matrix, expressed in the orthogonal linear (H,V) basis,
in standard orientation:

S =

[
Sυ 0
0 Sh

]
(41)

It should be noted that the polarization scattering matrix (shown in Equation (41))
utilized by Freeman and Durden in their original paper [24] differs from the one defined
in Equation (1) that is widely employed. The distinction lies in the rotated elements, but
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this variation does not yield different results in terms of implementation. Therefore, the
covariance matrix that will be used later differs from the one defined in Equation (6).

It is possible to assume that the scatterers are positioned randomly with respect to
the radar’s line of sight and at an angle of φ from the vertical polarization direction. To
determine the scattering matrix of a specific scatterer under such circumstances, rotation
operators can be applied to align the vertical direction with the scatterer’s standard ori-
entation. Following this, the scattered field can be computed and then rotated back to
the radar’s coordinate system. The equation below provides a means of expressing the
scattering matrix in the radar’s coordinate system in terms of the scattering matrix in the
scatterer’s coordinate system:[

SVV SVH
SHV SHH

]
= R(φ)

[
Sυ 0
0 Sh

]
R(−φ)

=

(
Shsin2 φ + Sυcos2 φ (Sυ − Sh)cosφ sinφ

(Sυ − Sh)cosφ sinφ Shcos2 φ + Sυsin2 φ

) (42)

where R(φ) is the rotation matrix:

R(φ) =

(
cosφ sinφ
−sinφ cosφ

)
(43)

It is worth mentioning that the radars transmitting and receiving coordinate systems
are identical, leading to a symmetric scattering matrix as the equation SHV = SVH holds.
Therefore, the covariance matrix as formulated by Freeman–Durden, considering the
rotated elements with respect to the normal form of Equation (6), reduces to a 3 × 3 matrix
without any loss of information:

⟨[C3]⟩v =


〈
|SVV |2

〉 √
2
〈
SVVS∗

VH
〉

⟨SVVS∗
HH⟩√

2
〈
SVHS∗

VV
〉

2
〈
|SVH |2

〉 √
2
〈
SVHS∗

HH
〉

〈
SHHS∗

VV
〉 √

2
〈
SHHS∗

VH
〉 〈

|SHH |2
〉

 (44)

Taking into consideration that the probability density function for scatterers orientation
is p(φ) and the expected value of any function f (φ) is:

⟨ f ⟩ =
∫ 2π

0
f (φ)p(φ)dφ (45)

the elements of the covariance matrix according to the authors [24] are defined as follows:〈
|SHH |2

〉
= a1|Sh|2 + 2a2Re(ShS∗

υ) + a3|Sυ|2 (46)〈
|SVV |2

〉
= a1|Sυ|2 + 2a2Re(ShS∗

υ) + a3|Sh|2 (47)〈
|SHV |2

〉
= a2|Sυ|2 − 2a2Re(ShS∗

υ) + a2|Sh|2 (48)

⟨SHHS∗
VV⟩ = (a1 + a3)Re(ShS∗

υ) + a2(|Sh|2 + |Sυ|2) + i(a1 − a3)Im(ShS∗
υ) (49)

⟨SHHS∗
HV⟩ = a4(ShS∗

υ − |Sh|2) + a5(|Sυ|2 − SυS∗
h) (50)

⟨SHVS∗
VV⟩ = a4(|Sυ|2 − ShS∗

υ) + a5(SυS∗
h − |Sh|2) (51)

where

a1 ≡
∫ 2π

0
cos4 φ p(φ)dφ (52)

a2 ≡
∫ 2π

0
cos2 φ sin2 φ p(φ)dφ (53)
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a3 ≡
∫ 2π

0
sin4 φ p(φ)dφ (54)

a4 ≡
∫ 2π

0
cos3 φ sinφ p(φ)dφ (55)

a5 ≡
∫ 2π

0
cosφ sin3 φ p(φ)dφ (56)

For thin cylindrical scatterers, Sυ equals 1 and Sh equals 0. Moreover, according to the
assumption of a uniform orientation distribution p(φ), which implies that a1 = a3 = 3π

4 ,
a2 = π

4 and a4 = a5 = 0, the covariance matrix of the ensemble of the very thin, cylinder-
like scatterers can be modeled by:

⟨[C3]⟩v =


〈
|SVV |2

〉 √
2
〈
SVVS∗

VH
〉

⟨SVVS∗
HH⟩√

2
〈
SVHS∗

VV
〉

2
〈
|SVH |2

〉 √
2
〈
SVHS∗

HH
〉

〈
SHHS∗

VV
〉 √

2
〈
SHHS∗

VH
〉 〈

|SHH |2
〉

 = fv

1 0 1
3

0 2
3 0

1
3 0 1

 (57)

where fv corresponds to the contribution of the volume (or canopy) scattering to the
|SVV |2 component. The covariance matrix ⟨[C3]⟩v is of rank 3, indicating that the scattering
behavior cannot be characterized by a single scattering matrix of a pure target.

The second component of the Freeman–Durden decomposition approach, known as
even or double bounce, is modeled by scattering from a dihedral corner reflector, where
the reflector surfaces can be made of different dielectric materials. Therefore, the scattering
matrix is modeled using reflection coefficients Rth and Rtv for horizontal and vertical
polarizations on the vertical surface, and Rgh and Rgv for the same polarizations on the
horizontal surface. In addition, the model is generalized by the two-phase components
ej2γυ and ej2γh , where γ is a complex number that represents any attenuation and phase
change of the vertically and horizontally polarized waves as they propagate from the radar
to the ground and back again. As a result, the scattering matrix of the general even-bounce
case can be determined as follows:

S =

[
ej2γv RgvRtv 0

0 ej2γh RghRth

]
(58)

After normalization with respect to the SVV component, the corresponding covariance
matrix can be written as:

⟨[C3]⟩d = fd

 1 0 α∗

0 0 0
|α| 0 |α|2

 (59)

where

α = e2j(γh−γυ)

(
RthRgh

)
RtυRgυ

(60)

fd =
∣∣RtvRgv

∣∣2 (61)

The covariance matrix ⟨[C3]⟩d is of rank 1, indicating that the scattering behavior can
be represented by a pure target.

A first-order Bragg model is employed for the third and last component, with the
following scattering matrix:

S =

[
Rv 0
0 Rh

]
(62)
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Hence, the covariance matrix is:

⟨[C3]⟩s = fs

 1 0 β∗

0 0 0
|β| 0 |β|2

 (63)

where fs is defined as the contribution of the surface contribution to the |SVV |2 component,
with

fs = |Rv|2 (64)

β =
Rv

Rh
(65)

In a similar manner to the previous case of even bounce scattering mechanism, the
covariance matrix ⟨[C3]⟩s of the first order Bragg surface exhibits a rank of 1. Consequently,
it can be fully represented by the scattering mechanism presented at Equation (63).

By making the assumption that the volume, even bounce and surface scatterer compo-
nents are uncorrelated, then the second-order statistics for the overall scattering behavior
can be obtained by the sum of each individual scattering mechanism. Therefore, the model
for the total backscatter is:

[C]3 = ⟨[C3]⟩v + [C3]d + [C3]s (66)

[C]3 =


〈
|SVV |2

〉 √
2
〈
SVVS∗

VH
〉

⟨SVVS∗
HH⟩√

2
〈
SVHS∗

VV
〉

2
〈
|SVH |2

〉 √
2
〈
SVHS∗

HH
〉

〈
SHHS∗

VV
〉 √

2
〈
SHHS∗

VH
〉 〈

|SHH |2
〉


=

 fv + fd + fs 0 fv
3 + fdα∗ + fsβ∗

0 fv
3 0

fv
3 + fdα + fsβ 0 fv + fd|α|2 + fs|β|


(67)

This model produces four equations in five unknowns. However, neither the surface
nor the even bounce scattering mechanism contributes to the HV term, therefore, it is
possible to calculate the volume contribution fv directly and then subtract the |SHH |2,
|SVV |2, SHHS∗

VV terms, leaving the three equations:〈
|SHH |2

〉
= fs|β|2 + fd|α|2 (68)〈

|SVV |2
〉
= fs + fd (69)

⟨SHHS∗
VV⟩ = fsβ + fdα (70)

If one of the unknowns is fixed, a solution can be determined. Van Zyl [26] proposes
that the real part of

〈
SHHS∗

VV
〉

can determine whether double bounce scattering, or surface
scattering predominates in the residual. If Re(⟨ShhS∗

vv⟩) ≥ 0, surface scattering is predom-
inant, and the parameter α is set to α = −1. If Re(⟨ShhS∗

vv⟩) is negative, double-bounce
scattering is deemed dominant, and the parameter β is set to β = 1. The contributions fs and
fd, as well as the parameters α, b, can be estimated from the residual radar measurements.
Finally, the contribution of each scattering mechanism to the span can be estimated:

Span = |SHH |2 + 2|SHV |2 + |SVV |2 = Ps + Pd + Pv (71)

where
Ps = fs

(
1 + |β|2

)
(72)

Pd = fd

(
1 + |α|2

)
(73)
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Pv =
8
3

f
v

(74)

Therefore, the variables Ps, Pd and Pv can be utilized to produce an RGB image that
encapsulates all the color-coded polarimetric information in a single image and is illustrated
in Figure 8. In terms of color mapping, Ps is represented by the blue channel, Pd by the red
channel and Pv by the green channel. The color rendering was demonstrated using SNAP
software 8.0.
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The model-fitting approach of Freeman–Durden has a unique advantage, because it
is established based on the fundamental principles of physics of radar scattering, rather
than being a solely mathematical construction. This approach can be utilized to broadly
identify the primary scattering mechanisms that produce the observed backscatter in
polarimetric SAR data. The three-component scattering mechanism model has the potential
to be valuable in creating features that distinguish various surface cover types and in
determining the present state of those surfaces.

Although the three-model decomposition method can be utilized in most cases, it is
subject to two significant constraints that limit its practicality. Firstly, the validity of the
three components it relies upon may not always hold. Secondly, the accuracy of the results
depends on the correlation coefficients

〈
ShhS∗

hv
〉
= ⟨ShvS∗

vv⟩ = 0 used, which assume
reflection symmetry. The first limitation restricts the use of the model to a specific group
of scattering problems (initially intended by Freeman for terrain and forest backscattering
applications) and may be inadequate when considering surface scattering with a non-zero
entropy. However, the second assumption is more significant, as it applies to a broad range
of scattering problems in scattering media exhibiting either reflection symmetry or rotation
symmetry, even mixing both, referred to as azimuthal symmetry [47].

As already mentioned, Freeman and Durden’s decomposition is mainly efficient
in terrain and forest backscattering applications. Thus, many studies use the three-
component model to monitor and map rice crops [48,49], river ice cover [50], land use–land
cover [51,52], and in studies on soil moisture [53,54].

4.2. Yamaguchi Decomposition

The three-component model introduced by Freeman and Durden [24] has been proven
effective in the analysis of polarimetric data when the reflection symmetry condition is
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met. However, there are instances where certain areas in a SAR image may not conform to
this condition. In such cases, Yamaguchi et al. [25] proposed a four-component scattering
model in 2005, building upon the three-component model, by adding an extra term known
as helix scattering power component, which corresponds to non-reflection symmetric cases
where

〈
SHHS∗

HV
〉
̸= 0 and

〈
SHVS∗

VV
〉
̸= 0.

The helix component is more effective in complex urban areas and is useful for inter-
preting mostly man-made targets in heterogeneous regions like urban and suburban areas,
while it is uncommon in natural distributed scattering. Cameron’s approach presented
the polarimetric scattering matrices for the left and right helices in Equations (29) and (30).
Therefore, the covariance matrices for the monostatic case where the reciprocity theorem
holds (SHV = SVH) and have the general form of:

⟨[C3]⟩v =


〈
|SHH |2

〉 √
2
〈
SHHS∗

HV
〉 〈

SHHS∗
VV
〉√

2
〈
SHVS∗

HH
〉

2
〈
|SHV |2

〉 √
2
〈
SHVS∗

VV
〉

⟨SVVS∗
HH⟩

√
2
〈
SVVS∗

HV
〉 〈

|SVV |2
〉

 (75)

are given by:

[C]3l−helix =
fc

4

 1 −j
√

2 −1
j
√

2 2 −j
√

2
−1 j

√
2 1

 (76)

[C]3r−helix =
fc

4

 1 j
√

2 −1
−j

√
2 2 j

√
2

−1 −j
√

2 1

 (77)

where fc corresponds to the magnitude of the helix scattering component.
By considering the new term of the four-component scattering model, and for the sake

of simplicity, the following definition of the scattering matrix adopted:

S =

[
SHH SHV
SVH SVV

]
=

[
a c
c b

]
(78)

Following the author’s methodology in [25], the polarimetric scattering matrix, rotated by
an angle φ around the radar line of sight, is given by the following expression:[

Shh Shv
Svh Svv

]
=

[
cosφ sinφ
−sinφ cosφ

][
SHH SHV
SVH SVV

][
cosφ −sinφ
sinφ cosφ

]
(79)

The capital letters correspond to the original polarization measurements basis and to the
measurable quantities while the small letters refer to the rotated coordinates. According to
Yamaguchi’s original work [25] the covariance matrix elements are obtained via integration
using a probability function p(φ) according to:

< S∗
hhShh >=

∫ 2π

0
ShhS∗

hh p(φ)dφ (80)

The above also highlights the distinction between capital letters notation HV and the low-
ercase hv. HV denotes spatial ensemble averaging of spatial data, as previously mentioned,
while hv corresponds to mathematical averaging defined by the integration expressions
introduced in Equation (80).

The resultant terms are derived as follows:〈
|Shh|2

〉
= a1|a|2 + a2|b|2 + a3|c|2 + 2a4Re(ab∗) + 2a5Re(ac∗) + 2a6Re(bc∗) (81)〈

|Svv|2
〉
= a2|a|2 + |b|2a1 + |c|2a3 + 2a4Re(ab∗)− 2a6Re(ac∗)− 2a5Re(bc∗) (82)
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〈
|Shv|2

〉
=

1
4

a3|b − a|2 + a7|c|2 + a8Re(c∗(b − a)) (83)

⟨ShhS∗
vv⟩ = a4(|a|2 + |b|2)− α3|c|2 + a1(ab∗) + a2(a∗b) + a5(b∗c − ac∗)

+a6(a∗c − bc∗)
(84)

〈
ShhS∗

hv
〉
= a5

a(b∗−a∗)
2 + a6

b(b∗−a∗)
2 + a3

c(b∗−a∗)
2 + a10c∗a + a9bc∗

+a8|c|2
(85)

⟨ShvS∗
vv⟩ = a6

a∗(b−a)
2 + a5

b∗(b−a)
2 − a3

c∗(b−a)
2 + a9ca∗ + a10b∗c

−a8|c|2
(86)

where

a1 ≡
∫ 2π

0
cos4 φ p(φ)dφ (87)

a2 ≡
∫ 2π

0
sin4 φ p(φ)dφ (88)

a3 ≡
∫ 2π

0
sin22φ p(φ)dφ (89)

a4 ≡
∫ 2π

0
sin2 φ cos2 φ p(φ)dφ (90)

a5 ≡
∫ 2π

0
cos2 φ sin2φ p(φ)dφ (91)

a6 ≡
∫ 2π

0
sin2 φ sin2φ p(φ)dφ (92)

a7 ≡
∫ 2π

0
cos2 2φ p(φ)dφ (93)

a8 ≡
∫ 2π

0
sin2φ cos2φ p(φ)dφ (94)

a9 ≡
∫ 2π

0
sin2 φ cos2φ p(φ)dφ (95)

a10 ≡
∫ 2π

0
cos2 φ cos2φ p(φ)dφ (96)

In the case of uniform probability density function p(φ) = 1
2π , the following simplified

results are obtained:〈
|Shh|2

〉
=
〈
|Svv|2

〉
=

1
8
|a + b|2 + 1

4
(|a|2 + |b|2) + 1

2
|c|2 (97)

⟨ShhS∗
vv⟩ = ⟨S∗

hhSvv⟩ =
1
8
|a + b|2 + 1

2
Re(a∗b)− 1

2
|c|2 (98)〈

|Shv|2
〉
=

1
8
|a − b|2 + 1

2
|c|2 (99)

⟨ShhS∗
hv⟩ = ⟨ShvS∗

vv⟩ =
j
2

Im(c∗(a − b)) (100)

The uniform distribution yields the volume scattering covariance matrix correspond-
ing to randomly oriented dipole as it is defined by the Freeman–Durden Decomposition
Equation (57):

[C]vol =
1
8

3 0 1
0 2 0
1 0 3

 (101)
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Regardless of the format used for the polarimetric scattering matrix, whether for a
vertical or horizontal dipole, the result remains independent. In the same sense for the
double-bounce scatterer the polarimetric scattering matrix is defined as:

[C]double =
1
4

 1 0 −1
0 2 0
−1 0 1

 (102)

while for the single-bounce (plate or sphere) the form is:

[C]sur f ace =
1
2

1 0 1
0 0 0
1 0 1

 (103)

Despite the scattering matrix being different for horizontal and vertical orientations, the
covariance matrix remains the same. This advantage underscores the usefulness of the
covariance matrix in target decomposition. Moreover, the forms above satisfy the con-
dition Trace[C] = 1, which implies that the total power for each scattering mechanisms
is unity. The above covariance matrices are in line with the three-component model
as was introduced by Freeman and Durden under the reflection symmetry condition〈

ShhS∗
hv
〉
≈
〈
SvvS∗

hv
〉
≈ 0.

In addition, Yamaguchi et al. [25] proposed a modification for the probability density
function for the volume scattering matrix according to the relative backscattering mag-
nitudes between

〈
|SHH |2

〉
and

〈
|SVV |2

〉
. In particular, a model employing a cloud of

randomly oriented dipoles with a uniform probability function for the orientation angles
is used to represent volume scattering by vegetated areas. However, due to the domi-
nant presence of vertical structure for forests, tree trunks and branches, a new probability
distribution function for vegetations was proposed:

p(φ) =

{ 1
2 sinφ, f or 0 < φ < π

0, f or π < φ < 2π
with

∫ 2π

0
p(φ)dφ (104)

where φ is taken from the horizontal axis seen from the radar. In this sense, the integrals
defined Equations (87)–(96) are formed as follows:

a1 =
3

15
, a2 = a3 =

8
15

, a4 =
2

15
, a5 = a6 = a8 = 0, a9 = − 6

15
, a10 =

1
15

(105)

These results indicate that the volume scattering covariance matrix for the vertical-
oriented dipole is formed as:

Svertical
vol =

[
0 0
0 1

]
→ [C]vertical

vol =
1

15

8 0 2
0 4 0
2 0 3

 (106)

While for the horizontal oriented dipole:

Shorizontal
vol =

[
1 0
0 0

]
→ [C]horizontal

vol =
1
15

3 0 2
0 4 0
2 0 8

 (107)

The value of the above asymmetric forms lies on the fact that it can be adjusted to the

measured data with
〈
|SHH |2

〉
̸=
〈
|SVV |2

〉
according to the ratio 10log( ⟨|SVV |2⟩

⟨|SHH |2⟩ ). Specifi-

cally, in the PolSAR scene, the four-component model chooses one of the asymmetric forms
(Equation (106) or Equation (107)) if the relative magnitude difference is greater than 2 dB.
Conversely, for a difference within the range of ±2 dB (Table 4), the symmetric form, as
defined in Equation (101).
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Table 4. The covariance matrix of the volume scattering as it is determined based on the ratio

10log( ⟨|SVV |2⟩
⟨|SHH |2⟩ ).

10 log( ⟨|SVV |2⟩
⟨|SHH |2⟩ ) −4 dB −2 dB −2 dB 2 dB 2 dB 4 dB

[C]vol
1
15

8 0 2
0 4 0
2 0 3

 1
8

3 0 1
0 2 0
1 0 3

 1
15

3 0 2
0 4 0
2 0 8



By making the assumption that the volume, even bounce, surface, and helix scatterer
components are uncorrelated, the second-order statistics of the overall scattering pattern
can be derived by summing each individual scatterer. Therefore, the model representing
the entirety of the backscatter is as follows:

[C]3 = ⟨[C3]⟩v + [C3]d + [C3]s + [C3]h (108)

[C]3 =


〈
|SHH |2

〉 √
2
〈
SHHS∗

HV
〉 〈

SHHS∗
VV
〉√

2
〈
SHVS∗

HH
〉

2
〈
|SHV |2

〉 √
2
〈
SHVS∗

VV
〉

⟨SVVS∗
HH⟩

√
2
〈
SVVS∗

HV
〉 〈

|SVV |2
〉

 = fv
15

8 0 2
0 4 0
2 0 3

+ fd

|α|2 0 α
0 0 0
α∗ 0 1

+

fs

|β|2 0 β
0 0 0
β∗ 0 1

+ fc
4

 1 ±j
√

2 −1
∓j

√
2 2 ±j

√
2

−1 0 1


(109)

This model produces five equations in six unknowns α, β, fv, fd, fs and fc. The parameters
fs and fd are identical with those defined in the Freeman–Durden three-component de-

composition, fv is modified for data in line with the ratio 10log( ⟨|SVV |2⟩
⟨|SHH |2⟩ ), and the fc term

corresponds to the helix scattering power contribution.
The five equations with the six unknowns are the following:〈

|SHH |2
〉
= fs|β|2 + fd|α|2 +

8
15

fv +
fc

4
(110)

〈
|SHV |2

〉
=

2
15

fv +
fc

4
(111)〈

|SVV |2
〉
= fs + fd +

3
15

fv +
fc

4
(112)

⟨SHHS∗
VV⟩ = fsβ + fdα +

2
15

fv −
fc

4
(113)

1
2

Im{< SHHS∗
HV > + < SHVS∗

VV >} =
fc

4
(114)

Since, the left-hand side of Equation (114) is a measurable quantity, it directly results in:

Pc = fc = 2|Im{⟨SHHS∗
HV⟩+ ⟨SHVS∗

VV⟩}| (115)

Consequently, the volume scattering coefficient fv can be calculated from Equation (111):

fv =
15
2
(
〈
|Shv|2

〉
− fc

4
) (116)

The other four unknown variables in the remaining three equations can be obtained
in the same way as presented by Freeman and Durden, according to which scattering is
dominant in order to fix the values for α and β [24]. In conclusion, the scattering powers
corresponding to surface, double bounce, volume, and helix are as follows:
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Ps = fs

(
1 + |β|2

)
, Pd = fd

(
1 + |α|2

)
, Pv fv, Pc = fc (117)

SPAN = Ps + Pd + Pv + Pc =
〈
|SHH |2 + 2|SHV |2 + |SVV |2

〉
(118)

This model has been shown to be more accurate in decomposing PolSAR images in areas
with non-symmetric scattering and has become widely used in applications. Therefore, it is
important to recognize the presence of non-symmetric scattering areas and apply appropri-
ate models, such as the four-component scattering model proposed by Yamaguchi et al. to
achieve precise results. Many studies have utilized the four-component decomposition in
disaster monitoring [55] and terrain classification [56,57] with emphasis in wetlands and
glaciated terrains [58–60].

In considering potential future advancements in model-based decomposition tech-
niques, an evident avenue involves their integration with stochastic machine learning
algorithms to enable a more intrinsic exploration of the data. Furthermore, exploring
data-level fusion approaches that leverage diverse datasets acquired from various satellite
sources holds significant promise. Specifically, for Freeman–Durden decomposition, there
is potential in addressing complex terrain and heterogeneous environments to enhance its
applicability. In the case of Yamaguchi Decomposition, forthcoming research may focus on
refining the methodology to better characterize specific target scenarios. Researchers might
delve into methods to augment the decomposition’s sensitivity to nuanced variations in
target structures, especially in the presence of interfering elements. Additionally, inves-
tigating its application across different frequency bands or on various satellite platforms
could broaden its effectiveness within diverse remote sensing contexts. A summarization
of the key points regarding Model-Based Decomposition Techniques is depicted in Table 5.

Table 5. Summarization of Non-Coherent Model-Based Target Decompositions.
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Components
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Greater
computational cost

Terrain
Classification
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specific assumptions
which may not hold

in all situations.
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5. Eigenvector–Eigenvalue Decomposition

Eigenvector-based techniques are considered an important class of target decomposi-
tion algorithms and first introduced by Cloude’s pioneering work [30]. These techniques
exploit the basis invariance of the eigenvalue problem by utilizing the eigenvalues of
the 3 × 3 Hermitian averaged coherency T3 matrix. These techniques assume the valid-
ity of reciprocity theorem (SHV = SVH), which allows for reducing the dimensions of
the coherency matrix from 4 × 4, to 3 × 3 as demonstrated in the analysis of Freeman–
Durden three components model Equation (44) and Yamaguchi four components model
Equation (57).

By computing the eigenvectors and eigenvalues of the coherency matrix, a diagonal
form of the coherency matrix can be produced and be physically interpreted by statisti-
cally independent target vectors. According to this method, the coherency matrix can be
decomposed as:

⟨[T3]⟩ = [U3]Σ[U3]
−1 (119)

where Σ is a 3 × 3 diagonal matrix with nonnegative real elements and U3 = [u1, u2, u3]
denotes a 3 × 3 unitary matrix of the SU(3) group, where u1, u2 and u3 are three-unit
orthogonal vectors.

Hence, a statistical model can be constructed that analyzes the ⟨[T3]⟩ matrix into the
sum of three independent scattering mechanisms:

⟨[T3]⟩ =
3

∑
i=1

λiuiuT∗
i (120)

where λi are real numbers corresponding to the eigenvalues of the coherency matrix and
representing the statistical weights for the type of scattering that have been occurred
and related with the unitary vector ui. In case of only one non-zero eigenvalue, the
coherency matrix T3 represents a single scattering mechanism corresponding to a pure
target. In contrast, when all eigenvalues are equal, the coherency matrix comprises of
three orthogonal scattering mechanisms with equal amplitudes, indicating a random target.
Otherwise, for non-zero and unequal eigenvalues the scattering behavior corresponds to
partial targets. To analyze the polarimetric properties of such targets, it is necessary to
study the distribution of eigenvalues and characterize each scattering mechanism.

5.1. H/A/a. Decomposition

Among the target decomposition techniques, Cloude and Pottier’s H/A/α approach [30],
first introduced in 1997, has attracted considerable attention. Based on eigenvector decom-
position of the coherency matrix, Cloude and Pottier established the utilization of a new
set of parameters consisting of entropy, anisotropy, and angle α. Thus, each of the three
scattering mechanisms that the eigenvalue decomposition produces can be described with
these parameters. The method implies that scattering within one resolution cell is caused
by a limited number of repeatedly occurring events with a specific frequency. Such an
assumption led to a Bernoulli process, where several statistical events from a set of random
variables Xn occur in a sequential order. After the eigenvalue decomposition, such an ap-
proach is exploited. Specifically, the analysis focuses on the 3 × 3 Hermitian matrix ⟨[T3]⟩
utilizing the eigen decomposition theorem as mentioned previously in Equations (119)
and (120) is:

⟨[T3]⟩ = [U3][Σ3][U3]
−1 (121)

The 3 × 3 real, diagonal matrix [Σ3] contains the eigenvalues of ⟨[C3]⟩

[Σ3] =

λ1 0 0
0 λ2 0
0 0 λ3

 (122)
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where λ1 > λ2 > λ3 > 0.
As already mentioned, the 3 × 3 unitary matrix [U3] contains the eigenvectors ui

which are defined as:

ui =
[
cosαiejφi sinαicosβiej(δi+φi) sinαicosβiej(γi+φi)

]T
(123)

Based on these three orthogonal eigenvectors the following parameterization of the
unitary matrix is obtained:

[U3] =

 cosα1ejφ1 cosα2ejφ2 cosα3ejφ3

sinα1cosβ1ej(δ1+φ1) sinα2cosβ2ej(δ2+φ2) sinα3cosβ3ej(δ3+φ3)

sinα1sinβ1ej(γ1+φ1) sinα2sinβ2ej(γ2+φ2) sinα3sinβ3ej(γ3+φ3)

 (124)

This parameterization in terms of column vectors with different parameters αi, βi, γi,
δi leads to a probabilistic interpretation of the scattering process. Due to the assumption
that the scattering within each resolution cell generates a Bernoulli process, the eigenvalues
λi corresponds to the absolute frequency of the occurrence of the three different scattering
mechanisms. Therefore, the probability of occurrence can be defined as:

Pi =
λi

∑3
i=1 λi

i = [1, 2, 3] (125)

In this way, any target parameter x follows a random sequence, and the best estimation is
given by the mean of this sequence:

∼
x =

3

∑
i=1

Pixi (126)

Accordingly, the parameters of the scattering process, excepting φ which is physically
equivalent to an absolute target phase, can be defined as:

∼
α = ∑3

i=1 Piαi
∼
β = ∑3

i=1 Piβi
∼
γ = ∑3

i=1 Piγi
∼
δ = ∑3

i=1 Piδi (127)

Replacing the parameters by the expected values, the mean unit vector can now
be constructed:

ui = ejφi

[
cos

∼
α sin

∼
αcos

∼
βej

∼
δ sin

∼
αcos

∼
βej

∼
γ)

]T
(128)

The alpha
∼
α angle is the main parameter or identifying the dominant scattering mechanisms,

as being roll invariant, while the three others β, γ, and δ can be used to define the target
polarization orientation angle.

Angle
∼
α ∈

[
0, π

2
]

corresponds to the dominant scattering mechanisms:

a. for
∼
α = 0 the target is a plate;

b. for
∼
α = π

4 the target is a dipole;

c. for
∼
α = π

2 the target is a dihedral.

Angles
∼
β,

∼
γ, and

∼
δ describes further properties of the target and their values change

with the orientation of the target and that complicates the interpretation. These parameters
will not be explained here.

The entropy parameter H, as defined by Von Neumann, indicates the level of statistical
disorder or randomness. In particular, in the case of a pure target with only one non-zero
eigenvalue (λ1 ̸= 0, λ2 = λ3 = 0) resulting from eigenvalue decomposition, the entropy is
0. However, for a distributed target where all eigenvalues are equal (λ 1 = λ2 = λ3), the
entropy parameter reaches its maximum value of 1.
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The majority of targets in polarimetric data lie between the two extreme cases, referred
to previously. To quantify the level of statistical disorder, the polarimetric entropy H is
calculated as follows:

H = −
N

∑
k=1

PklogN(Pk) (129)

where Pi corresponds to the pseudo-probabilities obtained from the eigenvalues λi, N
is the logarithm basis that must be equal to the polarimetric dimension (N = 3 for the
monostatic case and N = 4 for the bistatic one). It is worth noting that the H parameter is
both basis-invariant and roll invariant since the eigenvalues are rotational invariant.

Although polarimetric entropy H is a valuable measure for characterizing the ran-
domness of scattering problems, the polarimetric Anisotropy parameter is introduced as a
complement to H based on the two smallest eigenvalues:

A =
λ2 − λ3

λ2 + λ3
(130)

As entropy is invariant to rotation due to the rotational invariance of eigenvalues, the
anisotropy is also invariant to rotation. Anisotropy is a measurement of the importance of
the second and the third eigenvalues. This parameter is essential when the entropy H takes
high values (greater than 0.7) in order to determine the different types of scattering process.

5.2. H/alpha. Feature Space

By utilizing the parameters of entropy H and alpha angle
∼
α, a 2D space is demon-

strated, where each pixel is identified by these two parameters, providing information
about the type of scattering. This space is divided into nine categories, as shown in Figure 9,
with zone 3 being deemed non feasible.
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Figure 9. The two-dimensional H/alpha feature space.

The three fundamental parameters of Cloude–Pottier decomposition can be utilized in
classification tasks and color-coding, with Entropy represented by the color red, Anisotropy
by green, and the alpha angle by blue (Figure 10).
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Figure 10. Color-coded PolSAR image of the broader area of Vancouver, based on the
H/A/a-decomposition.

The Cloude–Pottier Entropy-based decomposition is widely employed in various
applications. The H/A/a approach has found utility in land cover classification [60,61]
across diverse terrain types, including forested areas [62], snow-covered terrains [63,64],
wetlands [65–67], and agricultural regions [68,69]. Although Cloude–Pottier is a non-
coherent method, it has also been evaluated for target detection procedures despite not
being endorsed for such applications [70,71].

In the realm of Cloude–Pottier Decomposition, potential future research avenues
could delve into optimizing its performance in dynamic scenarios. Enhancing the decom-
position’s robustness in the presence of temporal variations and evolving environmental
conditions may be explored. Researchers could investigate strategies to improve the
method’s adaptability to different imaging geometries and topographies. The key points
of Cloude–Pottier Decomposition techniques are succinctly summarized in Table 6 for a
quick reference.

Table 6. Summarization of Cloude–Pottier Entropy Based Decomposition.
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6. The Double Scatterer Model

In Section 3.2. Cameron’s coherent Target Decomposition was presented. This decom-
position encompasses a comprehensive toolchain for evaluating scattering mechanisms
within a PolSAR cell. The toolchain incorporates a classification scheme that relies on the
deterministic assumption of a single dominating scattering mechanism occurring in each
PolSAR cell, thereby producing reliable results. However, the representation based on only
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one dominating elementary scattering center raises questions. Firstly, in real-world scenar-
ios, many objects do not exclusively correspond to the elementary scattering mechanism
set presented by Cameron. Secondly, the distance measure used in Equation (32) to identify
the closest scatterer also assigns significant closeness to other mechanisms. This contrasts
with the deterministic nature of the method, which implies that each PolSAR cell includes
a dominant scattering. Consequently, the contribution of more than one elementary scat-
tering to the scattering behavior of PolSAR cells should be considered. To establish the
aforementioned inadequacy regarding the metric distance that determines the dominant
scattering mechanism and to assess the newly proposed information extraction procedure,
a series of experiments were conducted utilizing Fully Polarimetric datasets. By computing
the distance from both the first and the second nearest scattering mechanism according to
Cameron’s approach, the evaluation of Cameron’s classification scheme is shown. Thus, the
results were demonstrated by means of co-occurrence matrices, as depicted in Figure 11. In
this depiction, the measurements along the two axes are presented in degrees, as outlined
in Equation (32). The X-values represent the distance from the second-nearest scattering
mechanism, while the Y-values signify the distance from the closest scatterer.
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Figure 11. The Co-Distance Matrix, based on the Cameron CTD, illustrates the distances of the
studied scatterer from its nearest and second-nearest counterparts. Measured in degrees according to
Equation (32), the x and y axes depict these distances. The pixel intensity signifies the percentage of
pixels associated with distance coordinates.

The choice of using intervals/bins of 3 degrees was made based on the assumption
that it provides a reliable range for drawing conclusions. Additionally, the maximum
value for both the x and y axes, which correspond to the distance of the PolSAR cell
under examination from the secondary and primary fundamental scattering mechanisms,
respectively, is set to 60 degrees. This value was selected as none of the calculations
yielded higher numbers during the analysis. The plots illustrate that all data points fall
within the upper triangle of the co-distance matrices, indicating that the distance from
the first elementary scatterer is typically shorter than from the second, as anticipated.
However, the key observation is that a majority of points cluster around specific regions
near the diagonal. This suggests that when the algorithm assigns the primary elementary
scattering mechanism for each PolSAR cell, the disparity in distance from the second option
is typically insignificant, resulting in ambiguous classification. Calculations reveal that
slightly over 50% of PolSAR cells in both datasets are categorized into one of the eight
elementary scattering mechanisms proposed by Cameron, with the difference in angles
between the first and second nearest scattering mechanisms remaining under 9 degrees.
Furthermore, around 30% of cells align with Cameron’s classification approach, displaying
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only a 3-degree distinction between the two predominant scatterers. These percentages
would be even higher if the examined areas did not include regions that are inherently
homogeneous, such as sea and water areas. As observed, even a slight discrepancy in
the metric distance between the closest scattering mechanism and the adjacent secondary
scatterer is adequate to categorize the former as predominant.

Moreover, in real-world scenarios, numerous objects do not align exclusively with
the elementary scatterers outlined in Cameron’s decomposition (Table 2), leading to an
uncertain evaluation of the SAR pixel’s scattering properties [72]. Consequently, relying
solely on a single dominant scatterer can result in diminished discrimination.

To tackle these issues, the methodology presented by the Double Scatterer Model [33]
adopts an information extraction approach that aims to explore the information content
from both the dominant scattering mechanism and the second most influential scattering
mechanism. Specifically, we employ a modification of the geometric topology proposed
by Cameron and Rais [22] and introduce a method to represent each PolSAR cell with
the two most dominant fundamental scattering mechanisms, along with their respective
percentages of contribution or weights.

The Double Scatterer Model can be considered as an extension of Cameron’s coherent
decomposition, which has been extensively analyzed. In this model, each PolSAR cell
is interpreted using a pair of fundamental scattering mechanisms. The objective of the
proposed method is to extract a maximum amount of polarimetric information from each
PolSAR cell. The methodology comprises the following sequential steps:

1. For each PolSAR cell, the corresponding polarimetric scattering matrix is utilized
following Cameron’s stepwise algorithm to calculate the complex parameter z. If the
criteria of reciprocity and symmetry are satisfied, the maximum symmetric component
of the scattering matrix can be defined as follows:

Smax
sym = AejφR(ψ)Λ̂(z) (131)

where A denotes the amplitude of the scattering matrix, φ the absolute phase, ψ corresponds
to the scatterer orientation angle and normalized complex vector Λ̂(z) is given by:

Λ̂(z) =
1√

1 + |z|2


1
0
0
z

, z ∈ C, |z| ≤ 1 (132)

As previously mentioned, the real and imaginary components of z are used to determine a
corresponding point on the complex unit disk, following Cameron’s algorithm.

2. The process of mapping a point from the complex unit disk onto the surface of the
unit sphere is elucidated here. The PolSAR cell being studied, along with its scattering
matrix, is now represented by the longitude θ and the latitude φ on the unit sphere
(Figure 12).

3. According to Poelman [73], the fundamental scattering characteristics of Cylinder
and Narrow Diplane can be described as a linear combination of other elementary
scattering mechanisms outlined in the Cameron classification scheme. Specifically,
these scatterers encompass the trihedral, dihedral, and dipole:

Scyl(φ) =
1
2

Stri +
1
2

Sdip(φ) (133)

Sndi(φ) =
1
2

Sdih(φ) +
1
2

Sdip(φ) (134)
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4. As the scattering mechanisms of Cylinder and Narrow Diplane can be composed
of Trihedral, Dipole, and Dihedral, these three, along with the ¼ wave device, are
considered fundamental scattering mechanisms. This assertion led us to dismiss
the scattering mechanisms of the Cylinder and Narrow Diplane as having minimal
significance and update the spherical topology as depicted in Figure 12. Based on the
angle coordinates (θ, φ) of the point being analyzed, the identification of the right-
angled spherical triangle it pertains to is established. Depending on its placement
relative to the equator, one vertex of the triangle remains the pole of the sphere, while
the other two vertices represent the closest scattering mechanisms determined using
the orthodromic or great circle distance D:

D = arccos (sinφ1sinφ2 + cosφ1cos φ2cos(∆θ)) (135)

5. The vector, originating from the center of the sphere and terminating at the coordinates
on the spherical shell, is projected onto the equator level to which the reference
scattering mechanisms belong, based on the angle φ (Figure 12). Specifically, the
projection is confined within the quadrant delimited by the center of the sphere and
the two nearest scatterers to the examination point.

6. An immediate outcome is the analysis of the vector’s projection into two vertical
components, signifying the presence of the two nearest scattering mechanisms.

Based on the above procedure, the mixture interpretation for each scatterer is accom-
plished by:

St = P1S1 + P2S2 (136)

where S1 and S2 correspond to the primary and the secondary scattering mechanisms
respective, while Pi, i = 1, 2 is calculated according to:

Pi = cosφi cosθi (137)

It is worth mentioning that Pi calculates the degree of contribution of each of the two
dominating fundamental scattering mechanisms. As Pi approaches 1 or 100% indicates
that the target scatterer St is completely characterized by one of the four fundamental
scattering mechanisms. In the marginal case where φ = 90◦, the scatterer can be assumed
as undetermined and be classified as “non-Categorizable”.
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The interpretation of the informational content within each PolSAR cell by a pair of
two scattering mechanisms, as outlined in the Double Scatterer Model, is straightforward
and dependable. Initially, both the novel method and the well-established Cameron’ tech-
nique were employed to generate color representations of the aforementioned data sets
(Tables 7 and 8). As evident from Table 7, every elementary scattering mechanism identified
by Cameron and, consequently, each PolSAR cell is associated with a unique color. In
contrast, the Double Scatterer Model employs only four symmetric elementary scatterers,
interpreting each cell through a combination of the two most influential elementary scat-
tering mechanisms and their weights/powers. This is illustrated by blending the colors
corresponding to the four scatterers utilized in the present methodology, as outlined in
Table 8, in a manner proportionate to the dominance of the scatterers within each cell. As
anticipated, considering the complementary nature of the elementary scattering mecha-
nisms within the spherical topology depicted in Figure 12, there are only eight potential
scattering pairs involving primary and secondary mechanisms, detailed in Table 9.

Table 7. Assigning colors to the elementary scattering mechanisms specifically proposed by Cameron
in CTD.

Scattering Mechanism Color Representation

Trihedral
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The objective was to accentuate the finest details extracted through the proposed
methodology. Consequently, a comprehensive analysis of the proposed method was
conducted to emphasize the substantial information content that can be derived from the
processing of full polarimetric data using the Double Scatterer Method.
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Table 9. Mapping colors to the PolSAR cells that are interpreted as a combination of the primary and
secondary scattering mechanisms.

Primary Scattering
Mechanism

Secondary Scattering
Mechanism

Color
Representation

Trihedral Dipole
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Specifically, a partition of different land cover types based on the analytic description
of the region of Vancouver obtained by the research of [74] was made. The selected
region encompasses all the geological features specific to the area, serving as a general
criterion to ensure the robustness and effectiveness of the proposed feature extraction
process across various datasets. Consequently, four primary types of land cover were
chosen for classification: water bodies, urban/built-up areas, forest/wooded areas, and
agriculture/pasture areas. These regions are depicted in Figure 13.
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depicted by the intensity of the HV channel. In this representation, water bodies are indicated by
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Right is the corresponding view on Google Earth.

The primary objective of this experimental procedure went beyond just analyzing
visual differences. It aimed to explore the fundamental information provided by each
method. As expected, based on Cameron’s deterministic approach, each polarimetric cell
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was assigned a numerical value between 1 and 8, corresponding to the specific scattering
mechanisms he proposed. In homogenous areas like the sea, there was an expectation of
similar scattering mechanisms across polarimetric cells. On the other hand, areas with
more variations showed intriguing results.

In contrast, the Double Scatterer Model projected a more intricate picture. Each
polarimetric cell was interpreted by a composite of two scattering mechanisms along with
their corresponding weights. This technique yielded a set of four numerical values for
each PolSAR cell. The ultimate objective was to ensure that this mode of interpretation
showcased substantial discriminability, ideally culminating in a unique characterization for
each land cover type.

Figure 14 provides information on the primary and secondary scattering mechanisms
for sea. The heatmap in the top-left corner of the figure clearly shows that the Trihedral
is the primary scattering mechanism in approximately 74% of cases. This percentage is
obtained by adding the instances where the trihedral is identified as the primary scattering
mechanism, such as in the scattering pairs trihedral-dipole 0.4627 and trihedral-1/4 wave
device 0.2821. Simultaneously, the Trihedral appears as a secondary scattering mechanism
for another ∼13%. The Trihedral is the main scattering mechanism in the large majority
of the PolSAR cells in the sea, with the Dipole and the ¼ Wave Device having a small
participation. The criterion of non-reciprocity holds true for all the polarimetric cells under
examination. Simultaneously, the count of non-symmetric scatterers—namely, the left
and right helices—each of which does not form pairs with other scattering mechanisms,
remains notably low. Similarly, the number of PolSAR cells that resist categorization is
minimal. These findings were as anticipated, particularly when studying the expanse of the
sea, which showcases remarkable homogeneity and minimal deviations. Additionally, in
Figure 14 in the bar diagram at the upper right is given information regarding the average
strength of each scattering mechanism. This encompasses cases where a mechanism is
identified as the primary scatterer as well as instances where it functions as a secondary
scatterer within each PolSAR cell. According to this bar diagram, the Trihedral in the cells
in which it is the dominating scattering mechanism has a participation as it is expressed by
the coefficient Pi in Equations (136) and (137), exceeding 90%. As a secondary scattering
mechanism the coefficient Pi is around 30% or 0.3. The dihedral as primary scatterer has the
second highest contribution, while its role as secondary scatterer reaches 25%, underscoring
the importance of its scattering behavior. In contrast, the Dipole and 1/4 wave device show
notably lower percentages. Certainly, the double scatterer representation offers richer and
more detailed information compared to Cameron’s representation.
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In a similar manner, Figure 15 illustrates the information concerning primary and
secondary elemental scatterers for the urban area. According to the depiction, the Dipole
emerges as the primary scattering mechanism, constituting approximately 36% of the
total, with the Trihedral and Dihedral serving as secondary scattering mechanisms. Con-
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versely, the last two mechanisms appear in reverse order as primary scattering mechanisms,
accounting for approximately 17% probability in total, and their secondary scattering
mechanisms include the Dipole and the ¼ wave device. Notably, over 20% of the PolSAR
pixels either cannot be confidently classified into any elementary scattering mechanism
or are identified as non-symmetric (left/right helix), or do not adhere to the reciprocity
criterion. In the context of the urban/built-up scenario, the significance of the second
scattering mechanism becomes evident in extracting valuable information. The proposed
double scatterer method introduces a spectrum of nuances within each cell, exhibiting great
promise in intricate settings like urban areas.
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anticipated. This parallel is evident upon comparing the two heatmaps (Figures 14 and 
17), where the Trihedral mechanism stands out dominantly, yet with a heightened 
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Figure 16 presents information concerning primary and secondary scattering mecha-
nisms in forested areas. The heatmap on the left side of Figure 16 reveals that the Dipole
and Trihedral serve as primary scattering mechanisms, accounting for approximately 34%
of the total. Among the other elementary scatterers, the ¼ wave device assumes a primary
role with an occurrence rate of about 14%. Meanwhile, the Dihedral appears less frequently
as a primary mechanism compared to others, yet the bar diagram indicates its more sub-
stantial contribution. Notably, the second scattering mechanism, regardless of its identity,
participates at a level of approximately 20%, except for the Trihedral, which exhibits a more
prominent role as a secondary scatterer (around 30%). As observed in the urban area, a sim-
ilar situation is evident in this region, where homogeneity is notably absent. Approximately
20% of the PolSAR pixels exhibit characteristics that make them challenging to confidently
classify into any elementary scattering mechanism. Alternatively, these pixels are identified
as non-symmetric (left/right helix) or fail to adhere to the reciprocity criterion.
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Finally, Figure 17 provides insight into the primary and secondary scattering mech-
anisms within the context of agricultural land cover. Given the flat nature of this land
cover type, a certain resemblance to the sea, as depicted in Figure 14, is to be anticipated.
This parallel is evident upon comparing the two heatmaps (Figures 14 and 17), where the
Trihedral mechanism stands out dominantly, yet with a heightened contribution and a
greater presence of non-categorizable and asymmetric scatterers in the agriculture/pasture
area. Moreover, in marine environments, the overwhelming predominance of the Trihedral
mechanism is evident from the sheer clarity of the blue color. Conversely, in agricultural
regions, the influence of the second most prominent scattering mechanism is noticeable, as
it is reflected in several darker shades.
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The Double Scatterer Model, as a recently introduced tool for fully polarimetric data
processing, has demonstrated its efficacy in two distinct applications. Specifically, it has
proven highly successful in land cover classification, as evidenced by [75], where the po-
larimetric information extracted using the Double Scatterer Model was employed in a
simple neural network, resulting in exceptional accuracy. Additionally, Karachristos and
Anastassopoulos [76] explored the efficiency of this novel algorithm in a target detection
framework, yielding remarkable results. These instances underscore the robustness of the
Double Scatterer Model, establishing it as a highly promising method for polarimetric data
processing, excelling in both classification and detection tasks. Exploring the extension
of the Double Scatterer Model to novel applications, such as urban monitoring or envi-
ronmental assessment, may uncover new insights into its versatility. Future work could
also focus on validating and refining the model through comprehensive experiments and
real-world case studies, ensuring its reliability and applicability in diverse remote sensing
scenarios. Overall, the ongoing evolution of the Double Scatterer Model is crucial for
pushing the boundaries of PolSAR data analysis and interpretation. A concise summary of
its advantages, disadvantages, and application capabilities is presented in Table 10.

Table 10. Summarization of Double Scatterer Model Decomposition.
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7. Conclusions

In recent decades, numerous polarimetric decomposition algorithms have been sug-
gested, indicating the increasing interest in extracting valuable information from satellite
data. The continuous advancements in technology employed during the data acquisition
process have greatly enhanced the informative content of satellite data, leading to the
development of various information extraction methods. This study focuses on analyzing
five well-established techniques and introducing a new approach called the Double Scat-
terer Model. Each algorithm offers unique advantages but also exhibits certain drawbacks.
The Pauli decomposition, for instance, is a simple approach that provides a solid physical
interpretation. However, its limitations in interpreting asymmetric scattering behavior
and utilizing a limited number of scattering mechanisms make it more suitable for optical
presentations rather than tasks that require high accuracy levels. On the other hand, the
Cameron decomposition allows for a greater utilization of elemental scattering mechanisms,
but in real-world scenarios, many objects do not exclusively correspond to these elementary
scattering mechanisms. Additionally, ambiguities related to mathematical topology and
the metric used in Cameron decomposition discourage relying solely on this technique
for experiments. Moreover, it should be noted that all coherent decomposition methods
are susceptible to noise, which cannot be effectively addressed by first-order statistics.
Regarding the non-coherent approach, as mentioned by authors Freeman and Durden, the
three-component model demonstrates better results in extracting terrain information. How-
ever, its validity is highly dependent on several restrictions. Yamaguchi’s approach proves
to be more efficient as an “extension” of the Freeman and Durden method. Nonetheless, its
applicability is limited by the potential inconsistency of the components it relies on. The
H/a decomposition emerges as a highly efficient approach due to its strong mathematical
foundation and the utilization of stochastic analysis in matrix decomposition. Nevertheless,
it is based on several assumptions, such as the assumption of Bernoulli parallelism, which
raises questions as to whether such mathematical processes are strictly governed by well-
defined concepts. However, in both model-based and eigenvector analysis approaches,
it is worth noting that the utilization of second-order statistics allows for various speckle
denoising procedures, thereby increasing the validity of the procedures. As for the Double
Scatterer Model, it is an approach that aims to combine the deterministic nature of coherent
decomposition with the robustness of non-coherent methods. Initial results appear promis-
ing, but further in-depth analysis is required to fully assess its effectiveness. In summary,
the initial hypothesis has been substantiated. The approach of interpreting each PolSAR
cell through a blend of the two most influential scattering mechanisms has proven to be
highly satisfactory, enabling a more comprehensive analysis. This method harnesses a
wealth of information, allowing for a deeper exploration of the scattering characteristics
exhibited by each area or target. The conclusions drawn from the utilization of the Dou-
ble Scatterer Model to represent the information contained in each PolSAR are robustly
affirmed through the coloring that has been employed. By examining the contribution of
the two dominant scatterers in each pixel/cell, corresponding to specific colors, a nuanced
representation is achieved. This detailed depiction, capturing all possible combinations
of colors (as delineated in the 8 combinations in Table 9), underscores the pivotal role of
the proposed tool/feature in both the classification and target detection processes. This is
attributed to the tool’s ability to provide a comprehensive and detailed analysis, enhancing
our understanding of the data.

In today’s era, the prevalence of machine learning algorithms has brought forth new
approaches that combine information extraction with high-accuracy algorithms. This
emerging trend, coupled with the availability of high-quality data, has proven to be the
most efficient procedure. An ideal framework would encompass multiple data sources,
employ a variety of information extraction approaches, and leverage the sophisticated
nature of machine learning.
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