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Abstract: There are several image inverse tasks, such as inpainting or super-resolution, which can be
solved using deep internal learning, a paradigm that involves employing deep neural networks to
find a solution by learning from the sample itself rather than a dataset. For example, Deep Image
Prior is a technique based on fitting a convolutional neural network to output the known parts of
the image (such as non-inpainted regions or a low-resolution version of the image). However, this
approach is not well adjusted for samples composed of multiple modalities. In some domains, such as
satellite image processing, accommodating multi-modal representations could be beneficial or even
essential. In this work, Multi-Modal Convolutional Parameterisation Network (MCPN) is proposed,
where a convolutional neural network approximates shared information between multiple modes by
combining a core shared network with modality-specific head networks. The results demonstrate
that these approaches can significantly outperform the single-mode adoption of a convolutional
parameterisation network on guided image inverse problems of inpainting and super-resolution.

Keywords: image synthesis; internal learning; image inpainting; image super-resolution; multi-modal
learning

1. Introduction

The internal learning approach to computer vision is an alternate paradigm, where
instead of learning to perform tasks based on an external set of samples, the information
within the target image itself is used to solve image inverse problems such as inpainting
or super-resolution. This has several benefits, but most importantly, it can reduce the
effect of dataset bias and overfitting. Prior works have explored internal learning for
image inverse problems [1,2], but tend to deal with single-modality data; most commonly,
natural images. However, there are problems where synthesising data of spatially aligned
images from multiple domains may be required. A prominent example of such a use case
relates to the satellite image applications, where missing or corrupt regions in optical data
can be imputed using the information from another source, such as Synthetic Aperture
Radar (SAR) [3–7]. Similar challenges can be encountered in other domains, such as those
involving image segmentation masks [8] or map-to-aerial pairs [8]. In these cases, internal
learning techniques designed for a single domain are not architecturally optimised for
handling multiple domains and may adapt poorly, yielding inferior performance. This
motivates the technique proposed here, tailored for multi-modal image synthesis in an
internal learning context.

Already mentioned above, satellite images are a good example of the potential ap-
plication of multi-modal image synthesis techniques and several relevant use cases are
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presented in this work. The utility of satellite images for Earth observation can be signifi-
cantly reduced when portions of data are missing, which is a relatively common occurrence,
especially in the case of optical sensors [9]. The gaps in data can be a result of sensor
malfunctions or inherent limitations, such as cloud occlusion or shadows [9]. As a con-
sequence, there is a need for methods that can manipulate satellite images to make them
usable for downstream processing. The majority of existing deep learning solutions involve
training on an external dataset with the aim of generalising new samples [10,11]. In recent
years, several methods based on the internal learning paradigm have been proposed for
satellite image manipulation tasks [12–16]. In these cases, the existing information in the
source image may be more important than external domain knowledge, and hence, internal
learning can avoid issues associated with transferability between regions. The methods
proposed in [12–14] apply a convolutional module that transforms one signal modality into
another, hence requiring an equal number of support and synthesised samples. Alternative
solutions are proposed in [15,16] that stack multi-domain images on top of each other,
allowing for any quantities of support and synthesised images to be used and effectively
treat them as a single representation. This may produce distorted output caused by inter-
ference between channels from disparate domains. Here, a method is proposed to alleviate
these issues by learning a representation of spatially aligned signals of multiple diverging
domains, capable of solving inverse tasks of inpainting and super-resolution. This is done
in a fully internal learning regime (no requirement of pretraining on an external dataset)
by parameterising individual domain images with a convolutional neural network archi-
tecture, hereby named Multi-modal Convolutional Parameterisation Network (MCPN).
Two use case examples of MCPN are shown in Figure 1, demonstrating how information
from two drastically different domains can be shared to facilitate synthesis.

Figure 1. Top row: an example of using guidance information from Synthetic Aperture Radar (SAR)
modality to inpaint an optical image. Bottom row: an example where a segmentation mask is used
as a guide for manipulating an image for creative purposes; the synthesized region of the image is
highlighted with a green dashed line (the rest of the image is learned in a supervised manner).

To demonstrate the capabilities of the proposed framework in a wider range of do-
mains, additional use cases for a multi-modal convolutional parameterisation network
are explored. Specifically, it is demonstrated how the datasets of spatially aligned images
used in pix2pix [8] can also be subject to image completion. This includes two datasets,
where natural images are paired with segmentation masks, one dataset with pairs of optical
satellite imagery and corresponding map representation from Google Maps, and finally,
pairs of natural images taken day and night. As shown in Figure 1, simplified representa-
tions, such as segmentation masks can be used for creative purposes to manipulate images.
The map abstraction from Google Maps can be used as a useful static guide for cleaning up



J. Imaging 2024, 10, 69 3 of 21

real aerial footage, for example, when clouds are present. Finally, the night-to-day task is
performed for evaluation purposes to represent two diverging natural image domains.

The remainder of the manuscript is organized as follows. The MCPN method is de-
tailed in Section 2, including a description of hyperparameter configuration, learning rate
adjustment for the internal optimization process, and methods for extracting converged
weights. That is followed by the evaluation of the methods in Section 3, which primarily fo-
cuses on the processing of satellite images, including both inpainting and super-resolution,
as well as the evaluation of other common multi-domain image datasets, with the aim
to highlight the potential applicability of MCPN to other problems. The conclusions are
drawn in Section 4.

2. Method Description

The MCPN consists of a single core network for producing a shared signal represen-
tation, as shown in Figure 2. The core synthesis network is responsible for producing a
shared core signal from which all domain-specific signals can be derived. The derivation is
carried out by domain-specific convolutional heads that transform the shared core signal to
individual target domains. In effect, spatial information sharing between the domains is
enforced by relying on the same shared core signal. Finally, a set of domain cycle heads is
used to convert each domain target signal back to the shared core signal and promote con-
sistency of inpaintings. This arrangement yields two loss terms optimised by the network,
the domain-specific loss LD(M) computed between the synthesised domain signals and
the existing target reference, applied with an appropriate domain-specific mask M, and the
cycle consistency loss Lcycle computed as the difference between the shared core signal and
the outputs of the cycle heads. Both losses LD(M), Lcycle are computed as Mean Square
Error (MSE) between the respective inputs.

Figure 2. Diagram of the Multi-Modal Convolutional Parameterisation Network (MCPN). This
example design can be readily adjusted for any number of domains. The arrows indicate the direction
of the computation flow. The dashed arrows indicate that an additional loss term is produced as a
comparison against what the arrow is pointing at.

The shared core signal is learned in an emergent fashion by backpropagating from the
sum of individual domain-specific reconstruction losses LD(M) and the cyclic terms Lcycle.
This variant of MCPN is referred to as Emergent Core MCPN and is further illustrated
in Figure 3a. Another possibility is to use the synthesised signal of interest, such as an
incomplete optical image, as the shared core representation, effectively dropping one of the
domain-specific branches. Hence, LD(M) is defined as a sum of a loss directly computed on
the synthesised signal of interest at the output of the core network, plus the domain-specific
losses, at the output of the head networks. This variant is referred to as Direct CoreMCPN,
as shown in Figure 3b.
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(a) (b)

Figure 3. The Emergent Core variant (a) allows for a shared core signal to be learned in an emergent
fashion, synthesising each domain signal, including the target image (blue) using specific heads.
The Direct Core variant (b) instead uses the target image (blue) as the shared core signal, leading to
one less domain head network

2.1. Framework Configuration

The capacities of the core network and the domain-specific heads determine how much
information is contained in the shared core signal. As the capacity of the domain-specific
heads decreases, the possible transforms between the shared core and individual output
images are simpler. This capacity can be controlled by the number of layers, their width,
and the activation functions applied to the networks. In this study, the core network is iden-
tical to the SkipNetwork employed in the Deep Image Prior [2] (illustrated in Figure 4) for
the inpainting task with the configuration where nd = nu = [16, 32, 64, 128, 128, 128] (where
nd and nu are the numbers of channels of the downsampling and upsampling submodules,
respectively) and skip modules of four channels. The domain-specific networks are also
composed of similar elements, but contain only two stages of [32, 32] channels, along with
skip modules also with [32, 32]. Submodules are illustrated in Figure 5. For the Emergent
variant, downsampling and upsampling operations are maintained as in the Deep Image
Prior reference network. For the Direct variant, a stride of 1 is used for all layers, resulting
in a preserved representation shape.

Figure 4. Architecture of the SkipNetwork, diagram based on Figure 21 from [2].

(a) (b) (c)
Figure 5. Three building blocks of a SkipNetwork: (a) a Downsample Block, (b) an Upsample Block,
(c) an (optional) Skip Block.

Further important factors influencing this dynamic are the size of the convolutional
kernels in the domain-specific heads and the number of channels of the shared core repre-
sentation. If the domain-specific kernels are set to the size of 1 × 1, then all pixels of the
shared representations are processed independently, which forces the shared representation
to contain a lot of information for every output pixel. If the kernel size is increased, then the
local neighbourhood information is passed on to the head network, meaning that individ-
ual shared pixels do not have to contain full global context information. In this study, based
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on exploratory analysis, it has been found that a core representation with eight channels
for the Emergent variant, and head kernel sizes of 3 × 3 provide an appropriate baseline
configuration. For the Direct variant, the number of channels in the core representation is
by definition equal to the number of channels in the target representation.

In the evaluation section, and for all resulting images, the configuration listed in Table 1
is used for MCPN, unless otherwise stated. Optimisation is carried out by employing an
Adam optimiser with standard parameter values. The learning rate and the number of
optimisation steps are determined based on the convergence discussion in Section 2.2.
Furthermore, the main baseline, similar to [16], that accommodates multiple nodes by
expanding output channels and stacking the multiple representations on top of each other
(hence, it is referred to as ‘Stacked‘ throughout the paper) only uses the core network,
without any heads, with the exact same topology as the core network of MCPN.

Table 1. The key parameters of the Multi-Modal Convolutional Parameterisation Network (MCPN)
model used to produce the results.

Parameter Value

Core Network Base [16, 32, 64, 128, 128, 128]
Core Network Skip [4, 4, 4, 4, 4, 4]
Head Network Base [32, 32]
Head Network Skip [32, 32]

Head Kernel Size 3 × 3
Head Activation None

2.2. Convergence Detection

Comparing convolutional parameterisation architectures, the proposed MCPN vari-
ants, and the Stacked baseline [16], is challenging because they may require different
learning rates to allow stable convergence and a different number of optimisation steps.
Hence, setting the same learning rate and applying the same number of weight updates for
all architectures may put some of the models at a disadvantage and bias the evaluation. To
explore this effect, a set of experiments is carried out where the performance computed
based on the known ground truth is traced for 20,000 optimisation steps. The two metrics
used to measure the quality of a synthesized image with reference to a specific ground
truth are Structural Similarity Index (SSIM) and Root Mean Square Error (RMSE), similar
to the related work in [16] (furthermore, both whole image metrics and inpainting mask
metrics are reported). There are other metrics that focus on perceptual quality assessment,
such as FSIM [17], IW-SSIM [18], TReS [19], or UNIQUE [20]; however, here, the focus is
on diverse domains (such as satellite images), which do not always prioritise the human
subjective scoring, and hence, more agnostic metrics of RMSE and SSIM are employed
similarly to the previous work on the topic [16].

In the seminal work on the Deep Image Prior [2], the output was produced using the
weights obtained after applying a fixed number of optimiser steps, depending on the task.
In the related work that adapts the method for satellite image inpainting [16], 4000 steps
were used.

Another approach is to devise an adaptive strategy for detecting a suitable convergence
state. One solution for an adaptive convergence detection is to measure the performance
of the synthesis on the known, non-masked region and find a stopping criterion on that
quantity, for example, RMSE between the source image and the network output in the
non-masked region. However, in some scenarios, the reconstruction error of the known
region could monotonically decrease or saturate without ever reaching a minimum, while
the error in the inpainting could be increasing, thus yielding a poor solution.

Here, an alternative adaptive approach that takes into consideration the inpainted
region is proposed. This is conducted by measuring the quality of inpainting as the
similarity of texture patches between the inpainted and known region of the image, termed
the patch consistency metric. The metric is computed as the Fréchet distance between the
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two distributions of low-level features of a pre-trained Inception network [21] in response
to the inpainting region and the distribution of features from the known region, in a similar
fashion to Single Image Fréchet Inception Distance (SIFID) [22]. The metric requires the
computation of a feature map Fsource of the source image and a feature map Foutput of
the image produced by the network. Patch representations of the known and inpainted
regions can be obtained by applying the inpainting mask to the Foutput and its inverse to
Fsource. Since the size of the feature maps is reduced in the layers of the Inception model,
the mask M must also be reduced to apply it to the feature maps Fsource and Foutput. This
is achieved by downsampling the mask M in the same manner as the features to obtain a
downsampled feature mask MF. The feature mask MF equals 1.0 if and only if a given
feature is affected by any pixel from the inpainting region. This way, the features extracted
with the mask MF correspond to all features affected by the synthesised pixels, and the
features extracted with the inverse mask M′

F filter out features that are only affected by the
known region.

Figure 6 demonstrates how the values of the two adaptive convergence metrics and
ground truth inpainting SSIM evolve over the optimisation process. The rows in order
correspond to (i) ground truth inpainting SSIM, (ii) known reconstruction RMSE, and
(iii) patch consistency. The three columns correspond to the tested learning rates of 10−4,
10−3, and 10−2. The traces have been obtained for four repeated runs of inpainting a single
Sentinel-2 sample based on Sentinel-1 informing data. The analysis of the convergence
detection methods is performed for the SAR-to-optical synthesis because it represents
the most challenging scenario where the gap between domains is considerable. The in-
painting mask used covers the whole image except for a border of 50 pixels around the
image periphery.

The top row in Figure 6 contains the traces recording the value of the inpainting SSIM,
which has been computed with reference to the ground truth. The maximum value of the
trace indicates the top performance that could be achieved by each model, but extracting it
requires knowledge of the ground truth not available in practice. The maximum values of
inpainting SSIM tend to occur within the first 5000 steps for all three model types, regardless
of the learning rate (with the exception of Emergent Core at 10−2 learning rate). For the
Stacked baseline (green line), this maximum value appears to be reached early in the process.
This relates to the dynamics of Deep Image Prior convergence [2], where the low-frequency
components are fit first before the fine detail. In effect, the low-frequency approximation at
the beginning of the optimisation scores better than later solutions where high-frequency
components are synthesised. The second and third rows contain the traces of the adaptive
convergence detection metrics. The known region RMSE decreases monotonically (with
occasional local spikes), and may be a poor choice for a proxy metric. In the third row,
the patch consistency reaches minimum closer to the top performance states, but the two do
not seem to align particularly well, for example, the minimum patch consistency is achieved
long after the top performing SSIM for Direct and Stacked model variants.

As a supplement to Figure 6, Table 2 contains the average of extreme values of the
inpainting SSIM, known region RMSE, and patch consistency for four repetitions. Further-
more, for each record, the table presents the mean and standard deviation of the number
of optimisation steps after which the extreme value was reached. The Inpainting SSIM
provides an indication of which learning rate results in the best performance for the tested
sample. It is further apparent, that the minimised known region RMSE occurs very late
in the training process and it is possible that it could keep converging further with more
steps in the experiment. The patch consistency does reach a minimum value closer to the
top performing Inpainting SSIM. Lastly, based on this result, the learning rate for each
model has been selected, with 10−3 for MCPN Emergent and 10−2 for MCPN Direct and
the Stacked baseline.
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Figure 6. Convergence traces for a ground truth metric and two potential candidates for a stop-
ping criterion.

Table 2. Optimal values of the ground truth reference and the two adaptive convergence methods
along with the number of steps after which they were obtained.

Method LR Inpainting SSIM (GT) ↑ Known RMSE ↓ Patch Consistency ↓
10−4 0.732 at 3600 ± 1579 0.022 at 19,325 ± 491 3.782 at 8600 ± 5839

MCPN Emergent 10−3 0.735 at 3725 ± 914 0.021 at 19,575 ± 449 3.805 at 15,275 ± 7553
10−2 0.735 at 3575 ± 1380 0.021 at 19,525 ± 363 3.875 at 15,000 ± 7510

10−4 0.706 at 800 ± 254 0.017 at 19,400 ± 494 2.989 at 5375 ± 1028
MCPN Direct 10−3 0.689 at 1350 ± 390 0.018 at 19,600 ± 212 3.322 at 6425 ± 1987

10−2 0.714 at 1000 ± 158 0.017 at 19,850 ± 50 3.025 at 5750 ± 1425

10−4 0.713 at 75 ± 43 0.011 at 17,650 ± 3332 2.261 at 9700 ± 5980
Stacked 10−3 0.712 at 1400 ± 2136 0.011 at 19,450 ± 384 2.032 at 9025 ± 4935

10−2 0.716 at 3450 ± 3377 0.011 at 16,525 ± 5063 2.367 at 8675 ± 4246

Using these learning rates, a broader experiment is conducted on the whole dataset of
cloud-free images from Scotland (described in Section 3.1), with four repetitions on each
sample, and with the same mask leaving out a 50-pixel border in the image. The average
maximum inpainting SSIM that can be achieved is presented in the first column of Table 3,
while the remaining columns contain the average inpainting SSIM obtained using the three
convergence detection strategies (4000 steps, known region RMSE, and patch consistency).
It appears that the Known Region RMSE method results in the top inpainting SSIM for
the MCPN Emergent variant. This is likely to be caused by the optimisation dynamic that
can be observed in the traces of Figure 6 (top row, blue lines), where the MCPN Emergent
solution reaches a fairly stable plateau. This means that, on average, it may be more
beneficial to train a bit longer to ensure all samples in the dataset can reach a stable plateau.
The traces of the other two methods (top row, orange and green lines) do not exhibit this
level of stability, as the Inpainting SSIM tends to decrease monotonically. This results in
higher sensitivity in the number of optimisation steps and, in particular, the top inpainting
SSIM is achieved early and consistently in fewer than 4000 steps. In contrast, the other
convergence strategies prefer solutions after 4000 steps (as shown in Table 2) and they are
likely to yield lower inpainting SSIM for MCPN Direct and Stacked baseline, as shown in
Table 3.
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Table 3. Mean inpainting Structural Similarity Index (SSIM) values achieved for 4 repetitions carried
out on the entire Scotland dataset (Synthetic Aperture Radar (SAR)-to-optical translation).

Method LR Ideal (GT) 4000 Steps Known RMSE Patch Consistency

MCPN Emergent 10−3 0.677 ± 0.071 0.626 ± 0.160 0.669 ± 0.066 0.637 ± 0.098
MCPN Direct 10−2 0.663 ± 0.069 0.611 ± 0.070 0.521 ± 0.080 0.601 ± 0.074
Stacked 10−2 0.650 ± 0.079 0.573 ± 0.090 0.545 ± 0.078 0.570 ± 0.087

Based on the above results, the rest of the experiments are conducted with the model-
specific learning rates. To understand the intricacies of each synthesis method, results using
all three convergence methods are obtained, and the optimal combination for each task is
reported in the manuscript, while the complete records are presented in the Appendix A.

3. Evaluation

The proposed methods are evaluated on two common tasks related to remote sensing
applications: (a) guided image inpainting and (b) guided super-resolution. Furthermore,
to demonstrate their versatility, tests on image completion with other multi-modal image
translation datasets are carried out.

3.1. Guided Satellite Image Inpainting

In this work, the inpainting capability of MCPN is evaluated on Sentinel-2 optical
data (Figure 7). Although this data source is employed extensively in Earth observations,
the presence of atmospheric phenomena such as clouds usually limits its potential. To in-
form the reconstruction of occluded regions, temporally proximate data from the Sentinel-1
can be used, which is less affected by atmospheric conditions. However, the domain shift
between the optical and radar sensing modalities is large. As an alternative, historical opti-
cal data could be used to inform the synthesis process about the fine structure of the scene.
This naturally relies on the assumption that the structure of the scene has not changed
significantly compared to the historic data acquisition. The dataset used in [16] and created
using a framework described in [23], contains pairs of temporally proximate Sentinel-1 and
Sentinel-2 images for a period of 2 years and has been employed to evaluate MCPN. More
specifically, the clear sky images from Scotland in the year 2020 are used as targets for the
inpainting task, and the clear sky images from 2019 are averaged and used as the historical
informing prior. The dataset also contains realistic masks (extracted from cloud masks for
dates when clouds where present), which are applied to clear sky images to measure the
quality of synthesised samples with a precise ground truth.

In the scope of this work, the main comparison made in the context of inpainting is
between the conventional stacked variant used in [16] and the proposed MCPN variants
(Emergent and Direct). While other recent works on satellite image inpainting have been
published, such as [24,25], they do not address the same problem treated in this work,
as they do not operate on multi-modal guidance data and do not solve the problem via
internal learning. Furthermore, at the time of writing, the source code and weights have not
been provided for these works. The image inpainting task is also currently researched in the
general domain of computer vision [26–28]; however, these solutions are not appropriate
for the same reason as they focus on a single RGB modality and are pre-trained on datasets
that are not relevant for the satellite image domain.
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Figure 7. Comparison of reconstructed Sentinel-2 image for 3 types of support data (one per row)
and the three tested methods.

Similar to the experiments in Section 2.2, where convergence dynamics were studied,
all models are optimised for 20,000 steps in order to compare several convergence detection
methods. The obtained peak SSIM performance for the inpainted region, not practically
achievable without access to the ground truth, is shown in Table 4. Although this is
infeasible, it provides an indication of the upper bound performance of each method.

Table 4. Results for the Scotland dataset: peak performance.

Guidance MCPN MCPN Stacked(Emergent Core) (Direct Core)

Current Sentinel-1
Whole SSIM ↑ 0.854 ± 0.041 0.760 ± 0.052 0.743 ± 0.053

RMSE ↓ 0.079 ± 0.053 0.088 ± 0.029 0.092 ± 0.041
Inpainting SSIM ↑ 0.665 ± 0.082 0.657 ± 0.072 0.661 ± 0.077

RMSE ↓ 0.137 ± 0.090 0.130 ± 0.053 0.131 ± 0.063

Historical Sentinel-2
Whole SSIM ↑ 0.879 ± 0.044 0.853 ± 0.069 0.879 ± 0.062

RMSE ↓ 0.081 ± 0.062 0.072 ± 0.026 0.071 ± 0.046
Inpainting SSIM ↑ 0.719 ± 0.113 0.714 ± 0.068 0.738 ± 0.090

RMSE ↓ 0.142 ± 0.108 0.120 ± 0.039 0.120 ± 0.069

Current Sentinel-1
+

Historical Sentinel-2

Whole SSIM ↑ 0.876 ± 0.036 0.838 ± 0.056 0.869 ± 0.065
RMSE ↓ 0.071 ± 0.055 0.071 ± 0.030 0.066 ± 0.038

Inpainting SSIM ↑ 0.743 ± 0.098 0.694 ± 0.064 0.741 ± 0.083
RMSE ↓ 0.121 ± 0.101 0.117 ± 0.050 0.111 ± 0.059

For the challenging case where Sentinel-1 is the informing signal, the Emergent variant
of MCPN offers higher inpainted SSIM, compared to the other two methods. It can be
observed that the whole image SSIM is drastically lower for the Stacked compared to
MCPN Emergent. This is primarily caused by the fact that the extracted images yielding
the maximised SSIM for the inpainting region are often premature in the case of the Stacked
approach and the MCPN direct. For the historical Sentinel-2 case, the Stacked method
achieves the highest SSIM, which could be attributed to the less severe domain shift between
the informing and synthesised signals. For the case of combined Sentinel-1 and Sentinel-2
informing sources, the Emergent variant results in a higher SSIM for both the inpainted
region and the whole image. In terms of peak performance, the direct variant of MCPN
is not as performant as the other methods, which could potentially be attributed to the
bottleneck aspect of the architecture. However, as described in Section 3.2, this MCPN
variant is beneficial for the image super-resolution task.
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In practice, one of the convergence detection methods described in Section 2.2 must be
employed; namely, a constant number of steps, patch consistency metric, or RMSE of the
known pixels. It has been found that the optimisation dynamics of each synthesis method
are quite different, and hence, different convergence detection techniques are appropriate.
Based on the results contained and discussed in the Appendix A, the Known Region RMSE
metric works best for the Emergent variant of MCPN, while the constant of 4000 steps
is most beneficial for the Direct MCPN and the baseline Stacked approach. Hence, the
performances resulting from these choices are contained in Table 5, indicating the quality
of synthesis that can be realistically achieved.

Table 5. Results for the Scotland dataset: achievable performance with optimal convergence detection.

Guidance
MCPN MCPN Stacked(Emergent Core) (Direct Core)

Known RMSE 4000 Steps 4000 Steps

Current Sentinel-1
Whole SSIM ↑ 0.859 ± 0.041 0.824 ± 0.045 0.837 ± 0.063

RMSE ↓ 0.079 ± 0.048 0.081 ± 0.033 0.086 ± 0.050
Inpainting SSIM ↑ 0.638 ± 0.081 0.601 ± 0.068 0.576 ± 0.080

RMSE ↓ 0.141 ± 0.082 0.140 ± 0.055 0.149 ± 0.071

Historical Sentinel-2
Whole SSIM ↑ 0.880 ± 0.043 0.864 ± 0.041 0.875 ± 0.063

RMSE ↓ 0.079 ± 0.051 0.075 ± 0.028 0.086 ± 0.059
Inpainting SSIM ↑ 0.698 ± 0.107 0.692 ± 0.075 0.703 ± 0.105

RMSE ↓ 0.142 ± 0.089 0.131 ± 0.044 0.147 ± 0.089

Current Sentinel-1
+

Historical Sentinel-2

Whole SSIM ↑ 0.882 ± 0.036 0.861 ± 0.039 0.879 ± 0.055
RMSE ↓ 0.069 ± 0.048 0.071 ± 0.032 0.074 ± 0.049

Inpainting SSIM ↑ 0.735 ± 0.096 0.679 ± 0.070 0.713 ± 0.100
RMSE ↓ 0.120 ± 0.087 0.124 ± 0.054 0.128 ± 0.076

The highest quality of inpainting (as well as reconstruction of the known region)
is achieved by employing the Emergent MCPN framework for both current Sentinel-1
and historical Sentinel-2 images. Furthermore, consistent with the earlier results in [16],
the introduction of historical data from the same modality brings significantly higher
benefits compared to the current cross-modal Sentinel-1 representation. The domain shift
between the informing and synthesised signals (as in the case of Sentinel-1) remains difficult
to handle for the convolutional parameterisation models. However, the use of the MCPN
scheme offers a significant improvement of inpainting quality, where the inpainting SSIM
of MCPN Emergent and Direct are 0.638 and 0.601, compared to 0.576, achieved by the
Stacked approach.

It is important to note that the results are expected to have a high standard deviation
when compared to the global mean. The reason for this is that the difficulty of the individual
image tasks varies greatly, depending on how large the masked area is and how predictable
the missing content is. Naturally, for some tasks, some of the missing information is
not feasible to recover when appropriate priors are absent from the informing signal.
For that reason, the discussion so far has focused on the mean performance value. A
potential alternative is to apply a correcting factor per sample (with a sample being a
fixed image and a fixed mask shape) that accounts for its difficulty. For each sample,
the mean and standard deviation of the metric value across methods indicate the difficulty
of that specific inpainting task. Based on the resulting sample-specific mean and standard
deviation, a z-score can be computed for each method, providing a scaled measure of the
difference in performance with respect to all methods. By averaging the z-score value
across all samples, a dataset-wide z-score is achieved that corrects for the varying levels of
difficulty. The resulting values are shown in Table 6, where a value of +0.900 indicates that,
on average, a given method results in a metric value of 0.900 standard deviations higher
than the mean for that sample. Furthermore, each value is accompanied by an indicator
mark that corresponds to the result of a Wilcoxon signed-rank test [29] of a hypothesis
that a given metric distribution is a significant improvement (p = 0.05) with respect to the
baseline Stacked approach.
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Table 6. Results for the Scotland dataset: achievable average difference from mean performance
(numbers correspond to multiples of standard deviations).

Guidance
MCPN MCPN Stacked(Emergent Core) (Direct Core)

Known RMSE 4000 Steps 4000 Steps

Current Sentinel-1
Whole SSIM ↑ +0.900 ✓ −0.993 ✗ +0.094

RMSE ↓ −0.555 ✓ +0.417 ✗ +0.138
Inpainting SSIM ↑ +0.900 ✓ −0.168 ✓ −0.732

RMSE ↓ −0.488 ✓ +0.175 ✓ +0.313

Historical Sentinel-2
Whole SSIM ↑ +0.207 ✗ −0.652 ✗ +0.445

RMSE ↓ −0.100 ✓ +0.139 ✗ −0.039
Inpainting SSIM ↑ −0.031 ✗ −0.212 ✗ +0.243

RMSE ↓ −0.032 ✗ +0.056 ✓ −0.024

Current Sentinel-1
+

Historical Sentinel-2

Whole SSIM ↑ +0.405 ✗ −0.953 ✗ +0.548
RMSE ↓ −0.452 ✓ +0.526 ✗ −0.074

Inpainting SSIM ↑ +0.738 ✓ −0.823 ✗ +0.085
RMSE ↓ −0.521 ✓ +0.489 ✗ +0.032

The average z-score values confirm the earlier conclusions, where the Emergent Core
leads to a significant performance boost for the Sentinel-1 data mode. For the historical
Sentinel-2 mode, the Stacked approach appears to work best; however, for the data mode
containing both Sentinel-1 and Sentinel-2, the Emergent Core MCPN exhibits a very high
quality of inpainting compared to the other two methods.

To explore how the inpainting quality changes for different sizes of the synthesized
region, a sweep of the mask size is conducted, where four clear-sky images from across
the year are inpainted using a square mask with varying areas. Furthermore, both inward
synthesis (where the synthesized region is fully surrounded by non-masked pixels) and
outward synthesis (where the synthesized region is not surrounded by non-masked pixels)
are explored by applying an inverse mask. The results of the sweep are shown in Figure 8,
where the left column corresponds to inward synthesis, and the right column to outward
synthesis. The two metrics of whole-image SSIM and inpainting SSIM are recorded for
all three synthesis methods, each using the supporting data that provides the highest
performance in Table 5 (S2 for MCPN Direct, and S1 + S2 for MCPN Emergent and Stacked).

The Emergent variant of MCPN (blue line) is leading significantly for all metrics
if the inpainted region is 40% or more. The Direct variant of MCPN is outperformed
by the Stacked method, which is consistent with the performance reported in Table 5
(0.692 Inpainting SSIM for MCPN Direct and 0.713 for Stacked).

Figure 8. Traces indicating the changes of Structural Similarity Index (SSIM) values for different
percentages of regions to inpaint.
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3.2. Guided Satellite Image Super-Resolution

The multi-scale architectures can be readily adapted to perform a super-resolution task
on the multi-modal representations. This can be achieved by employing a downsampling
operation to the output of the target domain head and backpropagating gradients from
a low-resolution source through it. Apart from this operation, the architecture of MCPN
remains unchanged. Additional informing sources (such as the historical optical mean),
inherently in high resolution, can be synthesised by the remaining domain heads along with
the super-resolved image. This can help with producing structurally coherent upsampling.
In all presented experimentation, the bilinear downsampling operation is selected. It is
worth noting previous literature addressing a similar problem and commonly referring to it
as guided super-resolution [30–35]. However, most of the previous works focus on the task
of super-resolving a single-channel Depth image, based on a corresponding three-channel
RGB image of higher resolution. This makes the application of many existing models to new
problem settings difficult. Furthermore, MCPN constitutes a fully unsupervised framework,
where no pretraining is carried out. This makes the PixTransform work introduced in [34]
particularly appropriate as a baseline since it is also unsupervised. With minimal changes
applied, to accommodate for three channels in the super-resolved image (rather than one,
as in the depth image), it has been used for comparison in the conducted experiments.
Furthermore, a common, externally-trained, baseline of EDSR [36] is tested as well (in this
case, the low-resolution image is super-resolved without any guide image).

With this adjustment, all three synthesis methods are employed to upsample an
inherently low-resolution source. Here, Band 9 Sentinel-2 with SWIR data, with a resolution
of 60 metres, is super-resolved by using the current RGB bands (Bands 4, 3, and 2) with 10 m
resolution as the informing signal. The results are shown in Figure 9, along with the two
employed baselines of PixTransform [34] and EDSR [36]. In this case, the target upscaling
factor is close to 6, and for EDSR, it is achieved by passing the image through the model
with factor 2 followed by the model with factor 4. The result of these two consecutive EDSR
passes yields an 8 times larger image, which is then interpolated down to 256 × 256 px
resolution with a bilinear operation. Similarly, since the PixTransform tool requires the
upscaling factor to be a whole integer, the image is first upsampled to 64 × 64 pixels and
then supplied as the low-resolution source. In the case of MCPN, any upscaling factor
can be achieved by substituting an appropriate downsampling operation into the process,
making it more flexible than the compared baselines. Since a high-resolution ground truth
for Band 9 of Sentinel-2 does not exist, it is challenging to compare these results beyond
visual impression. The EDSR method results in a significant perceived blur while the
convolutional parameterisation methods increase the fidelity of the image. The output of
the Stacked baseline and the Emergent Core MCPN appears to contain more fine details
propagated from the RGB image compared to the Direct Core MCPN. The PixTransform
output appears to produce high-quality fine details compared to the other methods, but it
also appears to yield reduced contrast in some parts of the image.

A quantitative evaluation approach is adopted here that relies on pairs of high-
resolution images and their corresponding downsampled versions. The experiment has
been conducted on 20 clear-sky RGB images from Scotland from the year 2020 with the
supporting information of the historical average from the year 2019. In the process, each
of the 20 images was subject to bilinear downsampling, which was subsequently used
as the low-resolution input. The super-resolution performance achieved by each method
is shown in Table 7, with the SSIM and RMSE values for three upscaling factors of 16, 8,
and 4. Full results, for all convergence techniques and the ideal performance are included
in Appendix A. It is shown that the MCPN Direct approach achieves superior performance
for the task of super-resolution, consistently outperforming all other methods for all scaling
factors. An example of the super-resolved outputs and a corresponding ground truth is
shown in Figure 10, where MCPN Direct produces the highest quality output, especially for
the larger factors, while MCPN Emergent introduces more artefacts to the super-resolved
image since the correspondence between the two domain signals is not as constrained as
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in the case of the Direct Core variant. The PixTransform method appears to do well with
reconstructing fine details in the scene (such as sharp region borders), but at the same time,
it introduces a considerable color distortion, which ultimately leads to performance inferior
to the MCPN Direct Core.

Figure 9. With the support of the image from the RGB bands (10 m resolution), the low-resolution
SWIR image (Band 9 with 60 m resolution) is upsampled. This is an exploratory result since no
ground truth exists for a high-resolution SWIR source.

Table 7. Results for the super-resolution task (historical high-resolution optical reference used for
super-resolving current downsampled optical (achievable performance).

Factor
MCPN MCPN Stacked PixTransform [34] EDSR [36](Emergent Core) (Direct Core)

4000 Steps Known RMSE 4000 Steps

×16 SSIM ↑ 0.487 ± 0.137 0.733 ± 0.068 0.719 ± 0.072 0.718 ± 0.060 0.699 ± 0.055
RMSE ↓ 0.184 ± 0.057 0.085 ± 0.047 0.094 ± 0.060 0.094 ± 0.046 0.098 ± 0.045

×8 SSIM ↑ 0.584 ± 0.168 0.782 ± 0.049 0.771 ± 0.085 0.758 ± 0.052 0.727 ± 0.050
RMSE ↓ 0.135 ± 0.067 0.064 ± 0.029 0.076 ± 0.061 0.076 ± 0.039 0.080 ± 0.040

×4 SSIM ↑ 0.685 ± 0.137 0.847 ± 0.029 0.825 ± 0.084 0.815 ± 0.044 0.789 ± 0.038
RMSE ↓ 0.104 ± 0.068 0.047 ± 0.017 0.062 ± 0.057 0.061 ± 0.031 0.061 ± 0.031

Figure 10. Example of super-resolution performance for several upscaling factors: ×16 (top row), ×8
(middle row), ×4 (bottom row). The informing high-resolution source used for the experiment was
the historical optical mean from the previous year.

3.3. Guided Image Inpainting in Other Domains

The MCPN method can be applied to other tasks where spatially-aligned multi-modal
data are available. Here, it is demonstrated how the same methods are used to perform
image inpainting tasks on four common datasets that contain aligned multi-domain data:
Facades, Maps, Night-to-Day, and CityScapes [8]. The task involves filling the square area
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in the middle of each image within a border of 50 pixels around the image periphery (this
translates to about 37% of fill area for 256 × 256 px images).

The four datasets representing other types of tasks can be categorised into those
containing a shallow descriptive guide, such as a segmentation mask (Facades, Maps,
and CityScapes), and those containing a rich natural image guide (Night-to-Day). De-
pending on this aspect, a different convergence detection technique may be appropriate,
and hence, the best performing one is applied on per-dataset and per-synthesis-method
basis, as shown in Table 8 by indicating § as the 4000 steps technique, † as Known Region
RMSE, and ‡ as Patch Consistency.

The results in Table 8 demonstrate that the MCPN variants can achieve superior perfor-
mance to the Stacked baseline for all tasks (again, full results for all convergence detection
methods and the ideal performance are included in Appendix A). For the datasets of Maps,
Night-to-Day, and Cityscapes, the MCPN Emergent variant outperforms both other meth-
ods. For the task of inpainting Facade images based on a segmentation map, the Direct
variant of MCPN exhibits higher performance than the Emergent variant. The Stacked
baseline yields the lowest inpainting SSIM across all datasets, with the exception of the
Night-to-Day, where it performs better than the Direct Core MCPN.

Some of the results for the above datasets are demonstrated in Figure 11. The tendency
of the Stacked method to produce inpaintings inconsistent with the rest of the image is
apparent, contributing to the highest errors associated with that technique. The Emergent
Core MCPN produces higher structural distortions compared to the Direct Core MCPN.

Figure 11. Example output for the three tested inpainting methods for each experiment dataset
(from top to bottom: Facades, Map-to-Aerial, Night-to-Day, Cityscapes). The reported metric values
correspond to the inpainted area only.
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Table 8. Inpainting results for the four spatially-aligned multi-domain datasets. Mean values along
with corresponding standard deviations are reported. Metrics for both whole image comparison
(Whole) and inpainting comparison (Inpainting) are shown. (Achievable Performance). §—4000 steps,
†—known reconstruction root mean square error, ‡—patch consistency.

Guidance MCPN MCPN Stacked(Emergent Core) (Direct Core)

Facades
(Segmentation → Building)

Whole SSIM ↑ 0.763 ± 0.044 § 0.784 ± 0.058 † 0.720 ± 0.100 †
RMSE ↓ 0.108 ± 0.031 § 0.113 ± 0.040 † 0.118 ± 0.038 †

Inpainting SSIM ↑ 0.476 ± 0.109 § 0.505 ± 0.144 † 0.453 ± 0.130 †
RMSE ↓ 0.172 ± 0.051 § 0.183 ± 0.067 † 0.184 ± 0.061 †

Maps
(Map → Aerial)

Whole SSIM ↑ 0.791 ± 0.070 † 0.768 ± 0.074 § 0.744 ± 0.076 §
RMSE ↓ 0.085 ± 0.031 † 0.085 ± 0.030 § 0.113 ± 0.038 §

Inpainting SSIM ↑ 0.512 ± 0.174 † 0.510 ± 0.175 § 0.404 ± 0.169 §
RMSE ↓ 0.137 ± 0.051 † 0.134 ± 0.050 § 0.183 ± 0.061 §

Night-to-Day
(Day → Night)

Whole SSIM ↑ 0.870 ± 0.068 † 0.769 ± 0.093 ‡ 0.828 ± 0.103 ‡
RMSE ↓ 0.075 ± 0.041 † 0.100 ± 0.038 ‡ 0.096 ± 0.055 ‡

Inpainting SSIM ↑ 0.709 ± 0.167 † 0.576 ± 0.148 ‡ 0.644 ± 0.178 ‡
RMSE ↓ 0.121 ± 0.067 † 0.157 ± 0.060 ‡ 0.150 ± 0.076 ‡

Cityscapes
(Segmentation → Street)

Whole SSIM ↑ 0.822 ± 0.031 § 0.793 ± 0.041 § 0.802 ± 0.047 §
RMSE ↓ 0.093 ± 0.030 § 0.092 ± 0.023 § 0.093 ± 0.028 §

Inpainting SSIM ↑ 0.613 ± 0.077 § 0.610 ± 0.071 § 0.608 ± 0.077 §
RMSE ↓ 0.150 ± 0.050 § 0.143 ± 0.037 § 0.147 ± 0.047 §

4. Conclusions

The proposed method Multi-modal Convolutional Parameterisation Network (MCPN)
demonstrates the capability of parameterising spatially aligned signals from multiple do-
mains using convolutional neural network architectures. This capability enables an internal
solution to several image inverse tasks, such as image completion or super-resolution.
By definition, an MCPN model can readily be applied for any number of domains, and it
has been shown that it can work with domain shifts as large as between image segmenta-
tion maps and corresponding natural images. The synthesis process takes in the order of
several minutes on a single consumer-grade GPU and is fully unsupervised, requiring no
external pretraining.

The Emergent Core variant of MCPN exhibits superior performance in the conducted
experimentation for satellite image inpainting. This improvement is particularly significant
for the difficult case of transferring information from the SAR source of Sentinel-1 to the
optical image of Sentinel-2. Another use case for MCPN (including the direct Stacked
approach) has been proposed, where an informing high-resolution image is used as a
guide to super-resolve a spatially aligned low-resolution image. In this case, the MCPN
Direct method exhibits the highest performance. This technique can potentially enable
applications, where low-resolution remote sensing data sources are upsampled by trans-
ferring knowledge from other sensors to improve the fidelity of the observation. Finally,
the evaluation contains results of image inpainting for other image datasets, where the
MCPN methods provide a significant boost of the synthesis quality.

The established MCPN is a versatile tool that can facilitate internal learning of repre-
sentations from disparate domains. The results indicate that this approach can significantly
increase the quality of synthesis.
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Appendix A. Convergence Detection

The complete record of the results using individual convergence detection methods is
provided here for all three tasks (satellite image inpainting, super-resolution, and inpainting
in additional visual domains).

Appendix A.1. Satellite Inpainting

For the MCPN Emergent, both patch consistency and 4000 step methods (Tables A1 and A2,
respectively) are outperfomed by the known reconstruction RMSE (Table A3). In the case of
MCPN Direct, the 4000 step results in the highest value of Inpainting SSIM, at the cost of a
slightly lower Whole Image SSIM. Since the quality of the inpainted region is the priority in this
work, the 4000 step method is used for the MCPN Direct variant. Finally, for the Stacked baseline,
the 4000 step method also appears to be most beneficial for the inpainting quality (however,
patch consistency comes close). Again, this appears to come at the cost of the lower value of SSIM
of the entire image. The likely reason for this is that the highest SSIM of inpainting is achieved
early in the process before the high-resolution detail of the image is fit by the network, which
agrees with the traces shown in Figure 6. This effect is not apparent for the proposed MCPN
Emergent variant, making it a good choice for a stable synthesis framework.

Table A1. Satellite inpainting results for the Scotland dataset. Metrics for both whole image compari-
son (Whole) and inpainting comparison (Inpainting) are shown (4000 steps).

Guidance MCPN MCPN Stacked(Emergent Core) (Direct Core)

Current Sentinel-1
Whole SSIM ↑ 0.833 ± 0.065 0.824 ± 0.045 0.837 ± 0.063

RMSE ↓ 0.113 ± 0.104 0.081 ± 0.033 0.086 ± 0.050
Inpainting SSIM ↑ 0.604 ± 0.170 0.601 ± 0.068 0.576 ± 0.080

RMSE ↓ 0.203 ± 0.186 0.140 ± 0.055 0.149 ± 0.071

Historical Sentinel-2
Whole SSIM ↑ 0.857 ± 0.070 0.864 ± 0.041 0.875 ± 0.063

RMSE ↓ 0.119 ± 0.106 0.075 ± 0.028 0.086 ± 0.059
Inpainting SSIM ↑ 0.654 ± 0.191 0.692 ± 0.075 0.703 ± 0.105

RMSE ↓ 0.217 ± 0.190 0.131 ± 0.044 0.147 ± 0.089

Current Sentinel-1
+

Historical Sentinel-2

Whole SSIM ↑ 0.855 ± 0.060 0.861 ± 0.039 0.879 ± 0.055
RMSE ↓ 0.091 ± 0.095 0.071 ± 0.032 0.074 ± 0.049

Inpainting SSIM ↑ 0.700 ± 0.169 0.679 ± 0.070 0.713 ± 0.100
RMSE ↓ 0.158 ± 0.170 0.124 ± 0.054 0.128 ± 0.076

https://doi.org/10.5281/zenodo.5897695
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Table A2. Satellite inpainting results for the Scotland dataset. Metrics for both whole image compari-
son (Whole) and inpainting comparison (Inpainting) are shown (patch consistency).

Guidance MCPN MCPN Stacked(Emergent Core) (Direct Core)

Current Sentinel-1
Whole SSIM ↑ 0.850 ± 0.051 0.830 ± 0.050 0.839 ± 0.059

RMSE ↓ 0.089 ± 0.071 0.081 ± 0.032 0.084 ± 0.047
Inpainting SSIM ↑ 0.621 ± 0.108 0.588 ± 0.069 0.564 ± 0.082

RMSE ↓ 0.159 ± 0.124 0.141 ± 0.053 0.149 ± 0.077

Historical Sentinel-2
Whole SSIM ↑ 0.874 ± 0.054 0.872 ± 0.052 0.887 ± 0.050

RMSE ↓ 0.089 ± 0.077 0.076 ± 0.031 0.079 ± 0.055
Inpainting SSIM ↑ 0.689 ± 0.135 0.690 ± 0.082 0.706 ± 0.105

RMSE ↓ 0.158 ± 0.133 0.133 ± 0.046 0.139 ± 0.093

Current Sentinel-1
+

Historical Sentinel-2

Whole SSIM ↑ 0.873 ± 0.048 0.867 ± 0.053 0.887 ± 0.047
RMSE ↓ 0.077 ± 0.069 0.073 ± 0.036 0.070 ± 0.044

Inpainting SSIM ↑ 0.721 ± 0.122 0.669 ± 0.071 0.713 ± 0.093
RMSE ↓ 0.134 ± 0.120 0.128 ± 0.054 0.123 ± 0.071

Table A3. Satellite inpainting results for the Scotland dataset. Metrics for both whole image compari-
son (Whole) and inpainting comparison (Inpainting) are shown (known root mean square error).

Guidance MCPN MCPN Stacked(Emergent Core) (Direct Core)

Current Sentinel-1
Whole SSIM ↑ 0.859 ± 0.041 0.834 ± 0.061 0.849 ± 0.060

RMSE ↓ 0.079 ± 0.048 0.086 ± 0.034 0.080 ± 0.045
Inpainting SSIM ↑ 0.638 ± 0.081 0.532 ± 0.071 0.538 ± 0.079

RMSE ↓ 0.141 ± 0.082 0.153 ± 0.050 0.146 ± 0.073

Historical Sentinel-2
Whole SSIM ↑ 0.880 ± 0.043 0.885 ± 0.048 0.896 ± 0.048

RMSE ↓ 0.079 ± 0.051 0.080 ± 0.029 0.075 ± 0.050
Inpainting SSIM ↑ 0.698 ± 0.107 0.670 ± 0.079 0.701 ± 0.094

RMSE ↓ 0.142 ± 0.089 0.143 ± 0.040 0.133 ± 0.080

Current Sentinel-1
+

Historical Sentinel-2

Whole SSIM ↑ 0.882 ± 0.036 0.882 ± 0.045 0.896 ± 0.046
RMSE ↓ 0.069 ± 0.048 0.073 ± 0.031 0.068 ± 0.042

Inpainting SSIM ↑ 0.735 ± 0.096 0.654 ± 0.064 0.703 ± 0.091
RMSE ↓ 0.120 ± 0.087 0.132 ± 0.049 0.122 ± 0.067

Appendix A.2. Guided Super-Resolution

For the MCPN Emergent variant, it appears that the 4000 step convergence is most
beneficial on the super-resolution task, leading to a considerably higher value of SSIM for
big scaling factors, such as 16. For the smaller scaling factor of 4, the patch consistency
convergence detection yields a higher result, but 4000 steps are still selected as the pre-
ferred method for MCPN Emergent super-resolution since it handles big scaling factors
significantly better. For the MCPN Direct variant, the known reconstruction RMSE yields
superior performance to both other methods and across all scaling factors and is hence used
for that synthesis model. For the Stacked baseline, stopping after 4000 steps provides better
quality of super-resolution for large scaling factors and is therefore used as the convergence
detection for that method. Tables A4–A7 contain full results for the ideal performance and
all three convergence methods.

Table A4. Results for the guided super-resolution task (historical high-resolution optical reference
used for super-resolving current downsampled optical. Metrics for both whole image comparison
(Whole) and inpainting comparison (Inpainting) are shown (ideal performance).

Factor MCPN MCPN Stacked PixTransform [34] EDSR(Emergent Core) (Direct Core)

×16 SSIM ↑ 0.641 ± 0.090 0.735 ± 0.068 0.731 ± 0.066 0.718 ± 0.060 0.699 ± 0.055
RMSE ↓ 0.140 ± 0.064 0.085 ± 0.047 0.090 ± 0.052 0.094 ± 0.046 0.098 ± 0.045

×8 SSIM ↑ 0.716 ± 0.088 0.782 ± 0.049 0.783 ± 0.072 0.758 ± 0.052 0.727 ± 0.050
RMSE ↓ 0.098 ± 0.057 0.064 ± 0.029 0.071 ± 0.050 0.076 ± 0.039 0.080 ± 0.040

×4 SSIM ↑ 0.783 ± 0.085 0.848 ± 0.029 0.840 ± 0.070 0.815 ± 0.044 0.789 ± 0.038
RMSE ↓ 0.075 ± 0.047 0.047 ± 0.017 0.055 ± 0.044 0.061 ± 0.031 0.061 ± 0.031
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Table A5. Results for the Guided Super-Resolution Task (Historical High-Resolution Optical Ref-
erence Used for Super-Resolving Current Downsampled Optical. Metrics for both whole image
comparison (Whole) and inpainting comparison (Inpainting) are shown. (4000 steps).

Factor MCPN MCPN Stacked PixTransform [34] EDSR(Emergent Core) (Direct Core)

×16 SSIM ↑ 0.487 ± 0.137 0.710 ± 0.062 0.719 ± 0.072 0.718 ± 0.060 0.699 ± 0.055
RMSE ↓ 0.184 ± 0.057 0.091 ± 0.047 0.094 ± 0.060 0.094 ± 0.046 0.098 ± 0.045

×8 SSIM ↑ 0.584 ± 0.168 0.748 ± 0.047 0.771 ± 0.085 0.758 ± 0.052 0.727 ± 0.050
RMSE ↓ 0.135 ± 0.067 0.071 ± 0.032 0.076 ± 0.061 0.076 ± 0.039 0.080 ± 0.040

×4 SSIM ↑ 0.685 ± 0.137 0.809 ± 0.031 0.825 ± 0.084 0.815 ± 0.044 0.789 ± 0.038
RMSE ↓ 0.104 ± 0.068 0.054 ± 0.019 0.062 ± 0.057 0.061 ± 0.031 0.061 ± 0.031

Table A6. Results for the guided super-resolution task (historical high-resolution optical reference
used for super-resolving current downsampled optical. Metrics for both whole image comparison
(Whole) and inpainting comparison (Inpainting) are shown (patch consistency).

Factor MCPN MCPN Stacked PixTransform [34] EDSR(Emergent Core) (Direct Core)

×16 SSIM ↑ 0.410 ± 0.169 0.728 ± 0.068 0.695 ± 0.078 0.718 ± 0.060 0.699 ± 0.055
RMSE ↓ 0.212 ± 0.075 0.087 ± 0.047 0.102 ± 0.071 0.094 ± 0.046 0.098 ± 0.045

×8 SSIM ↑ 0.605 ± 0.137 0.780 ± 0.049 0.758 ± 0.086 0.758 ± 0.052 0.727 ± 0.050
RMSE ↓ 0.131 ± 0.072 0.065 ± 0.029 0.080 ± 0.065 0.076 ± 0.039 0.080 ± 0.040

×4 SSIM ↑ 0.720 ± 0.160 0.845 ± 0.030 0.830 ± 0.091 0.815 ± 0.044 0.789 ± 0.038
RMSE ↓ 0.104 ± 0.115 0.047 ± 0.017 0.059 ± 0.053 0.061 ± 0.031 0.061 ± 0.031

Table A7. Results for the guided super-resolution task (historical high-resolution optical reference
used for super-resolving current downsampled optical. Metrics for both whole image comparison
(Whole) and inpainting comparison (Inpainting) are shown (known root mean square error).

Factor MCPN MCPN Stacked PixTransform [34] EDSR(Emergent Core) (Direct Core)

×16 SSIM ↑ 0.389 ± 0.180 0.733 ± 0.068 0.695 ± 0.078 0.718 ± 0.060 0.699 ± 0.055
RMSE ↓ 0.213 ± 0.081 0.085 ± 0.047 0.102 ± 0.071 0.094 ± 0.046 0.098 ± 0.045

×8 SSIM ↑ 0.541 ± 0.201 0.782 ± 0.049 0.759 ± 0.089 0.758 ± 0.052 0.727 ± 0.050
RMSE ↓ 0.150 ± 0.081 0.064 ± 0.029 0.081 ± 0.070 0.076 ± 0.039 0.080 ± 0.040

×4 SSIM ↑ 0.674 ± 0.154 0.847 ± 0.029 0.829 ± 0.096 0.815 ± 0.044 0.789 ± 0.038
RMSE ↓ 0.100 ± 0.068 0.047 ± 0.017 0.060 ± 0.056 0.061 ± 0.031 0.061 ± 0.031

Appendix A.3. Other Tasks

The optimal convergence detection method has been found to vary depending on
the type of synthesis method as well as the specific dataset task, as shown in Table A8.
Tables A9–A11 contain full results for each convergence detection method.

Table A8. Inpainting results for the four spatially-aligned multi-domain datasets. Mean values along
with corresponding standard deviations are reported. Metrics for both whole image comparison
(Whole) and inpainting comparison (Inpainting) are shown (ideal performance).

Guidance MCPN MCPN Stacked(Emergent Core) (Direct Core)

Facades
(Segmentation → Building)

Whole SSIM ↑ 0.754 ± 0.062 0.761 ± 0.100 0.702 ± 0.115
RMSE ↓ 0.107 ± 0.030 0.106 ± 0.034 0.109 ± 0.035

Inpainting SSIM ↑ 0.496 ± 0.104 0.532 ± 0.128 0.532 ± 0.123
RMSE ↓ 0.169 ± 0.050 0.166 ± 0.050 0.158 ± 0.049

Maps
(Map → Aerial)

Whole SSIM ↑ 0.792 ± 0.069 0.733 ± 0.118 0.607 ± 0.152
RMSE ↓ 0.082 ± 0.031 0.084 ± 0.030 0.111 ± 0.041

Inpainting SSIM ↑ 0.533 ± 0.173 0.540 ± 0.168 0.499 ± 0.184
RMSE ↓ 0.131 ± 0.051 0.124 ± 0.047 0.147 ± 0.062

Night-to-Day
(Day → Night)

Whole SSIM ↑ 0.868 ± 0.076 0.753 ± 0.116 0.807 ± 0.115
RMSE ↓ 0.072 ± 0.040 0.094 ± 0.035 0.081 ± 0.042

Inpainting SSIM ↑ 0.727 ± 0.161 0.668 ± 0.141 0.729 ± 0.158
RMSE ↓ 0.114 ± 0.064 0.129 ± 0.053 0.112 ± 0.065

Cityscapes
(Segmentation → Street)

Whole SSIM ↑ 0.830 ± 0.031 0.743 ± 0.050 0.747 ± 0.055
RMSE ↓ 0.086 ± 0.028 0.088 ± 0.018 0.083 ± 0.019

Inpainting SSIM ↑ 0.625 ± 0.075 0.649 ± 0.066 0.672 ± 0.065
RMSE ↓ 0.138 ± 0.046 0.120 ± 0.029 0.110 ± 0.030
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Table A9. Inpainting results for the four spatially-aligned multi-domain datasets. Mean values along
with corresponding standard deviations are reported. Metrics for both whole image comparison
(Whole) and inpainting comparison (Inpainting) are shown (4000 steps).

Guidance MCPN MCPN Stacked(Emergent Core) (Direct Core)

Facades
(Segmentation → Building)

Whole SSIM ↑ 0.763 ± 0.044 0.700 ± 0.076 0.720 ± 0.100
RMSE ↓ 0.108 ± 0.031 0.129 ± 0.035 0.118 ± 0.038

Inpainting SSIM ↑ 0.476 ± 0.109 0.447 ± 0.132 0.453 ± 0.130
RMSE ↓ 0.172 ± 0.051 0.200 ± 0.058 0.184 ± 0.061

Maps
(Map → Aerial)

Whole SSIM ↑ 0.759 ± 0.069 0.768 ± 0.074 0.744 ± 0.076
RMSE ↓ 0.112 ± 0.056 0.085 ± 0.030 0.113 ± 0.038

Inpainting SSIM ↑ 0.472 ± 0.167 0.510 ± 0.175 0.404 ± 0.169
RMSE ↓ 0.180 ± 0.093 0.134 ± 0.050 0.183 ± 0.061

Night-to-Day
(Day → Night)

Whole SSIM ↑ 0.804 ± 0.103 0.767 ± 0.092 0.823 ± 0.082
RMSE ↓ 0.157 ± 0.124 0.103 ± 0.038 0.113 ± 0.060

Inpainting SSIM ↑ 0.570 ± 0.245 0.552 ± 0.171 0.605 ± 0.199
RMSE ↓ 0.254 ± 0.205 0.164 ± 0.063 0.183 ± 0.100

Cityscapes
(Segmentation → Street)

Whole SSIM ↑ 0.822 ± 0.031 0.793 ± 0.041 0.802 ± 0.047
RMSE ↓ 0.093 ± 0.030 0.092 ± 0.023 0.093 ± 0.028

Inpainting SSIM ↑ 0.613 ± 0.077 0.610 ± 0.071 0.608 ± 0.077
RMSE ↓ 0.150 ± 0.050 0.143 ± 0.037 0.147 ± 0.047

Table A10. Inpainting results for the four spatially-aligned multi-domain datasets. Mean values along
with corresponding standard deviations are reported. Metrics for both whole image comparison
(Whole) and inpainting comparison (Inpainting) are shown (known root mean square error).

Guidance MCPN MCPN Stacked(Emergent Core) (Direct Core)

Facades
(Segmentation → Building)

Whole SSIM ↑ 0.764 ± 0.043 0.784 ± 0.058 0.771 ± 0.058
RMSE ↓ 0.112 ± 0.029 0.113 ± 0.040 0.110 ± 0.037

Inpainting SSIM ↑ 0.446 ± 0.106 0.505 ± 0.144 0.437 ± 0.145
RMSE ↓ 0.182 ± 0.048 0.183 ± 0.067 0.180 ± 0.061

Maps
(Map → Aerial)

Whole SSIM ↑ 0.791 ± 0.070 0.798 ± 0.069 0.756 ± 0.077
RMSE ↓ 0.085 ± 0.031 0.082 ± 0.029 0.098 ± 0.036

Inpainting SSIM ↑ 0.512 ± 0.174 0.505 ± 0.172 0.389 ± 0.195
RMSE ↓ 0.137 ± 0.051 0.134 ± 0.048 0.160 ± 0.059

Night-to-Day
(Day → Night)

Whole SSIM ↑ 0.870 ± 0.068 0.751 ± 0.080 0.842 ± 0.079
RMSE ↓ 0.075 ± 0.041 0.121 ± 0.040 0.097 ± 0.057

Inpainting SSIM ↑ 0.709 ± 0.167 0.464 ± 0.159 0.620 ± 0.197
RMSE ↓ 0.121 ± 0.067 0.196 ± 0.066 0.159 ± 0.094

Cityscapes
(Segmentation → Street)

Whole SSIM ↑ 0.831 ± 0.030 0.821 ± 0.029 0.825 ± 0.028
RMSE ↓ 0.088 ± 0.027 0.094 ± 0.021 0.084 ± 0.020

Inpainting SSIM ↑ 0.604 ± 0.076 0.593 ± 0.069 0.569 ± 0.071
RMSE ↓ 0.143 ± 0.045 0.153 ± 0.035 0.138 ± 0.033

Table A11. Inpainting results for the four spatially-aligned multi-domain datasets. Mean values along
with corresponding standard deviations are reported. Metrics for both whole image comparison
(Whole) and inpainting comparison (Inpainting) are shown (patch consistency).

Guidance MCPN MCPN Stacked(Emergent Core) (Direct Core)

Facades
(Segmentation → Building)

Whole SSIM ↑ 0.759 ± 0.046 0.734 ± 0.091 0.740 ± 0.089
RMSE ↓ 0.113 ± 0.029 0.121 ± 0.039 0.122 ± 0.042

Inpainting SSIM ↑ 0.450 ± 0.103 0.478 ± 0.138 0.442 ± 0.138
RMSE ↓ 0.182 ± 0.048 0.189 ± 0.061 0.194 ± 0.065

Maps
(Map → Aerial)

Whole SSIM ↑ 0.774 ± 0.064 0.771 ± 0.088 0.751 ± 0.074
RMSE ↓ 0.102 ± 0.060 0.086 ± 0.030 0.101 ± 0.035

Inpainting SSIM ↑ 0.478 ± 0.161 0.506 ± 0.170 0.392 ± 0.180
RMSE ↓ 0.164 ± 0.099 0.134 ± 0.048 0.164 ± 0.058

Night-to-Day
(Day → Night)

Whole SSIM ↑ 0.851 ± 0.069 0.769 ± 0.093 0.828 ± 0.103
RMSE ↓ 0.085 ± 0.042 0.100 ± 0.038 0.096 ± 0.055

Inpainting SSIM ↑ 0.672 ± 0.166 0.576 ± 0.148 0.644 ± 0.178
RMSE ↓ 0.137 ± 0.069 0.157 ± 0.060 0.150 ± 0.076

Cityscapes
(Segmentation → Street)

Whole SSIM ↑ 0.825 ± 0.028 0.801 ± 0.034 0.820 ± 0.032
RMSE ↓ 0.094 ± 0.030 0.090 ± 0.020 0.093 ± 0.026

Inpainting SSIM ↑ 0.598 ± 0.069 0.609 ± 0.067 0.592 ± 0.067
RMSE ↓ 0.153 ± 0.050 0.142 ± 0.034 0.150 ± 0.042
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