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Abstract: Deep edge detection is challenging, especially with the existing methods, like HED (holistic
edge detection). These methods combine multiple feature side outputs (SOs) to create the final edge
map, but they neglect diverse edge importance within one output. This creates a problem: to include
desired edges, unwanted noise must also be accepted. As a result, the output often has increased
noise or thick edges, ignoring important boundaries. To address this, we propose a new approach
called the normalized Hadamard-product (NHP) operation-based deep network for edge detection.
By multiplying the side outputs from the backbone network, the Hadamard-product operation
encourages agreement among features across different scales while suppressing disagreed weak
signals. This method produces additional Mutually Agreed Salient Edge (MASE) maps to enrich the
hierarchical level of side outputs without adding complexity. Our experiments demonstrate that the
NHP operation significantly improves performance, e.g., an ODS score reaching 0.818 on BSDS500,
outperforming human performance (0.803), achieving state-of-the-art results in deep edge detection.

Keywords: edge detection; Hadamard product; mutual agreement; salient; fusion; deep network

1. Introduction

In the realm of image processing, human visual perception heavily relies on shapes [1].
Contour-based shape features, which leverage object boundary information, offer a more
intricate understanding of object shapes. Edge detection techniques play a pivotal role by
extracting salient object boundaries, preserving the essence of an image, and filtering out
unintended details. Perceptual edge features, classified as low-level features, play a crucial
role in mid- and high-level visual analysis tasks, encompassing image segmentation, object
detection, and recognition.

While traditional edge detection methods rely on low-level visual cues and hand-
crafted feature representations, recent research efforts have shifted toward deep learning
models in the computer vision community. Convolutional Neural Network (CNN)-based
approaches have risen to prominence, becoming the mainstream framework for image
classification, object detection, semantic segmentation, and edge detection domains. No-
table methods like DeepEdge [2], N4-Fields [3], CSCNN [4], DeepContour [5], and HED [6]
have significantly advanced edge detection performance. HED, a successful deep network
framework, employs a holistically nested architecture, generating multiple intermediate
edge side outputs (SOs) along the network pathway, which are then fused to produce the
final edge result.

Despite the progress in deep edge detection approaches, a common drawback arises
in the fusion step. This involves the challenge of balancing noisy edges and global contours
within a single SO. The conventional fusion practice assigns optimal weights to an individ-
ual layer’s SO edge maps, treating all pixels from a single edge map equally. Therefore, this
approach fails to distinguish between noise and fine data within a single SO, impacting
the detection quality and accuracy. The network faces a dilemma in managing noisy edges
while preserving global boundaries, making semantic edge detection a persistent challenge.
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Figure 1 illustrates an input image along with its ground-truth edges, the results from
an existing approach (in green box), and our results in the first row. The second row shows
five SOs (SO1 ∼ SO5 from left to right), each representing an edge map at a specific spatial
scale. Finer-scale SO1 and SO2 exhibit thin contours and noise, while coarser SO4 and SO5
have fatty edges due to upsampling, lacking the necessary details. The ground truth is
marked with circled areas indicating the best matches from different SOs. Here, the edges
of the waistbelt from SO1 (circled in green), the shape of the umbrella’s top spring areas
from SO2 (circled in blue), the texture patterns of the crown top of the conical hat from
SO3 (circled in red), and the hair boundary near the ear side from SO4 (circled in pink)
closely match the ground truth and should be fused into the optimal final result. However,
the existing fusion process applies a single weight to each SO indiscriminately, without
considering the edge importance. Consequently, when the network requires specific parts
from a certain SO, all others from this SO are also included. In Figure 1, the portions shaded
in yellow in SOi would appear in the final output if the corresponding circled parts are
considered. As a result, the output often contains noise and thick edges while missing
some key boundaries. To tackle this issue, a complicated deeper network is required to
learn accurate pixel-wise importance. However, when neural networks deepen, gradient
vanishing can occur during backpropagation, where gradients become extremely small
and lose impact on updating earlier layers, resulting in slow or no learning. Although
skip connections (e.g., in ResNet) help mitigate this issue, deeper networks may still face
problems, like degradation, slow convergence, parameter optimization difficulties, and
overfitting [7].

Figure 1. The issue of the existing approaches. The first row shows the original image, ground-truth
edges, and the fused results from a typical existing approach and ours. The second row lists five side
outputs from the left to right. The areas in blue, green, red, pink and brown circles on the ground
truth match the corresponding areas in SO1 ∼ SO5 respectively.

To address the aforementioned issue, the research question arises: instead of uniformly
applying a single weight to the entire SO edge map, can we selectively choose important
details from each edge map for fusion? Rather than opting for a deeper and more complex
network structure with pixel-wise weights, which poses training challenges, we propose
the normalized Hadamard-product (NHP) operation. This operation enhances the fusion
process by incorporating more edge maps without increasing the network complexity.
These additional edge maps are subsets of existing SOs, extracted through the NHP opera-
tion. The NHP operation, a multiplicative process, facilitates the promotion of agreed-upon
features while suppressing disagreements. By applying the NHP operation on multiple
SOs, agreed edge feature maps are generated, named as Mutually Agreed Salient Edge



J. Imaging 2024, 10, 62 3 of 17

(MASE) maps with varying levels of importance. Besides the existing multi-scale SO feature
maps, MASE maps provide additional enriched hierarchical structure that distinguishes
between local and global edges. During the fusion stage, this increased granularity of edges
offers more options for the network to produce better results. For example, in Figure 1,
by applying NHP operations, the circled areas would be extracted from different SO edge
maps and subsequently fused into the final result without incorporating many noisy edges
(shaded in yellow). The main contributions of the proposed enhancement approach include
the following:

• The generation of the NHP resulting in additional MASE maps containing key scale-
invariant features that reflect true object boundaries;

• Combining MASE maps produced by the NHP with existing SOs provides more
hierarchical structure for fusion operation;

• The network is guided to learn semantic edge boundaries by deep supervision on
MASE maps and the original SOs;

• Using the NHP operation for strong edge selection does not increase the network
complexity;

• Experiments conducted on the widely used BSDS500 [8] and NYUD [9] datasets
demonstrate that the proposed framework outperforms other methods.

The rest of this paper is organized as follows. Section 2 introduces the related work.
Section 3 presents the proposed NHP method and MASE maps for edge detection in detail.
The experimental results and comparisons are presented in Section 4. Finally, the discussion
and conclusions are given in Sections 5 and 6, respectively.

2. Related Work

Edge detection is a fundamental task in image processing, playing a vital role in
high-level image understanding and computer vision. There have been numerous edge
detection approaches in the literature. In the early days, intensity gradient-based techniques
were prevalent. Those algorithms often involved convolving images with a Gaussian
filter for smoothing, followed by the application of handcrafted kernels to identify pixel
intensity gaps representing edges. Classic methods such as the Canny detector [10], Sobel
detector [11], and zero-crossing [12] fall within this category. However, these pioneering
methods heavily relied on manually designed low-level features. As we know, low-level
features are often sensitive to noise, illumination changes, and other variations. Often,
an edge detector may produce false positives or miss important edges in noisy images
or under varying lighting conditions. For instance, edge detectors may produce different
results for the same object at different scales or orientations. Low-level features lack the
ability to capture semantic information or object-level understanding. It may detect object
edges, but it might not understand what those objects represent.

In response to the limitations posed by low-level features, prior to the advent of deep
learning, researchers leveraged machine learning algorithms and probabilistic theories
to devise various handcrafted mid–high-level features for visual analysis tasks. These
manually crafted features incorporated both top–down prior knowledge and bottom–up
visual clues, characterized by clear definitions and intuitive interpretations. To increase
the robustness of edge features, in the Statistical Edges approach [13], edges were obtained
from the learned probability distributions of edge-filtering responses. To reduce the data
noise, in [14], a fuzzy rules-based filtering system was proposed to perform edge detection
with reliable performance. Martin et al. [15] crafted the posterior probability (Pb) of
boundary features, derived from changes in local visual cues (brightness, color, and texture),
which were then input into a classifier for edge detection. To make Pb features equipped
with global semantics, a globalized gPb [8] was introduced using standard Normalized
Cuts [16]. Promoting object-level understanding is a key for better performance in visual
tasks. Lim [17] proposed handcrafted Sketch tokens to represent mid-level information.
In Ref. [18], instead of directly using low-level cues (color and gradients), a patch-based
mid-level structural representation was summarized to detect high-quality edges with the
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help of random decision forests. The PCPG model [1] drew inspiration from perceptual
origination, formulating gestalt laws to define and detect generic edge tokens (GETs). These
handcrafted approaches with mid- to high-level semantics consistently outperformed
pioneer methods. However, handcrafted features have several drawbacks. They are
often designed based on smaller datasets or domain knowledge, which usually would lack
robustness to handle data variations. The edge detection solutions based on the handcrafted
features usually are designed for the specific tasks without the generality for a wide range
of application domains.

The introduction of deep neural networks has transformed the landscape of edge
detection. Convolutional Neural Networks (CNNs) emerged as powerful tools for automat-
ing feature extraction and learning intricate patterns directly from raw data. It redefined
the standards for edge detection, surpassing the performance of handcrafted feature engi-
neering. Because edges are derived from local neighboring pixels, N4-Fields [3] combined
CNNs with the nearest neighbor search for edge detection. To boost object-level under-
standing, deep contour [5] partitioned object contours into subclasses and fit each subclass
based on a learned model. In another approach [4], DenseNet was employed in pixel-wise
deep learning to extract feature vectors, using an SVM classifier to categorize each pixel
into the edge or non-edge class. In this way, the edge detection was transformed into
an object classification task. HED [6] utilized VGG16 as its backbone network for feature
extraction, generating an edge map from each convolutional block to construct a multi-scale
learning architecture. The multi-scale SO edge maps representing local-global views were
fused as the final result. RCF [19] enriched each SO edge map with an extra convolutional
layer, which improves HED’s performance. CED [20] added a backward-refining pathway
to make the edge boundaries thinner by using a non-maximum suppression loss func-
tion. In the bidirectional cascade network (BDCN) [21], also designed on top of VGG for
edge extraction, a scale enhancement module generated multi-scale features and detected
edge contours at different scales using dilated convolution layers. BDCN employed a
cascade structure composed of a forward stream and a backward stream. This structure
allows for bidirectional information flow and enhances the network’s ability to capture
edge information. However, a common drawback in these approaches is observed in the
fusion step: edge maps from earlier layers contain more noise and lack global semantic
information, with feature data in the same edge map sharing the same weight and having
equal importance in fusion.

To address this fusion drawback, one must either improve the quality of the interme-
diate edge maps or design a better fusion block. An encoder–decoder network structure
is feasible to improve the intermediate SOs. A decoder structure of U-Net [22] was used
in [23] to incorporate global information into shallow features. However, a recent study [24]
suggested that semantic information gradually decays as it is fused downward in U-Net
structures. An edge detection approach [25] based on U-Net performed poorly on the
BSDS500 dataset. To avoid important edge features vanishing along the deep convolutional
operation, a network with two parallel skip connections was designed in [26]. The feature
maps generated at each block were fed to a separate upsampling network to create interme-
diate SO edge maps. Elharrouss et al. [27] used refined batch normalization with learnable
affine parameters to make the intermediate SOs less noisy around the edges. At the end of
the network, these features were fused to generate a better edge map. CATS [28] attempted
to improve the fusion issue with a context-aware fusion block (coFusion) plugged into an
existing edge detection network. This fusion block aggregates the complementary merits
of all edge maps, suppressing the nearest neighbor around the edges to obtain crisp edge
boundaries. However, it is an add-on extension to existing frameworks rather than a
complete end-to-end solution to the edge detection task.

Transformer-based frameworks [29–31], successful in the NLP domain, inspired the
use of vision transformers like ViT [32] for various visual tasks. In [33], a vision-transformer-
based model for edge detection, EDTER, was proposed. It consists of two-stage encoders
(global and local) followed by a Bidirectional Multi-Level Aggregation decoder to achieve
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high-resolution features. The global and local cues are combined by a feature fusion module
and fed into a decision head for edge prediction. More recently, a diffusion probabilistic
model (DPM)-based edge detection approach was proposed in [34], including an adaptive
FFT-filter and uncertainty distillation strategy. DiffusionEdge is able to directly generate
accurate and crisp edge maps without any post-processing. However, those new networks
are computationally expensive in terms of the complexity and number of parameters. For
example, EDTER requires 900+ GFLOPs (Giga FLoating-point Operations Per Second).

To reduce the network complexity, a Lightweight Dense Convolutional (LDC) [35]
neural network was proposed for edge detection. LDC using only 674 k parameters
reaches a similar performance when comparing with heavy architectures (models with
about 35 million parameters). Based on LDC, the TEED (tiny and efficient edge detection)
model [36] uses even fewer parameters (58 k). It makes the model easy to train and quickly
converges within the first few epochs while producing crisp and high-quality edge maps.

In summary, modern edge detection methods rely on deep network-based approaches
for their superior performance. However, they encounter a common issue: the use of a
single fusion weight for the entire edge map, resulting in noise and thick edges in the final
output when combining multi-scale edge maps (as illustrated in Figure 1). Despite the
introduction of more effective backbone networks to enhance the quality of intermediate
SO edge maps, these solutions often incur high computational costs due to their complexity
and large parameter size. In this study, we propose an effective approach to enhance edge
detection performance without increasing network complexity.

3. Our Approach

Our approach aims to address the global and local feature-balancing problem in the
fusion step by employing an efficient Hadamard-product operation. Here, we first explore
the Hadamard product and then explain its application within the Mutually Agreed Salient
Edge (MASE) framework for edge map enhancement. The outputs generated by the MASE
undergo gradual refinement through the loss functions in an end-to-end manner. Utilizing
the normalized Hadamard product (NHP) following a backbone network structure, such
as VGG-16, results in the outcomes of more accurate edge maps.

3.1. Hadamard Product

The original Hadamard product constitutes an element-wise multiplicative operation
that takes two matrices of the same dimensions as operands, producing another matrix of
identical dimensions (see Equation (1)).

A ⊙ B = C
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⊙


b11 b12 · · · b1n
b21 b22 · · · b2n

...
...

. . .
...

bm1 bm2 · · · bmn

 =


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cm1 cm2 · · · cmn

,

cij = aij · bij, i ∈ [1, m], j ∈ [1, n].

(1)

When the values aij, bij of both input matrices (A and B) are either zeros or ones, the
element-wise multiplication cij = aij · bij naturally yields a structure akin to an AND gating
system, where a result value cij from matrix C is one only when both input element values
are ones. If the values of both input matrices are normalized within the range of [0, 1], the
resulting matrix values also fall between 0 and 1. A small resulting value indicates that
at least one of the inputs is very small, while a value close to 1 signifies that both input
values are substantial. This reflects the semantic meaning of the degree of the element-wise
agreement, indicating a significant agreement when both inputs are substantial. Figure 2
illustrates a 3D space (x, y, and z), where the plot represents a normalized Hadamard-
product (NHP) function z = x · y because both x and y are normalized within the range of
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[0, 1]. The plotted color surface intuitively reveals the mutual agreement level between x
and y.

Figure 2. Normalized Hadamard-Product operation. The plot of element-wise multiplication z = x · y,
where x and y are in [0, 1]. It acts essentially as an AND gate of 2 input signals.

For instance, point A’s z value is minimum because both A’s x and y are small. The z
values of points B and C are also minimal because either x or y of both points is small. Only
point D’s z value is maximized due to both its x and y being large. The NHP operation
enhances the z value when mutually supported by the x and y inputs. This AND-like
gating operation of the NHP acknowledges the salience when both inputs exhibit salience.
In the deep neural network-based edge detection framework computation, considering
the state-to-state computation A ⊙ B, A (representing the local SO feature map) and B
(representing the global SO feature map) are cross-checked to determine the element-wise
agreements on the edge boundaries. Generally, strong edges from different scales easily
find agreement, while noisy edges from the local feature are minimized as they typically
lack endorsement from the global view. In this work, this property of the NHP is harnessed
in the deep neural network to extract better edge boundaries from both local and global
feature maps.

It is noteworthy that the NHP operation is a differentiable function with a smooth
surface (Figure 2). This characteristic is particularly desirable for gradient-based convex
optimization within deep learning networks.

3.2. Mutually Agreed Salient Edge (MASE) Framework

In the existing deep network-based edge detectors, the final edge results are fused by
multiple SOs produced from the backbone network. The more and better selection options
the fusion process has, the better the edge result anticipated is. However, without increasing
the network complexity, the number of the SO is fixed. As explained in Section 3.1, the NHP
operation is able to promote mutually agreed information while suppressing disagreements.
In this work, we utilize NHP’s property to extract additional fusion candidates with
enriched hierarchical edge structures. Figure 3 illustrates the overall architecture of the
MASE network, consisting of two key components: the backbone network (VGG16) with
5 intermediate SOs and a fusion module that consolidates these SOs and MASE maps into
the ultimate edge result. The network gradually reduces the scales of feature maps while
increasing the data channels through the network pathway. To obtain a single channel
SO, a 2D convolution layer is applied, where multiple channel data are merged into one
channel. The higher-scale SOs from earlier convolution layers have more local edge features,
including noisy signals and unnecessary small edges, typically representing texture details
or noise, which should not be treated as object contours. Conversely, the lower-scale SOs
often contain coarser and more global boundaries as they are upsampled from smaller
feature maps. There are also some edges appearing across both high-scale and low-scale
SOs. They represent object contours, spatial boundaries, or edge details with strong pixel
gradients. These features, endorsed by multiple scale views, provide crucial information
about the object shape and scene semantics. Our objective is to identify and extract the
mutually agreed edge salience as the foundation for enhancing the final edge map.
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To accomplish this, an additional network layer, the normalized Hadamard-product
operation, is integrated into our framework. This operation involves normalization,
Hadamard product, rescaling, and linear combination processes. The subsequent sec-
tions provide detailed explanations of each of these processes.

Figure 3. Overall framework. The Mutually Agreed Salient Edge (MASE) framework has two
components: the backbone network with 5 intermediate side outputs and a fusion module that
consolidates these side outputs and MASE maps into the ultimate edge result.

3.2.1. Normalization

To ensure that the Hadamard operation functions as an AND-like gate, amplifying
mutually agreed edge salience features while suppressing disagreed edges, data normaliza-
tion becomes essential. The data from the side outputs have a broad range. For instance,
the data from the first side output (so1) fall ∈ (−200, 500). As explained in Section 3.1, the
Hadamard operation may not perform as an AND gate when the values are outside of
[0, 1]. To address this, a sigmoid function is employed to normalize the data:

fi =
1

1 + exp(−soi)
(2)

where soi is a side output, i ∈ [1, 5], and its values could be in (−∞, +∞); the data range of
the normalized fi is ∈ [0, 1].

3.2.2. Hadamard Product and Rescaling

The Hadamard (element-wise)-product operator is employed to generate MASE maps
by operating on multiple normalized SOs. The computation of MASE maps begins with
consecutive neighboring SOs as follows:

MASEk
j = Logitk(

k

∏
i=j

fi), j ∈ [1, 4], k ∈ [2, 5], k > j (3)

where ∏ represents the Hadamard product, fi is a normalized SO from Equation (2), and
Logitk(·) is the inverse function to the sigmoid in Equation (2). This inverse function
rescales the values back to the original data range of sok. Consequently, the resulting
MASEk

j is the subset from soj ∼ sok. Figure 4 illustrates examples of the computed MASE

maps, with the bottom row containing five SOs. Above them, all the MASEk
j are presented
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row by row, culminating in the top MASE5
1, which includes all soi. In comparison with

soi, the local edge details in corresponding MASE maps are significantly reduced. The
reduction occurs because only mutually agreed salient values are preserved, diminishing
disagreements between adjacent SO features. Meanwhile, only salient boundaries survived
when the MASE map is computed from more low-scale SOs. For example, MAES2

1 is the
mutual agreement between so1 and so2 and preserves important edge boundaries with
significantly reduced noise.

Among all the MASEk
j , MASE2

1 contains the most local edge details, while MASE5
1

encapsulates the denoised and crisp global object boundaries, as only edges agreed upon
by all SO feature maps are retained. Overall, MASE maps not only have better edge quality
and less noise than SOs (see Figure 4) but also offer additional intermediate views with
enriched hierarchies of local and global perspectives. It is important to note that this process
does not necessitate additional network parameters, preventing an increase in complexity.

3.2.3. Linear Combination

MASE maps effectively segregate local details and global boundaries into distinct
hierarchies with finer granularity. The rescaled values of these maps align with the data
range of the side outputs. Equation (4) outlines the aggregation of side outputs and MASE
maps to enhance the final results:

Pf use =
E

∑
e=1

Pe · We (4)

Here, E is a set of generated edge maps including side outputs and MASE maps
E = {so1 ∼ so5, MASEk

j }. Each Pe ∈ E is weighted by We. Given that E comprises finely
separated local and global edges, the result edge prediction P selectively incorporates
proper local and global edge feature values based on the assigned weights. Equation (4)
is indeed the fusion process in our method, which is simple yet effective. Note, the
weights We are learned through the network training process under the supervision of the
loss functions.

3.3. Network Training and Loss Functions

Here, we briefly explain the loss functions and training process for the proposed
MASE framework. As we can see from Figure 3, each SO in this network and the produced
MASE maps can be trained with layer-specific side supervision. The final fused result is
supervised at the loss layer as well. The overall loss is formulated as:

L =
E

∑
e=1

Le(Pe, Y) + L f use(Pf use, Y) (5)

where E = {so1 ∼ so5, MASEk
j }; the Le and L f use functions compute the difference between

the edge prediction P and the edge label Y:

L(pi, y) = −α ∑
i∈Y−

log(1 − pi)− β ∑
i∈Y+

log(pi) (6)

where pi is the edge prediction and Y+ and Y− denote edge and non-edge pixels, respec-
tively. Both α = λ · |Y+|/(|Y+|+ |Y−|) and β = |Y−|/(|Y+|+ |Y−|) are used to balance the
training samples and are controlled by the hyper-parameter λ. It is also worth noting that
all the steps in the fusion module (sigmoid, Hadamard product and rescaling, and linear
combination) are differentiable at all points, which means that no additional adjustment is
required for parameter learning during network backpropagation.

In summary, our approach utilizes the NHP operation to extract MASE edge maps
without increasing the network complexity. These extra edge maps contain mutually agreed
edge information over multiple existing SOs and are strong evidence of object contours.
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These MASE maps enrich the set of edge map candidates, which enhances the final edge
quality in the fusion process.

Figure 4. Hierarchical MASE maps for edge enhancement. The bottom row contains 5 side outputs
(soi=1∼5) while the MASEk

j maps (j = 1 ∼ 4, k = 2 ∼ 5, k > j) are above the bottom row.

4. Experiments

We conducted our experiments with ablation studies on various MASE maps. Sub-
sequently, the fused results are evaluated on two widely used public benchmarks. To
showcase the effectiveness of our proposed approach, we also conduct comparisons with
other state-of-the-art methods. Finally, subjective evaluation results are presented. This
framework is programmed in Python 3.10 using PyTorch. All the experiments were con-
ducted on an Intel i7-8700 CPU running Ubuntu 18.04, equipped with 64 GB RAM, and
supported by 2 GeForce RTX 2080 GPUs.

4.1. Dataset

The evaluation of our approach is conducted on two public datasets: BSDS500 [8]
and NYUD [9]. BSDS500 comprises 200 training images, 100 validation images, and
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200 testing images. The PASCAL VOC Context dataset [37] is included in BSDS500 as an
additional training set. The ground truth is the averaged annotation labeled manually by
multiple human annotators. NYUD consists of 1449 pairs of aligned RGB and depth images
split into 381 training, 414 validation, and 654 testing images. To augment the training
data size, all the training or validation images in both datasets undergo random flipping,
scaling, and rotating operations. Both BSDS500 and NYUD are popular and widely used
for edge detection tasks due to their rich annotations, diversity of scenes and objects, and
challenging edge cases. Also, standardized evaluation metrics are provided for assessing
the performance of edge detection algorithms:

• Precision: The fraction of the correctly predicted edges (true positives) among the
all-predicted edges.

• Recall (also known as sensitivity): The fraction of the correctly predicted edges (true
positives) against the all-ground-truth edges.

• Average Precision (AP): Among the all-predicted edges, AP is the averaged value for all
the images.

• F-measure: Reflects the relationship between the system’s precision and recall values
(Equation (7)).

Fmeasure = 2 · Precision · Recall
Precision + Recall

(7)

• Optimal Dataset Scale (ODS): Calculates the averaged precision–recall curves for all
the images in the dataset. The ODS score is the best F-measure score using a global
threshold. The ODS measures the quality of the edge detection for the entire dataset.

• Optimal Image Scale (OIS): Calculates the best threshold and corresponding F-measure
for each image. The OIS score is the averaged F-measure score for all the images. The
OIS measures the quality of the edge detection for each individual image.

The backbone network is based on the pre-trained VGG16 model serving as the
network initialization. Regarding the loss functions, the hyper-parameter λ is set as 1.1
and 1.2 for BSDS500 and NYUD, respectively. The SGD optimizer is employed to train the
network for 40,000 iterations on both datasets, with a batch size of 10 for all experiments.
The initial learning rate, momentum, and weight decay are set to 10−6, 0.9, and 2 × 10−4,
respectively. The learning rate undergoes a 10-fold decrease after every 10,000 iterations.

4.2. Ablation Study

We assessed the quality of individual SOs and MASEk
1 maps through training and

testing on BSDS500. Table 1 presents the detection performance of the individual soi
without fusion. For example, when i = 1, it means that so1 is the final edge map. Generally,
the qualities of soi from later stages are superior due to the reduction in local details and
noise. so4 stands out as the most accurate, striking a balance between global contours and
fine details. Table 2 provides the comparison among the hierarchical MASEk

1 maps, where
a larger k indicates edges endorsed by more global views.

Table 1. Performance of individual soi on BSDS500, where so4 achieves highest ODS and OIS scores,
and so3 has the best AP.

soi ODS OIS AP

so1 0.608 0.634 0.617
so2 0.713 0.733 0.709
so3 0.761 0.781 0.778
so4 0.770 0.784 0.763
so5 0.747 0.754 0.702

It can be observed from both Tables 1 and 2 that most MASE maps outperform SOs.
This shows the validity of the MASE framework in feature extraction. MASE5

1 and MASE5
2

exhibit the best edge quality by encompassing salient edges across almost all the SOs,
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which shows that edges endorsed by more global view SOs have better performance. The
ODS of MASE5

2 reaches 0.778, only 0.024 less than the human performance. The following
experiments show that combining the MASE and SOs can further improve the performance,
and it reaches the best when all the MASEs and SOs are fused. We can conclude that the
components introduced in our method are valid in boosting edge detection performance.

Table 2. Performance of individual MASEk
j on BSDS500, where MASE5

2 achieves the best ODS and
OIS scores..

MASEk
j ODS OIS AP

MASE2
1 0.692 0.714 0.711

MASE3
1 0.736 0.757 0.742

MASE4
1 0.762 0.783 0.752

MASE5
1 0.775 0.789 0.717

MASE3
2 0.748 0.769 0.777

MASE4
2 0.768 0.79 0.771

MASE5
2 0.778 0.793 0.731

MASE4
3 0.772 0.79 0.768

MASE5
3 0.763 0.78 0.723

MASE5
4 0.741 0.76 0.701

During the training stage, the loss of the side outputs (SOs) and MASE maps is taken
into consideration. To examine the effectiveness of the SOs and MASE maps for providing
guidance and deep supervision for network learning, several training variants are built,
and their qualitative results on BSDS500 are illustrated in Table 3. Although the ODS
score (0.804) for supervising fusion exceeds the human performance (0.803), it ranks lowest
among the deep supervision variants. Supervision on fusion, SOs, and MASE maps yields
superior results, validating our design approach. Notably, supervision on SO maps and
fusion performs closely to the best variant. This result can be attributed to the fact that
MASE maps are derived from SO maps, leading to data duplication and limiting the
effectiveness of applying loss functions solely on MASEs.

Table 3. Effectiveness of deep supervision on BSDS500where the deep supervision on fusion, where
SO and MASE maps performs the best..

Overall Loss Function (L) for Training Variants ODS OIS AP

supervision on fusion only L f use 0.804 0.821 0.819
supervision on fusion and SO maps ∑ Ls + L f use 0.815 0.832 0.820
supervision on fusion and MASE maps ∑ Lm + L f use 0.807 0.812 0.837
supervision on fusion, SO maps, and MASE maps ∑ Ls + ∑ Lm + L f use 0.818 0.837 0.848

4.3. Comparison with State of the Arts

We conducted comparative experiments on the BSDS500 dataset first, and the evalua-
tion results are depicted in Figure 5. The performance of the human eye in edge detection
is denoted as a 0.803 ODS F-measure. Our method surpassed human performance, and
its precision–recall curve surpasses many, including HED and RCF [6,19]. These results
underscore the effectiveness and robustness of MASE-based edge features. Table 4 reveals
that ours ranks at the top for the ODS, OIS, and AP scores, which are 0.818, 0.837, and 0.848,
respectively.

Similarly, we performed comparisons on the NYUD dataset, and Figure 6 illustrates
that the precision–recall curve of the MASE outperforms the others. In Table 5, ours
consistently ranks higher than all the other methods, with 0.779, 0.792, and 0.775 for the
ODS, OIS, and AP, respectively. Compared with the works with the similar network settings,
our ODS score is 0.038, 0.022, and 0.017 higher than HED, RCF, and SISED, respectively.
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Figure 5. The precision–recall curves of our method and other works on the BSDS500 test set.

Table 4. The comparison with some methods on BSDS500.

Method ODS OIS AP

Canny [10] 0.611 0.676 0.520
EGB [38] 0.614 0.658 0.564

MShift [39] 0.598 0.645 0.497
OEF [40] 0.746 0.770 0.815
HFL [41] 0.767 0.788 0.795

N4-Fields [3] 0.753 0.769 —
DeepContour [5] 0.757 0.776 0.790

DeepEdge [2] 0.753 0.772 0.807
RDS [42] 0.792 0.810 —

CEDN [43] 0.788 0.804 —
HED [6] 0.788 0.808 0.840
RCF [19] 0.811 0.830 0.846

SISED [44] 0.815 0.835 0.839
Ours 0.818 0.837 0.848

Figure 6. The precision–recall curves of our method and other works on the NYUD test set.
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Table 5. The comparison with some methods on NYUD.

Method ODS OIS AP

gPb-UCM [8] 0.631 0.661 0.562
OEF [40] 0.651 0.667 0.653

gPb-NG [45] 0.687 0.716 0.629
SE [18] 0.695 0.708 0.719

SE + NG [46] 0.706 0.734 0.549
HED [6] 0.741 0.757 0.749
RCF [19] 0.757 0.771 0.749

SISED [44] 0.762 0.786 0.752
Ours 0.779 0.792 0.755

4.4. Subjective Evaluations

Figure 7 presents nine example images from the BSDS500 test sets, alongside their
corresponding ground-truth images and the final results from various approaches for
subjective evaluation. The contents of the image are diverse, including animals in wild
scenes, building structures, landscaping, human faces, and sport activities groups. They
pose some challenging tasks for edge detection because such a boundary drawing task
is even difficult for humans. Even though the other two approaches present reasonable
results, our results show much better performance in terms of the noise volume and edge
sharpness. The red circles highlight the defects in the results of the RCF and HED methods.
Overall, the results from RCF exhibit thicker edge boundaries and more unwanted details
compared to the ground truth. This is primarily attributed to the design effort of RCF, which
incorporates more fine details into the SOs. For instance, in the fifth row, the cloud and
object reflections are retained in the result. In the eighth row, the edges from background
people are picked up, which are not part of the ground truths. However, some important
details are still missing. For the image in the bottom row, the facial details are not detected.
In general, the edges in the RCF results appear blurry and thick with many unwanted
local details.

The results from HED contain considerable cluttered noise. For example, in the zebra
(the first row) and mountain lion images (the second row), more pixels of grass and clutter
on the ground are picked up in the edge results. Similarly, some non-important cloud
and water patterns are also treated as object contours. Similar to RCF, for the image in the
bottom row, the necessary facial details are missing in the HED methods. In general, the
edges from the proposed approach are clearer, thinner, and superior from a human visual
perception standpoint.
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Figure 7. Comparison of some edge detection results on the BSDS500 test set. All the results are raw
edge maps computed with a single-scale input before non-maximum suppression. The defects are
circled in red.

5. Discussion and Future Work

The performance gains observed in the comparative experiments and subjective ob-
servation primarily stem from the inclusion of high-quality additional Mutually Agreed
Salient Edge (MASE) maps and the improved side outputs (SOs). Ablation studies demon-
strate that the MASE generally outperforms original SOs, with MASE5

2 alone achieving
performance levels comparable to human performance. This highlights the effectiveness
of our NHP-based operation in edge detection. Moreover, the integration of MASE maps
plays a crucial role in guiding the deep supervision during training, resulting in the im-
proved quality of SOs. Even in a variant framework utilizing SOs only, employing the same
settings as HED and RCF, our method achieves an F-measure ODS of 0.815, surpassing
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HED and RCF by 0.027 and 0.004, respectively. This underscores the positive impact of
incorporating MASE maps in enhancing the quality of SOs.

The concept of mutual agreements among different views offers valuable insights for
achieving ground truth in edge detection. However, according to our observation, instances
of true edges may appear in one side output (SO) but are missing in the final results when
compared with labeled data. Those missing edges are indeed the disagreed salience.
Therefore, the exploration of Disagreed Salient Edges (DSEs) also holds promise for future
study. By leveraging MASE maps, we can extract DSEs through subtraction operations,
SO − MASE, where each MASE map represents the agreed edges, and the remainder are
disagreements. This operation can be implemented within an additional subtraction layer
after the NHP operation in the network, with positive weights assigned during fusion if the
DSE maps prove beneficial. All weights are learned during training within the end-to-end
framework, pointing toward a promising direction for future research.

Our approach is a generic solution, as the process of generating MASE or DSE maps
remains independent of the backbone network. By replacing the backbone network, our
framework can be applied to different backbone networks, as seen in practices such as
RCF [19], where VGG is replaced with a skip connection in ResNet-52. Detaching the
current network and plugging in a new one can demonstrate the merits of our framework
in future studies. However, integrating advanced backbone networks into our frame-
work poses challenges, especially for transformer-based encoder–decoder networks. As
evidenced in the related work, directly integrating U-Net with HED yielded a poorer
performance than expected [25]. Thus, the seamless integration of our NHP-based MASE
framework with advanced backbones requires substantial efforts in future studies.

6. Conclusions

In conclusion, the existing mainstream edge detection methods suffer from the limita-
tion of applying a single weight indiscriminately to each feature side output (SO) during the
fusion process, resulting in noisy edges or missing boundaries. To address this challenge,
we propose a new normalized Hadamard-product (NHP)-based operation layer within a
deep network for edge detection. This innovative approach introduces Mutually Agreed
Salient Edge (MASE) maps by multiplying SOs from the backbone network, fostering
agreement among features across different scales while suppressing weak signals. The
introduction of MASE maps provides a richer hierarchical structure that categorizes edge
features into varying levels of importance, effectively discerning between local and global
edges. The advantages of this method include the enhanced granularity of edge maps
during fusion, enabling the selective inclusion of crucial details from each edge map and
thereby improving edge quality and detection accuracy without adding complexity. Abla-
tion studies and comparative experiments further underscore the efficacy of our proposed
approach. Our experiments demonstrate that the NHP-based MASE maps enhance per-
formance, with the ODS score reaching 0.818 on the BSDS500 dataset, surpassing human
performance (0.803). This achievement underscores the capability of our approach to
excel in edge detection tasks and achieve state-of-the-art performance. Furthermore, as
evidenced in our work, agreements play crucial roles in promoting salient edges while
acknowledging that disagreements may also contribute positively to the detection task.
Therefore, investigations into the significance of disagreements is worthy of further study.
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