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Abstract: Personal privacy protection has been extensively investigated. The privacy protection of
face recognition applications combines face privacy protection with face recognition. Traditional face
privacy-protection methods encrypt or perturb facial images for protection. However, the original
facial images or parameters need to be restored during recognition. In this paper, it is found that
faces can still be recognized correctly when only some of the high-order and local feature information
from faces is retained, while the rest of the information is fuzzed. Based on this, a privacy-preserving
face recognition method combining random convolution and self-learning batch normalization is
proposed. This method generates a privacy-preserved scrambled facial image and an image fuzzy
degree that is close to an encryption of the image. The server directly recognizes the scrambled facial
image, and the recognition accuracy is equivalent to that of the normal facial image. The method
ensures the revocability and irreversibility of the privacy preserving of faces at the same time. In this
experiment, the proposed method is tested on the LFW, Celeba, and self-collected face datasets. On
the three datasets, the proposed method outperforms the existing face privacy-preserving recognition
methods in terms of face visual information elimination and recognition accuracy. The recognition
accuracy is >99%, and the visual information elimination is close to an encryption effect.

Keywords: facial recognition; privacy protection; local randomization and learning; visual information
elimination; privacy-preserving face recognition

1. Introduction

Due to the rapid development of technology and the use of large datasets, face recog-
nition technology has been applied in various fields. However, the widespread use of face
recognition systems brings some challenges, from which the issue of face privacy protection
has been widely mentioned. Face recognition is closely related to property and personal
safety. However, in order to rapidly promote face recognition technology, face databases
without privacy protection are widely collected, which brings serious personal privacy
security risks.

In a face recognition system, facial images are transferred to a server using an acquisi-
tion device and are compared with the stored facial feature database on the server. Servers
mostly store clear and complete faces. Some PPTs (privacy-protection technologies) employ
encryption and decryption methods, wherein the server-based facial feature database and
the facial images are encrypted [1]. However, decrypting the incoming and the server-based
facial images is necessary during recognition. Therefore, server-based databases encounter
potential privacy breaches. Some PPTs use feature extraction, reversible transformation [2],
or other technologies to recognize face images after deformation, but the recognition accu-
racy is often not ideal due to the influence of the original image deformation. In addition,
there are some PPTs that can protect face privacy in public databases, such as deep neural
networks that are used to remove soft biometric information [3] such as gender, age, iden-
tity, etc. Although face images processed by such methods can achieve a certain degree of
privacy protection, they cannot be used directly for face recognition.
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A clear and complete face image is not necessary in face recognition. Only parts
of the high-order and local features of the face are retained, which can also be used for
the purpose of achieving face recognition. For example, eigenfaces can be recognized by
using PCA (principal component analysis) to propose partial features of the face. However,
the eigenface recognition accuracy proposed by PCA is not high, the accuracy is less than
99%, and the privacy-protection effect is not ideal. On this basis, this paper proposes a
privacy-preserving face recognition method based on randomization and local feature
learning (RLLFPR), which combines privacy protection and recognition to create a fuzzy
face to protect privacy. The algorithm uses a deep neural network with random convolution
and self-learning batch normalization layers and combines a self-learning update param-
eter network with a loss-function backpropagation update parameter network. In this
process, the fuzziness, revocability, and irreversibility of the privacy preserving of faces are
guaranteed. The network randomizes the pixel values in the facial image and maintains
the light-and-dark relationship between the pixel values in the region so that the biometric
characteristics of the generated facial image cannot be recognized by human vision; this
process is irreversible and can only be recognized by the deep neural network model with
specific parameters. At the same time, the deep neural network model cannot infer the
original face. The contributions of this paper are as follows:

• We deeply study the learning of hidden human visual information in the end-to-end
face image feature learning of deep neural networks and propose that preserving
the light-and-dark relationship between facial image pixels and randomizing other
information can eliminate human visual information while maintaining the recogniz-
ability of facial images. According to the results of our review, the proposed method
is the most thorough method to eliminate human visual information in the current
privacy-preserving face recognition methods. Using this technology can make a facial
image have better privacy-protection ability.

• A deep neural network framework and RLLFPR method for face privacy protection are
proposed. Different from traditional encryption and decryption methods, the proposed
framework combines face privacy protection with face recognition optimization, which
can jointly compute face privacy protection and recognition.

• The RLLFPR method produces privacy-preserved faces with fuzziness, revocability,
and irreversibility for better privacy protection. All the information stored in the face
recognition server, private face recognition model, private facial image, etc., cannot
restore or deduce the original face, which improves the privacy protection of facial
images in face recognition or authentication systems.

2. Related Work
2.1. Face Recognition

Deep neural networks perform well in recognition and classification tasks [4]. The deep
neural network feature vector can effectively close and open the intraclass distances during
face recognition. Schroff [5] proposed the FaceNet algorithm and employed a triple-loss
method to design the loss functions. FaceNet expanded the class distances more than
the traditional Softmax method [6]. However, triplet-loss training was challenging on
large datasets. Wen [7] proposed the center-loss method to enhance Softmax’s recognition
ability. It is hoped that the sum of the distance between all the image features of a class
and the center features of that class is minimized. Liu proposed the Sphereface method [8]
and introduced angle boundaries into Softmax to improve the face recognition accuracy.
The complex-loss-function training led to network training instability. Wang proposed the
Cosface method [9] to increase the target’s cosine angle penalty. Cosface exhibited better
performance and was easier to implement than Sphereface. Deng proposed the ArcFace
method [10], with an angular margin penalty added to the cosine angle. The ArcFace
method exhibited compact class arrangement and higher discrimination, which resulted in
further improvements.
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2.2. Face Privacy Protection

Face privacy preservation [11,12] is also an important issue arising with the devel-
opment of deep neural networks and face recognition. Face data are directly related to
personal property and are widely valued by researchers. Traditional face privacy protection
is achieved by blurring or pixelizing the main area of the face [13], but blurring may lead to
the loss of other information except the face information. Recently, deep neural networks
have also been widely used in face privacy-protection technology. In order to protect
face data in public databases, the use face-swapping technology or face-derecognition
technology are good methods, and most of these technologies generate new faces with
the help of GAN [14] technology. Face-swapping technology aims to replace the face in
the original image with other faces to achieve image privacy protection. Korshunova [15]
used a patch-based style loss function and a variety of style images to quickly change
faces. Yang [16] realized the face privacy-protection method of face swapping based on a
reversible mask network, which generated more realistic face images and had reversibility.
Face-swapping technology has a good effect on face privacy protection, but it cannot be
applied to face recognition. Face derecognition has been more widely studied than face-
swapping technology. People try to remove soft biometric information such as gender and
age from face images without changing the original face. Mirjalili [17] proposed PrivacyNet
to generate face images that can interfere with race, gender, and age through a GAN model
based on consistency loss. Liu [18] proposed an attribute-preserving face derecognition
framework, which can discard some privacy attributes while retaining the required facial
attributes. Face-derecognition technology applied in the field of face recognition can only
play an auxiliary role in face recognition because the deletion of specific soft biometric
information will lead to a reduction in accuracy.

2.3. Privacy-Protected Face Recognition

Several privacy-protection technologies exist in face recognition [19]. Recognition
by facial encryption and decryption [20] is a fundamental method in this regard. Bai [21]
proposed a privacy-preserving face recognition system using homomorphic encryption
and multiparty secure computation. Ma [22] proposed a lightweight privacy-preserving
adaptive-enhancement (AdaBoost) face recognition framework based on encrypted shar-
ing and edge computing. Boragule [23] stored facial features in smart card memory to
realize portable and privacy-preserving recognition. Im [24] proposed the encryption of
the feature vectors after deep neural network processing but not of the images. The face
recognition privacy was protected by storing the encrypted feature vectors on the server.
Zhang [25] proposed a secure and efficient outsourcing protocol for face recognition based
on PCA. Through the transformation of the original image information, the information
privacy was protected and the resources were saved. Lei [26] proposed a new secure
inner product protocol that used a lightweight random mask technique instead of time-
consuming public key cryptographic operations to efficiently measure the similarity of
facial data. Mai [27] generated reversible random secure sketches through facial feature
maps to protect irreversible and deletable templates while maintaining verification per-
formance. The privacy-protection methods of cryptography often need to decrypt and
restore the original face for recognition, which has certain security risks. At the same time,
the existence of the key is also a burden to the holder. Therefore, these methods are mostly
used for face authentication rather than large-scale face recognition. You [13] proposed a
reversible privacy-preserving facial expression recognition method in which face informa-
tion was hidden in mosaics through an adversarial method. However, privacy-preserved
images can only complete expression recognition. Walia [28] used the adaptive weighted
graph approach to generate multimodal cancelable biometric templates. The multimodal
approach increases the complexity of the overall system. Morales [29] used deep neural
networks to suppress sensitive information from faces while ensuring correct recognition.
Zhang [30] generated perturbed images with hidden attributes while retaining the effect of
face verification. Refs. [29,30] decreased the accuracy during face recognition due to the
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suppression of soft biometric information in the face image. Wu et al. [31,32] proposed the
technical idea of using biometric key technology to directly generate a strong biometric
key from the biometric characteristics of the client, which means the server does not need
to save the biometric template, so as to protect privacy. At present, the stability of the key
generated by this technical route needs to be improved. It is difficult to directly blur the
original face for face recognition. The existing methods have poor recognition accuracy
or privacy-protection effects. By using local differential privacy, Chamikara [33] used
differential privacy to apply disturbances to eigenfaces. The privacy-protection effect was
better, and the screen was human vision. However, the accuracy was low, only 80%–90%.
Zhang [2] achieved the purpose of privacy protection by using an Arnold transformation
to process faces and recognize the transformed faces. However, the recognition accuracy
of the method needs to be improved. Mi [34] adopted frequency domain collaborative
reasoning and proposed DuetFace. The accuracy of the privacy-preserving face recognition
was greater than 99%, but the privacy-preserved face retained part of the original face
contour. Subsequently, Mi [35] proposed the random selection of frequency components
for training and learning, and the recognition accuracy was further improved, but the
privacy-protected face still retained the original human part of the information and did not
completely shield the image from human vision.

3. Privacy-Preserving Face Recognition Based on Randomization and Local Feature
Learning (RLLFPR)

In face recognition, it is not necessary to learn the whole face, only the difference of the
pixel values of each organ of the original face so that the face can be accurately recognized.
Based on the above observations, this paper proposes the RLLFPR framework and method
to recognize faces by randomizing the pixel values in the facial image and maintaining the
light-and-dark relationship between the pixel values in the facial image. At the same time,
the facial image cannot be recognized by the human eye, and the process is irreversible.

RLLFPR consists of two main networks, the SN network (represented by the
blue–green–purple parts in Figure 1) and the ResNet [36] network (represented by the
yellow part in Figure 1). The SN network is responsible for generating privacy-preserved
faces, while the ResNet network is used for recognizing these privacy-preserved faces. The
SN uses SegNet [37] as the main module, and the SegNet network is an encoder–decoder
network. The max-pooling layer is used for downsampling in the encoder network. In the
decoder network, SegNet is different from previous upsampling methods (such as decon-
volution or linear interpolation). It uses the max-pooling layer index generated by the
downsampling max-pooling process for upsampling. The concrete SN adopts a five-layer
encoder–decoder structure and removes the last Softmax layer, and the number of output
channels of the last convolutional layer is one. The green part is composed of three parts:
convolutional layer + batch normalization layer + ReLU activation function. The blue part
is the max-pooling layer, which not only is used in the downsampling but also produces
the max-pooling index (the purple part in Figure 1) for upsampling.
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Figure 1. Privacy-preserving face recognition based on randomization and local feature learning
(RLLFPR) structure.

3.1. Privacy-Preserving Face Recognition Based on Randomization and Local Feature Learning
(RLLFPR) Training Method

During the training process of the RLLFPR, although the two networks are jointly
trained, the backpropagation of the loss function only involves the ResNet network and
does not encompass the entire network. The SN network learns through batch normaliza-
tion layers, enabling self-learning. Figure 2 illustrates the changes in facial images during
training and how the parameters of the two networks are updated. The SN network learns
through the batch normalization layers and generates SN_PrivacyFace (SNPF) images that
are difficult for human vision to recognize, as depicted in Figure 3. The ResNet parame-
ters are learned through the backpropagation of the Cosface loss function (Equation (1)).
After training, the ResNet network can accurately recognize SNPF images.

Figure 2. Training process of privacy-preserving face recognition based on randomization and local
feature learning (RLLFPR).
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Figure 3. The original face is passed through the SN network to produce the privacy-preserved face,
the SN_PrivacyFace (SNPF).

Loss =
1
Ni

∑
i
− log

es(cos (θyi ,i))−m)

es(cos (θyi ,i))−m) + ∑j ̸=yi
es(cos (θyi ,i))

(1)

3.2. Randomized Convolution and Batch Normalization Learning for RLLFPR

In RLLFPR, the SN utilizes random convolution through the convolutional layers to
randomize the pixel values of the face. The batch normalization layer, with learned mean
and variance, preserves the brightness relationship between the pixel values within the
face region. During the initial training phase, the SN randomly initializes the convolutional
kernels in all the convolutional layers used in the upsampling and downsampling processes
of the network structure. The values of the convolutional kernels follow a normal distri-
bution. Without backpropagation of a loss function, the parameters of the convolutional
layers remain unchanged, and the convolutional kernels retain their initial random values.
The convolution operation process is shown in Figure 4, where x1–x9 are the random values
of the initial convolution kernel.

Figure 4. Randomized convolution operation.

In the SN, images after multiple rounds of random convolution operations can have
high fuzziness. In the convolution operation, it is assumed that the original image is a
grayscale image of n×n (n is even). Equation (2) is the output image size formula of
randomized convolution; input, p, k, s, and output represent the input image size, zero
filling, convolutional kernel size, stride, and output image size, respectively. After the
convolution operation with the convolution kernel size k = 3, stride s = 1, and zero filling
p = 1, the image size is still n×n (Equations (2) and (3)). In this process, the pixel values
in the image are randomized to generate privacy-protected images that are difficult for
human vision to recognize.

ouput = ⌊ input + 2p − k
s

⌋+ 1 (2)
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a11 a12 . . . a1(n−1) a1n
a21 a22 · · · a2(n−1) a2n

...
...

. . .
...

...
a(n−1)1 a(n−1)2 · · · a(n−1)(n−1) a(n−1)n

an1 an2 · · · an(n−1) ann


n×n

⊗ k s=1−→



b11 b12 . . . b1(n−1) b1n
b21 b22 · · · b2(n−1) b2n

...
...

. . .
...

...
b(n−1)1 a(n−1)2 · · · b(n−1)(n−1) b(n−1)n

bn1 bn2 · · · bn(n−1) bnn


n×n

(3)

The SN network first reduces and then enlarges the facial image, with the downsam-
pling process primarily utilizing the max-pooling layer. The max-pooling layer is similar to
a convolutional layer but does not require convolutional kernels. It is used to reduce the size
of the feature map and extract the main features. Specifically, the max-pooling operation
takes the maximum value within each region and assigns it the value at the corresponding
position in the output feature map, as shown in Equation (4). In other words, it summarizes
the pixel values within each region by taking the maximum value. The output feature map
has a reduced size but retains the most significant features within each region. The output
image size is determined by Equation (2), where k represents the region size, s is the stride,
and p is the zero padding. Additionally, during the downsampling process, the position
indices of the max-pooling layer are saved and used for upsampling in subsequent steps.

a11 a12 . . . a1(n−1) a1n
a21 a22 · · · a2(n−1) a2n
...

...
. . .

...
...

a(n−1)1 a(n−1)2 · · · a(n−1)(n−1) a(n−1)n
an1 an2 · · · an(n−1) ann


n×n

k=2,s=2,p=0−→

 a11 . . . a1n
...

. . .
...

an1 · · · ann


n
2 ×

n
2

(4)

During the upsampling process, the downsampling max-pooling layer’s index matrix
is utilized to enlarge the reduced image. The maximum values obtained from the down-
sampling process are placed back into their original positions in the matrix using the index
positions, while the other values within the region are set to 0. This process is described by
Equation (5), where k represents the region size, s is the stride, and index refers to the index
matrix. By performing upsampling the same number of times as downsampling, the image
can be restored to its original size. Utilizing the max-pooling layer’s index to upscale the
image reduces the number of network parameters and improves computational efficiency.

 a11 . . . a1n
...

. . .
...

an1 · · · ann


n
2 ×

n
2

k=2,s=2,index−→


a11 0 . . . 0 a1n
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
an1 0 · · · 0 ann


n×n

(5)

During the downsampling process in the SN network, randomization is introduced
through convolutional layers, adding randomness to the image. The image size is reduced
and some information is removed through the max-pooling layer. The removed information
cannot be fully recovered during the unlearned upsampling process, resulting in differences
between the generated image and the original image. The combination of randomness and
removed information creates privacy-preserved images that are difficult for human vision
to recognize.

The convolution operation adds randomness while preserving some information
from the original image. This information is enhanced in the batch normalization layer.
The self-learning of the batch normalization layer can learn the light-and-dark difference of
pixel values in the image, which can be recognized by the subsequent network. The batch
normalization layer specifically learns the mean and variance of the data. Different from the
convolutional layer, the mean and variance of the batch normalization layer in the training
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mode can also update the parameters without loss-function backpropagation. The SN
structure has a convolutional layer followed by a batch normalization layer (Figure 5).
x is the value after the randomized convolutional layer, and y is the value of x after
the batch normalization layer; the mean(x), Var(x), represented mean, variance, and eps
prevent the divisor from being zero. λ and β represent the updated backpropagation
parameters, defaulting to 1 and 0 (Equation (6)). On the basis of the preset hyperparameter
m, the variance and mean will constantly self-learn and update during the training process
(Equations (7) and (8)). x and x’ denote different batches of data. In the prediction stage,
the batch normalization layer processes the data with the mean and variance learned by
training, and no more updates are performed.

Figure 5. Convolutional layer and batch normalization layer in SN network.

y =
x − mean(x)√
Var(x) + eps

γ + β (6)

mean = (1 − m) ∗ mean(x) + m ∗ mean(x
′
)Var = (1 − m) ∗ Var(x) + m ∗ Var(x

′
) (7)

Var = (1 − m) ∗ Var(x) + m ∗ Var(x
′
) (8)

Since the convolution kernel is random, the image is passed through a convolution
layer to generate a lower-information image (Figure 6a). After multiple convolutional
layers, affected by the randomized convolution kernel, the image has no information. Such
images cannot be used for face recognition. However, we observe that images combined by
convolutional layers and batch normalization layers can generate preliminarily recognizable
facial images (Figure 6b). The facial image in Figure 6b contains more recognition features,
such as face contour, eye, nose, mouth, and other contours, and other original image
information than the facial image in Figure 6a. The whole process is as follows: the
convolution layer randomizes the pixel values of the facial image in the region, and the
batch normalization layer maintains the light-and-dark relationship between the pixel
values in the region. After multiple rounds of this cycle, the privacy-protected face image
that is difficult to recognize by human vision but can be accurately recognized by machine
vision is generated.

In the convolution process, the randomness of the convolution kernel also makes
the final image revocable and irreversible. The randomness of the convolution kernel
makes the same image obtain different results through different convolution kernels, see
Equation (3), and this randomness will also be enhanced in multiple convolution operations.
Different random convolution kernels are used for each training, so the networks between
training cannot communicate with each other. This makes the facial images in the database
revocable, and even if the server-side face data are stolen (the server-side stores the privacy-
preserved facial images), the whole network can be retrained so that the stolen facial images
cannot be recognized normally. At the same time, the convolution operation is irreversible,
so the resulting image is also irreversible.
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(a) (b)

Figure 6. (a) Facial image after the convolutional layer processing; (b) facial image after the convolu-
tional and batch normalization layer processing.

4. Experiment
4.1. Setting

We used RLLFPR with the LFW (Labeled Faces in the Wild) [38], Celeba, and HDU
(camera-captured facial images) datasets. The LFW dataset consists of 13,233 face images.
The celebrity dataset Celeba randomly selects 10% of its face images (20,177 faces) for
training and testing. The HDU dataset collected by our camera consists of 3891 face
images of 51 young people (around 20 years old) under different background and lighting
conditions. These faces were uniformly aligned and enlarged to 160 × 160 size by the
MTCNN [39] method. The ResNet network was updated to ResNet50. The loss function
used Cosface (S = 30, M = 0.5) (Equation (1)). The Python language, Pyotch1.8 library, and
GTX 2080TI graphics card were used. A Microsoft LifeCam HD-3000 was used to capture
the images.

The ResNet50 was first pretrained using the LFW dataset with epoch = 256, learning
rate = 0.1, and batchsize = 32. After pretraining the ResNet50, the RLLFPR network was
trained, and the SN and ResNet were jointly trained and tested on the training samples.
Furthermore, we used Equation (1) as the loss function, epoch = 64, learning rate = 0.001,
batchsize = 32.

4.2. The Recognition Performance of Privacy-Preserving Face Recognition Based on Randomization
and Local Feature Learning (RLLFPR)

We mainly compared the accuracy, misidentification rate, and F1 score of an RLLFPR
image with the original face image without privacy protection and images processed with
Arnold transform [2], eigenface [40], differential privacy [33], and PartialFace [35] methods
on the three datasets, and the specific results are shown in Table 1. The Arnold transform
method processes the face through the method of data processing. The eigenface method
uses PCA to extract part of the features of the face for recognition. The differential privacy
method adds differential privacy on the basis of the eigenface. PartialFace blurs the face
by removing the low-frequency information of the image and partially randomizes the
high-frequency information.

The original face images without privacy protection, shown in Table 1, performs the
best on the three datasets. The privacy-protected faces generated by the AES encryption
method cannot be recognized in the case of ciphertext, so the accuracy is about 0 in
the tests on the three datasets. On the LFW dataset, RLLFPR had the highest accuracy
of 99.93%. It was better than the 99.82% of the Arnold transform method, 83.73% of
differential privacy, and 99.80% of PartialFace. In terms of F1 score, RLLFPR was the
same as PartialFace, with 99.67%, which was better than the other privacy-preserving
recognition algorithms. The misidentification-rate score of RLLFPR was 0.13%, which
was slightly worse than Arnold’s 0.10% but better than the other methods. On the Celeba
dataset, RLLFPR had the highest recognition accuracy of 98.77%, the highest F1 score of
98.67%, and the lowest misidentification rate of 0.11%, which was better than the existing
methods. In the dataset collected by the camera, due to the small size of the dataset and the
environment, the lighting and other factors changed greatly. The method of differential



J. Imaging 2024, 10, 59 10 of 19

privacy performed poorly on the HDU dataset, with an accuracy and F1 score below 50%
and misidentification rate greater than 50%. The accuracy of the eigenface method was
only 80.39%, and the accuracy of the Arnold transform was only 90.57%. PartialFace and
RLLFPR also had excellent results on the HDU dataset, with an accuracy of more than 99%.
RLLFPR was better than PartialFace, with an accuracy of 99.58%, misidentification rate of
only 0.59%, and F1 score of 99.23%.

Discussion 1: Compared with the previous privacy-protection methods, RLLFPR
had a higher accuracy and F1 score and lower misidentification rate. At the same time,
compared with the original face image without protection, the accuracy of RLLFPR only
had a slight decrease, which was only 0.02% lower on the LFW dataset. On the Celeba
dataset, the maximum decline was 0.92%, and the final accuracy was 98.77%, which was
also better than the other privacy protection–recognition methods. On the HDU dataset,
the accuracy was reduced by 0.39%, and the accuracy was still more than 99.5%. In general,
RLLFPR is better than the previous methods in balancing privacy protection and face
recognition and is superior to the existing methods.

Table 1. Comparison of accuracy, misidentification rate, and F1 score of RLLFPR with currently
available face privacy-preserving recognition methods on three datasets (Unit/%).

Database LFW Celeba HDU

Methods Privacy
Protection

Accuracy Misidentification F1 Accuracy Misidentification F1 Accuracy Misidentification F1

Original face No 99.98 0.10 99.83 99.69 0.08 99.73 99.97 0.10 99.75
AES Yes 0 \ \ 0 \ \ 0 \ \
Eigenface [40] No 98.93 0.45 98.88 98.41 0.52 98.41 80.39 18.90 79.61
Arnold [2] Yes 99.82 0.10 99.66 98.33 0.15 98.13 90.57 9.06 89.74
Differential Yes 83.73 8.77 83.61 81.68 9.31 81.98 <50 >50 <50
privacy [33]
PartialFace [35] Yes 99.80 0.15 99.67 98.73 0.24 97.91 99.34 0.78 98.94
RLLFPR Yes 99.93 0.13 99.67 98.77 0.11 98.67 99.58 0.59 99.23

4.3. RLLFPR Fuzzing Performance Test

Some privacy-preserved faces produced by RLLFPR in different datasets are shown
in Figure 7. Compared with the original faces, the privacy-protected faces generated by
RLLFPR in the three datasets changed greatly. From the perspective of human vision,
information about the original face cannot be recognized from the privacy-preserved face.

Figure 7. Privacy-preserved faces produced by RLLFPR on different datasets: (a,b) from the LFW
dataset, (c,d) from the Celeba dataset, and (e) from the HDU dataset.
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4.3.1. Fuzziness Test Method

In terms of the fuzziness of privacy-protected images generated, because PartialFace
retains part of the contours of the face, the recognition accuracy of the differential privacy
method was less than 90%. Therefore, the main comparison is between RLLFPR and the
Arnold transform method and privacy-protected images produced by AES encryption.
RLLFPR, Arnold transform, and AES encryption methods all blur the original face to a
large extent, which makes it difficult to identify with human vision.

The privacy-preserved faces generated by RLLFPR cannot be recognized by human
vision, and some statistical characteristics of their performance are shown in Figure 8.
Figure 8 shows the grayscale histogram of the original image, processed by the RLLFPR
method, Arnold transform method, and AES encryption method. Compared with the origi-
nal image (Figure 8a,e), the gray distribution of the Arnold transform image (Figure 8c,g) is
basically unchanged, which is related to the restoration of the original image after multiple
rounds of operation. The gray histogram obtained by the RLLFPR method (Figure 8b,f)
and the AES encrypted image (Figure 8d,h) show similar distributions for different faces;
the RLLFPR method shows a similar bell-shaped distribution; and AES shows a similar
white-noise distribution. The similar gray histogram distribution of different faces can
improve the blurring performance of facial images.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Gray histograms of two different face images from different methods: (a,e) derived from
the original face images, (b,f) derived from RLLFPR after processing, (c,g) derived from Arnold
transformed images, and (d,h) derived from AES encrypted images. (a–d) each represent a human
face and (e–h) represent a different face from (a–d).

Figure 9 and Table 2 show the original image, Arnold, AES, as well as RLLFPR image-
adjacent pixel correlation analysis. Specifically, 3000 pairs of adjacent pixels from the three
R, G, B channels were selected for analysis. As can be seen in Table 2, the original image
(Figure 9a) presented a high linear correlation, and the three directional correlation values
were all greater than 0.98. Although Arnold transform (Figure 9c) blurred what can be seen
with human vision, it only moved pixels between locations, so it still had high correlation,
and the three directional phase property values were around 0.8. RLLFPR (Figure 9d) and
AES (Figure 9b) showed low correlation in the correlation analysis; RLLFPR showed three
correlations around 0.05, and AES had even lower values, around 0.005. Low correlation
can indicate that the image pixels are less regular and difficult to predict. In general,
the correlation effect of RLLFPR is much higher than that of the Arnold transform and
slightly inferior to the AES method.
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Table 2. The average correlation of RGB channels of the original face, AES, Arnold, and RLLFPR
images in the horizontal, vertical, and diagonal directions.

Method Horizontal Vertical Diagonal

Original face 0.9923 0.9916 0.9829
Arnold 0.8608 0.7548 0.9279

AES −0.0039 −0.0032 −0.0007
RLLFPR −0.0929 0.0326 −0.0795

(a) (b)

(c) (d)

Figure 9. Correlation analysis of adjacent pixels of original face, AES, Arnold, and RLLFPR images:
(a) original face, (b) AES, (c) Arnold, and (d) RLLFPR.

Table 3 shows a comparison of the PSNR and UACI values of the privacy-protected
face images generated by RLLFPR with the Arnold transformed, noisy, and AES encrypted
images. The noise-processed face is still recognizable and can be used as an intermediate
value for comparison. The PSNR value is the highest and the UACI value is the lowest for
the face after noise processing, indicating its high recognizability. The processed image
with noise has less distortion and blurring. The RLLFPR, Arnold, and AES encrypted
versions of all three images are not visible to the human eye and show better results in
terms of PSNR and UACI. The RLLFPR method is similar to the Arnold transform in terms
of both data PSNR and UACI, with PSNR values of 11.80 and 11.53 and UACI values of
50.61 and 53.93. All methods resulted in an AES-encrypted ciphertext with values of 8.77
and 75.27. However, AES-encrypted images cannot be recognized.
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Table 3. Comparison of accuracy and error rates of different methods.

Method PSNR UACI

Noise 14.16 36.24
Arnold 11.53 53.93

AES 8.77 75.27
RLLFPR 11.80 50.61

In addition, we designed three fuzziness tests.
First, we conducted human evaluation experiments by means of questionnaires.

The questionnaire consisted of two types of single-choice questions. The experimental
group was based on the privacy-preserved faces generated by RLLFPR, and the control
group comprised the privacy-preserved images processed by AES encryption. The first
single-item choice was entitled “Similarity problem” (Figure 10a), which judged the de-
gree of similarity between two faces by giving the original facial image and the privacy-
preserved image of the original face. Five options were given, respectively, is completely
not similar (4 points), a small degree of similarity (3 points), not sure (2 points), most similar
(1 points), and completely similar (0 points), using scoring judgment of fuzzy degrees.
The higher the score, the higher the fuzziness of the image.

The second type of single-choice question (Figure 10b) was a matching question.
On the basis of the original face, four faces after privacy protection were given, and the
privacy-protected face that the participant believed belongs to the same person as the
original face was selected. The lower the accuracy, the higher the image fuzziness.

(a) (b)

Figure 10. Composition of questionnaire questions. (a) the direct similarity between the privacy-
protected image and the original image; (b) the direct matching degree between the privacy-protected
image and the original image.

A total of 100 questionnaires (groups 1 and 2 each had 10 questions) were distributed,
and 98 were collected, resulting in an effective response rate of 98%. The survey results
are considered valid. The statistical results for each question in the questionnaire are as
follows (Table 4).

Table 4. Questionnaire results.

Purpose of the Question Types of Design Problems (Two Groups) Experimental Group Control Group (AES)

Fuzziness test Group 1 dissimilarity 3.51 3.55
(0–4, 0 clear, 4 no similarity)
Group 2 match 20.90% 25.35%
(choose 1 from 4, measure accuracy)
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Discussion 2: The statistical results for each question in the questionnaire are as
follows (Table 4). It can be observed that the privacy-preserved face generated by RLLFPR
(SNPF) and the face encrypted with AES show similar results. Both methods received
high scores in the first group. The similarity values are 3.51 and 3.55, respectively, which
reflects that the privacy-preserved images generated by RLLFPR are visually similar to the
effect of the AES-encrypted images and that the processed and original images have a low
similarity. In the second group, the matching accuracy is close to 25%, indicating that the
respondents were close to randomly selecting their answers. Accuracy close to 25% proves
that both images could not be matched to the original image, and even if privacy-preserved
images were acquired, they could not be matched to a specific person.The results of the
two questionnaires show that the privacy-preserved faces generated by RLLFPR have
high ambiguity, similar to encryption methods. PartialFace [35] achieved high similarity
compared to the original face in the first questionnaire, and in the second questionnaire,
humans recognized privacy-protected faces with accuracies reaching or even exceeding
70–80%. Therefore, it was judged that the PartialFace method for human eye visual blurring
was unsatisfactory, and no subsequent blurring test was performed.

Second, the idea of convolution is used to calculate the mean value of the image block,
and the variance (Equations (9)–(11)) is calculated for all the mean values. s is the block size,
which means the mean value of the s×s region size. Sharp images are colorful, and V(img)
tends to be larger, while fuzzy images are smaller. V(imgi)

V(imgo)
is generally between 0 and 1.

imgi refers to privacy-protected images and imgo refers to original images:

V(img) = var(imgi ⊗ ks×s) (9)

ks×s =


1

s∗s . . . 1
s∗s

...
. . .

...
1

s∗s · · · 1
s∗s

 (10)

Fuzziness 2 is shown in Equation (11); the larger the fuzziness of the image, the higher
the value.

Fuzziness2 = 1 − V(imgi)

V(imgo)
(11)

The third kind of fuzziness is the method of edge detection (Equations (12) and (13))
+ SSIM similarity detection (Equation (14)). Firstly, the edge of the image is detected,
and then the SSIM similarity between the privacy-protected image and the original image
is calculated. The lower the similarity, the higher the ambiguity. The Laplacian operator is
used for edge detection.

Laplacian(img) =
∂2img

∂x2 +
∂2img

∂y2 (12)

klaplacian =

 0 −1 0
−1 4 −1
0 −1 0

 (13)

The SSIM algorithm [41] similarity index measures the similarity of images, ranging
from 0 to 1. The larger the value, the higher the similarity of the image; µ and σ represent
the mean and standard deviation, respectively.

SSIM(x, y) =
(2µxµy + c1)(2µxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c12)
(14)
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The image fuzzy degree Fuzziness3 is obtained by subtracting the SSIM similarity
from 1 (Equation (15)), and the higher the value, the higher the fuzzy degree.

Fuzziness3 = 1 − SSIM(lap(imgo ), lap(imgi)) (15)

4.3.2. Fuzzy Performance of Privacy-Preserving Face Recognition Based on Randomization
and Local Feature Learning (RLLFPR)

Table 5 shows the values obtained by different privacy-protection methods after the
fuzziness test methods, and the comparison of privacy-protection performance between
different methods is added in Table 5. The Fuzziness1 results are shown in Table 4. As can
be seen from the table, the ambiguity of RLLFPR measured by Fuzziness2 is in the range
of 0.80–0.95, which is obviously better than that of noise addition, Arnold transformation,
and other methods. AES is the encryption algorithm with ambiguity in the range 0.6–0.9,
and the encrypted image cannot be directly recognized. Measured by Fuzziness3, RLLFPR
also has a good effect. RLLFPR (0.997) is better than Arnold (0.996), and noise (0.992) is
second to AES (0.999). In summary, the privacy-preserving facial fuzzy image generated by
RLLFPR is better than the additive noise method and Arnold method and is similar to the
AES encryption method. The generated faces in RLLFPR can effectively obscure human
vision, providing protection against unauthorized access to facial data stored on servers.
RLLFPR eliminates the need for encryption keys, reducing the burden on individuals
concerned about their identification. In addition, RLLFPR can directly recognize privacy-
protected images.

Table 5. Fuzziness and safety analysis of RLLFPR, AES, Arnold, and noise methods.

Method Privacy
Protection

Identification after Protection Fuzziness2 Fuzziness3 Key Reversibility Revocability

Arnold Yes Yes 0.40–0.70 0.996 No Reversible Revocable
AES Yes No 0.60–0.90 0.999 Yes Reversible Revocable
Noise Yes Yes 0.20–0.40 0.992 No Irreversible Irrevocable
Original face No \ 0 0 No \ Irrevocable
RLLFPR Yes Yes 0.80–0.95 0.997 No Irreversible Revocable

Discussion 3: In terms of security, RLLFPR is irreversible as well as revocable. Irre-
versibility: The core of the SN network is composed of a convolutional layer, a batch nor-
malization layer, and an activation-function and maximum-pooling layer. The convolution
operation in the convolutional layer and the pooling operation in the maximum-pooling
layer are irreversible operations. The activation function uses a nonlinear ReLU activation
function, which is also irreversible. Therefore, with the stacked use of irreversible oper-
ations, an irreversible privacy-protected image will eventually be produced, and even if
the privacy-protected image is obtained, the probability of recovering from it the original
face image is close to 0. The ciphertext encrypted by AES cannot be recognized directly,
and the Arnold transformed image can be used to recover the original image after many
transformations. This all increases the risk of privacy leakage.

Revocability: Since RLLFPR generates blurred images that cannot be recognized by
the human eye, it is impossible to match the face images in the database with the real face
images even if the database is stolen. The Arnold transform method is not revocable since
its images can be restored to the original images. Combining the two aspects of blurriness
and security, RLLFPR is more advantageous than the previous methods.

4.4. Network Structure Ablation Experiment of RLLFPR Method

During the training process of RLLFPR, the entire SN network does not update its
parameters through the loss function. To demonstrate the effectiveness of the structural
improvement, experiments were conducted on the SN network with parameter updates
through loss backpropagation. In this case, the SN network still used the Cosface loss
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function (Equation (1)). However, upon careful observation, it was found that the SN
network trained with loss backpropagation retained the contour information of the original
face, resulting in suboptimal privacy protection (Figure 11, the generated privacy-protected
image is enlarged). The experiments tested these two types of images under three different
levels of blurriness (Table 6). From Table 6, it can be observed that the facial images
generated by the RLLFPR method have higher privacy-protection effectiveness compared
to the SN network trained with the loss function. In the first fuzziness test method,
the similarity value of SN after self-learning is 3.51, which is higher than that of SN after
loss backpropagation, which is 2.11. It is proved that the face image produced by the
self-learning SN is shielded from human-eye vision. In the second and third fuzziness
test methods, the self-learned SN is 0.80–0.95 and 0.997, respectively, which is better
than the SN after loss function backpropagation of 0.75–0.95 and 0.983. Thus, the self-
learned SN produces more ambiguous privacy-preserved faces than the SN after loss
function backpropagation.

Figure 11. Different privacy-preserved images produced by SN network after self-learning and SN
with loss function backpropagation.

Table 6. Comparison of three blurriness tests for privacy-preserved images produced by SN after
self-learning and SN network with loss function backpropagation.

Fuzziness1 Fuzziness2 Fuzziness3

SN (loss function backpropagation) 2.11 0.75–0.95 0.983
SN (self-learning) 3.51 0.80–0.95 0.997

For the recognition of privacy-protected faces on the backbone network, a ResNet
was chosen due to its superior performance in face recognition and image classification.
Specifically, ResNet50 was selected. Additionally, DenseNet [42] was compared to the
ResNet, as it has a similar excellent effect in image classification. For DenseNet, we
selected DenseNet121. The results of the training on the LFW dataset are presented in
Table 7. Both ResNet50 and DenseNet121 showed similar performance in terms of accuracy,
with ResNet50 achieving a slightly higher accuracy of 99.93% compared to DenseNet121’s
99.91%. However, ResNet50 had a higher misidentification rate of 0.13% compared to
DenseNet121’s 0.07%. Both models had the same F1 score of 99.67%. Therefore, either
backbone network can be selected for DenseNet.
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Table 7. Performance comparison of ResNet50 and DenseNet121 as backbone networks in
RLLFPR (Unit/%).

Accuracy Misidentification Rate F1

ResNet50 99.93 0.13 99.67
DenseNet121 99.91 0.07 99.67

5. Conclusions

In this paper, we study the recognizable space of face images and find that under the
condition of appropriately maintaining the structure of face components and local interpixel
light-and-shadow relations, randomizing the rest of the information can still allow the
model to accurately recognize face images with a recognition accuracy of >99%. On this
basis, a face privacy recognition method, RLLFPR, is proposed. Instead of using traditional
cryptography or image-processing methods to generate privacy-protected faces, RLLFPR
takes advantage of the inherent randomness of the convolutional layer and the self-learning
function of the batch normalization layer in deep neural networks. By randomizing the pixel
values between face image regions and maintaining the light–dark relationship between
face pixels, it generates privacy-protected faces that are difficult to recognize by human
vision, with a recognition rate of nearly 25% in a four-choice–one-human recognition test,
which is equivalent to the recognition rate of random guessing. At present, the RLLFPR
method requires a high number of face training sets and mainly needs to adapt to as many
lighting environments as possible. Further research considerations include continuing to
explore the identifiable space of facial images and building a more portable, controllable,
and effective network structure to generate facial images with better recognition effects and
privacy-protection effects.
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